

Calculation Checksheet

Project No. <u>18788-003-00</u> Project Title: <u>Mid Barataria Diversion (BA-153)</u>
Deliverable Title: Corrected SPT Number (N ₆₀); Establish Soil Properties for Granular Soil
Calculations Description: The standard penetration number is a function of the input
driving energy and its dissipation around the sampler into the surrounding soil. The
variations of correction to borehole diameter, sampler and rod length are based on
recommendations by Seed et al. (1985) and Skempton (1986). The hammer efficiency for
the SPT hammer on each of the drill rigs used for the above project were taken from the
respective hammer calibration reports. Supporting information is attached.
Soil properties for granular soil were established for the above project based on various
references attached.
Originator: VT Checked by: 1. Clay Date: 11/11/2013
Checking method (describe):
Comments:
Attach checksheets, numbered consecutively.

Soil Properties for Mid Barataria Diversion Project (BA-153)

Soil Type/Relative Density	Unit Weight (pcf)	Cohesion (psf)	Effective Friction Angle (deg)	SPT Blows Corrected (N ₆₀)
Silt				
Very Loose	113	200	8	0-4
Loose	115	200	10	5-10
(USACE) Medium Dense	117	200	15	11-30
Dense	122	200	20	31-50
Very Dense	125	200	25	51+
Silty (>12%) Sand(>50%)/ Clayey(>12%) Sand (>50%)				
Very Loose	118	0	25	0-4
Loose	120	0	28	5-10
(USACE for SM) Medium Dense	122	0	30	11-30
Dense	125	0	33	31-50
Very Dense	128	0	35	51+
Poorly Graded Sand				
Very Loose	122	0	28	0-4
Loose	122	0	30	5-10
(USACE) Medium Dense	122	0	33	11-30
Dense	128	0	39	31-50
Very Dense	130	0	41	51+

Clay properties are based on lab testing performed for the project

Soil Parameters for S-Case: Silt: Cohesion=0 psf, phi=28 Clay: Cohesion=0 psf, phi=23

Prepared By:	Reviewed By:
Name: Venu Tammineni	Name: Charlie Eustis
Date: 11/08/2013	Date: <u>11/08/13</u>

= N 14 h B 2 5 2 12

Where

N60 = Standard penetration number, corrected for held N = measured penetration number conditions

14 = hammer efficiency (1.) From hammer calibration

MR = correction for borehole diameter = 1.0 for 4" borchole = 1.05 for 6" borchole

Ms = Sempler correction = 1.0

1/2 = Correction for rod length >30'=1.0 12'-70'=0.85 20'-30'=0.95 6'-12'=0.75

- Variations of 2H, 2B, 25 and 2R, based on recommendations by seed of al. (1985) and 5 kempton (1986)

- Harmmer efficiency was measured for each drill rig (Appendices & through & - Geotechnical Data Report)

Equation and Factors Fizim;

Principals of Foundation Engineering SE, Braja M. Das 2004

US Army Corps of Engineers

ENGINEERING AND DESIGN

Design of Sheet Pile Walls

Table 3-1				
Granular Soil Properties	(after	Tena	1962)	

	Relative	SPT N	Angle of Internal	Unit Weight	
Compactness	Density (%)	(blows per ft)	Friction (deg)	Moist (pcf)	Submerged (pcf)
Very Loose	0-15	0-4	<28	<100	<60
Loose	16-35	5-10	28-30	95-125	55-65
Medium	36-65	11-30	31-36	110-130	60-70
Dense	66-85	31-50	37-41	110-140	65-85
Very Dense	86-100	>51	>41	>130	>75

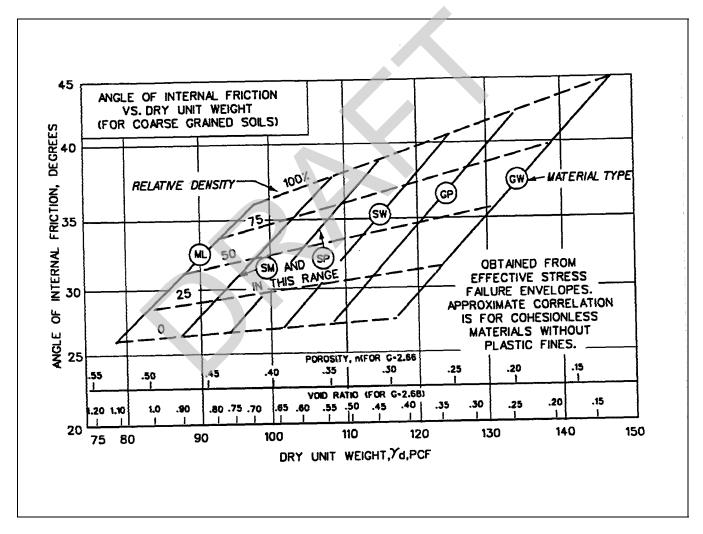


Figure 3-1. Cohesionless Soil Properties (after U.S. Department of the Navy 1971)

Hurricane and Storm Damage Risk Reduction System Design Guidelines

New Orleans District Engineering Division With Revisions through June 2012

UPDATED 14 JUN 12

Table 3.3 Typical Values for Silts, Sands, and Riprap

Soil Type	Unit Weight (pcf)	Cohesion (psf)	Friction Angle (degree)
Silt	117	200	15
Silty Sand	122	0	30
Poorly graded sand	122	0	33
Riprap	132	0	40

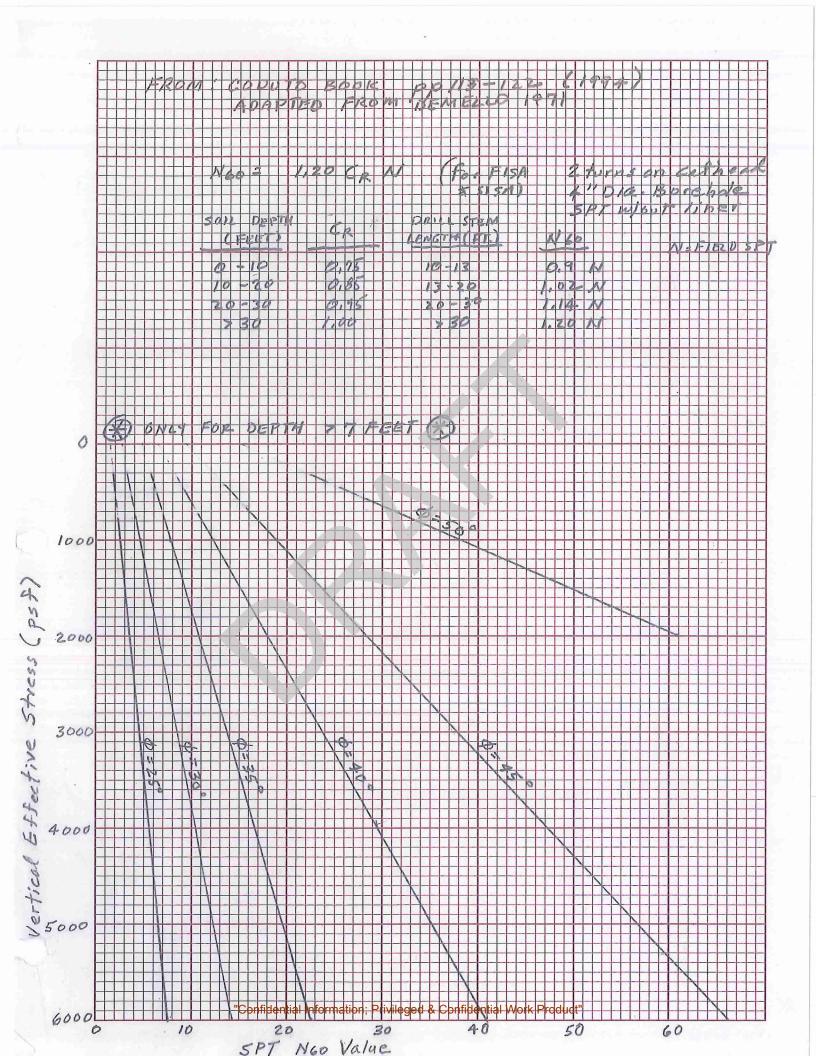
Notes:

- 1. Weight of riprap may vary based on the filling of the riprap voids over time.
- 2. Undrained soil parameters for S-Case are:
 - i. Silt Cohesion = 0 psf, phi = 28
 - ii. Clay Cohesion = 0 psf, phi = 23
- 3. Engineering judgment or laboratory test data (if available) should be used in determining soil properties of clayey silts, clayey sands, and sandy silts if they exist in the foundation.

F. Reserved.

G. At pipeline crossings, the allowable FOS shall be 1.5 for the gross section for a distance of 150 ft on either side of the C/L of the pipeline or an appropriate distance determined by engineering assessment. This analysis should be performed with flood side water at the SWL.

3.1.3 Seepage Analysis


3.1.3.1 Definitions

Stage or Water Surface Elevation (WSE) – the height of water against a levee or floodwall. Water height is measured as the vertical distance above or below a local or national elevation datum.

Design Water Surface Elevation (DWSE) – the stage or water level to be used in deterministic analyses such as the geotechnical, structural stability, and seepage analyses. For the HSDRRS, the DWSE is found from the AWSE and its associated uncertainty at the selected confidence limit, where uncertainty is represented by normal distribution, and the confidence limit is 90%:

AWSE = best fit for 50% confidence level

DWSE = 90% confidence level

Job No. 1332046-1

engineers, inc.

Report on:

SPT Energy Measurements
Diedrich D50: Track Mounted Drill Rig
Automatic Hammer Calibration: SN# 268
Baton Rouge, Louisiana

Prepared for:

Southern Earth Sciences, Inc.By Jon Honeycutt & Brian Mondello, P.E.

December 3rd, 2013

"Confidential Information: Privileged & Confidential Work Produc

December 3, 2013

Mr. Mike Juneau, P.E. Southern Earth Sciences, Inc. 11638 Sun Belt Court Baton Rouge, Louisiana

Re: SPT Energy Measurements

Diedrich D50 - Automatic Hammer Calibration

GRL Job No. 1332046-1

Mr. Juneau:

This report presents the results of Standard Penetration Test (SPT) dynamic energy measurements performed December 2, 2013 on one (1) SPT sampling system at the referenced project site. The objective of the testing was to obtain the SPT energy measurements for the purpose of documenting the hammer energy transfer efficiency. A PDA system, Model PAX, was used to acquire and process the dynamic test data obtained through an instrumented drill rod section. All energy measuring and processing equipment are manufactured by Pile Dynamics, Inc. General information regarding the testing equipment and procedures is provided in Appendix A. Testing results are presented in Appendix B.

Drill Rig and SPT Hammer Details

Testing was conducted on a SPT drilling rig/hammer system that was identified to us as a Diedrich D50 track-mounted drill rig. The SPT system utilized a Diedrich automatic hammer system. The hammer reportedly consisted of a 0.14 kip hammer weight with a 30-inch (2.5 feet) drop height, corresponding to a potential energy value of 0.35 kip-ft.

Type AW-J drilling rods were used during testing. The SPT energy measurements were made using an approximately 3-foot long instrumented AW-J type rod segment inserted into the drill string immediately below the anvil of the hammer. The cross-sectional area of the AW-J instrumented rod segment is 1.16 in².

Southern Earth Sciences, Inc. SPT Energy Measurements GRL Job No. 1332046-1 Page 2 of 4

DYNAMIC TESTING FIELD DETAILS

Instrumentation

A PDA system was used to obtain and process dynamic measurements of strain and acceleration taken on the instrumented AW-J rod segment located between the hammer and drill string. Strain and acceleration signals were conditioned and converted to forces and velocities by the PDA. For each hammer blow, the PDA provided the following quantities: maximum force (FMX), maximum velocity (VMX), maximum displacement (DMX), maximum transferred energy (EFV), energy transfer ratio (ETR), and hammer blow rate per minute (BPM). Force and velocity records from the PDA were also viewed on a graphic LCD screen to evaluate data quality.

.

Test Sequence

Dynamic measurements were made at a test boring location at the referenced project site. SPT sampling and dynamic measurements were conducted at starting depths ranging from 25 and 35 ft. Energy measurements were obtained over three 6-inch increments for each sample depth. Based on ASTM 4633-10 requirements, only energy measurements obtained over the last one-foot of driving were used for hammer efficiency evaluation. The reported SPT N-values ranged between 12 and 15 blows/foot.

DYNAMIC TESTING ANALYSIS AND RESULTS

Complete testing and analyses results are presented in Appendix B. A summary of the testing results for the test boring are provided in Table1. PDIPLOT summaries of test records obtained under typical hammer blows from each test sequence are also included.

Energy Transfer Measurements

The PDA interprets the measured dynamic data according to the Case Method equations. Appendix B contains PDA output quantities plotted and printed as functions of hammer blow number for each depth sequence.

The maximum transferred energy (EFV) was calculated by integrating the product of the force and velocity records over the time duration of each test record as follows:

$$EFV = \int F(t)V(t)dt$$

Where, F(t) and V(t) are the time records of force and velocity, respectively.

The Energy Transfer Ratio (ETR) was calculated as:

Where, PE is the potential energy = 140 lbs x 30 inches = 0.14 kips x 2.5 ft = 0.350 kip-ft.

Summary of Testing Results

"Diedrich D50" - Automatic Hammer - AW-J Rod

EFV values ranged between 0.290 and 0.315 kip-ft with an overall average of 0.299 kip-ft and a standard deviation of 0.014 kip-ft. The corresponding ETR values ranged from 82% to 90%, with an overall average of 85% and a standard deviation of 4.0%. The hammer blow rate ranged from 50 to 51 blows/minute (BPM) with an overall average of 50 BPM and standard deviation of 0.3 BPM.

We appreciate the opportunity to be of assistance to you on this project. Please do not hesitate to contact us if you have any questions regarding this report, or if we may be of further service.

Very truly yours, GRL Engineers, Inc.

Jonathan Honeycutt

GRL Engineer

Enclosed: Appendices A and B

Brian Mondello, P.E.

GRL Engineer

SPT Hammer Calibration – Diedrich D50 Automatic, SN# 268

Table 1: Summary of Results

Project: Southern Earth Science | GRL Job No. 1332046-1

Rig: Diedrich D50, Serial No. 268 **Hammer Type:** Automatic

Boring I.D.	Test	Rod 1	Sample ²	Sample	Reported	Reported	Blows	Average	Avg. Max.	Average	Average	Average ³
	Date	Length	Depths	No.	blows per	SPT blow	Analyzed	Hammer	Compressive	Maximum	Transferred	Transfer
					6 inches	count		Rate	Force	Velocity	Energy	Ratio
		(ft)	(ft)		(blows/6")	(blows/foot)		(bpm)	(kips)	(ft/sec)	(lb-ft)	(%)
Boring # 1	02-Dec-2013	28.9	25-26.5	SS1	4-5-7	12	12	50.7	28.0	20.0	291	83.2
		36.9	30-31.5	SS2	5-6-6	12	12	50.2	32.0	23.3	315	90.0
		41.9	35-36.5	SS3	6-8-7	15	12	50.1	29.0	20.8	290	82.8
							Average:	50.3	29.7	21.4	299	85.3
						Standa	rd Deviation:	0.3	2.1	1.7	14.2	4.0

Notes:

- 1 Total rod length, including sampler, below gages
- 2 Depths measured from below reference elevation
- 3 Ratio of average transferred energy (EFV) to theoretical potential energy of 350 ft-lbs (140 lbs x 30 inch drop)

APPENDIX A AN INTRODUCTION INTO SPT DYNAMIC PILE TESTING

The following has been written by GRL Engineers, Inc. and may only be copied with its written permission.

1. BACKGROUND

The Standard Penetration Test is frequently conducted as an in-situ assessment of soil strength. This test requires that a 140 lb weight is dropped 30 inches onto a drive rod at whose bottom a sampler is usually installed. The sampler is driven for 18 inches; the number of blows required for the last 12 inches of driving is the so-called N-value. The N-value may be used as a strength indicator for foundation design or as a means of assessing the liquefaction potential of soils.

Obviously, the SPT hammer efficiency is an important consideration when using the N-values for design purposes. Measurements have indicated that the energy in the drive rod is sometimes only 30% and and may reach 90% of the potential or rated energy of the SPT hammer (E-rated = 0.35 kip-ft or 0.475 kJ). The type of hammer used to drive the rod is the main reason for these variations. On the average, the energy in the drive rod is 60% of the standard rated energy.

Because of the variability of energy, methods based on N-values are considered unreliable. However, measurements during SPT testing using the Case Method can be done on a routine basis and these measurements yield the transferred energy values. With measured energy, EMX, known, an adjustment of the measured N-value, N_m, can be made as follows.

$$N_{60} = N_{m} [E_{m} / (0.6E_{r})]$$
 (1)

Thus, if the measured energy value is equal to the normally expected transferred energy of 60% of Erated then the adjusted and measured N-values are identical. On the other hand, if the measured energy is only 30% then the adjusted blow count will be reduced by 50%.

2. DYNAMIC TESTING AND ANALYSIS METHODS APPLIED TO SPT

The Case Method of dynamic pile testing, named after the Case Institute of Technology where it was developed between 1964 and 1975, requires that a substantial ram mass (e.g. a pile driving hammer) impacts the pile top such that the pile undergoes at least a small permanent set. Thus, the method is also referred to as a "High Strain Method". The Case Method requires dynamic measurements on the pile or shaft under the ram impact and then a calculation of various quantities. Conveniently, for SPT applications, the measurements and analyses are done by a single piece of equipment: the SPT Analyzer. The Pile Driving Analyzer® (PDA) is also suitable to perform these measurements and data processing.

A related analysis method is the "Wave Equation Analysis" which calculates a relationship between bearing capacity, pile stresses, transferred energy and field blow count. The GRLWEAPTM program performs this analysis and provides a complete set of helpful information and input data. This program can be used very effectively to simulate the SPT driving process.

3. MEASUREMENTS

GRL uses equipment manufactured by Pile Dynamics, Inc. The system includes either an SPT-Analyzer™ (SPTA) or a Pile Driving Analyzer® (PDA), an instrumented rod section and two accelerometers. SPT energy testing is very closely related to and borrows procedures from dynamic pile testing. Those interested in the basis of the SPT energy testing method may obtain extensive literature on dynamic pile testing from GRL Engineers, Inc.

3.1 SPT Analyzer or Pile Driving Analyzer

The basis for the results calculated by the SPTA or PDA are strain and acceleration measured in an instrumented rod section. These signals are converted to rod top force, F(t), and rod top velocity, v(t). The SPTA or PDA conditions, calibrates and displays these signals and immediately computes average pile force and velocity thereby eliminating bending effects. The product of these two

measurements is then integrated over time which yields the energy transferred to the instrumented section as a function of time (see Section 4.1).

For convenience and accuracy, strain measurements are usually taken on an instrumented section of SPT drive rod. Ideally, the section properties of the instrumented rod and those of the drive rod are the same, however, using subs, other sections can also be utilized.

For the instrumented section, PDI provides a force calibration in such a way that the output of the instrumented rod is directly calculated without the need for an accurate elastic modulus or cross sectional area of the rod section.

The acceleration measurements are often demanding in the SPT environment, because of high frequency and high acceleration motion components. An experienced measurement engineer, therefore, has to evaluate the quality of this data before final conclusions are drawn from the numerical results calculated by SPTA or PDA.

SPTA or PDA records are taken while the standard N-value is acquired in the conventional manner. This then allows a direct correlation between N-value and average transferred energy.

3.2 HPA

The SPT hammer's ram velocity may be directly obtained using radar technology in the Hammer Performance Analyzer™. The impact velocity results can be automatically processed with a PC or recorded on a strip chart. HPA measurements yield a hammer kinetic energy, but not the energy transferred to the drive rod.

4 RECORD EVALUATION BY SPTA OR PDA

4.1 HAMMER PERFORMANCE

The PDA calculates the energy transferred to the pile top from:

$$E(t) = \int_{0}^{t} F(\tau)v(\tau) d\tau$$
 (2)

The maximum of the E(t) curve is often called **ENTHRU** or **EMX**; it is the most important quantity for an overall evaluation of the performance of a hammer

and driving system. **EMX** allows for a classification of the hammer's performance when presented as, e_T , the rated transfer efficiency, also called energy transfer ratio (**ETR**) or global efficiency.

$$e_{T} = EMX/E_{R} \tag{3}$$

where $E_{\rm R}$ is the hammer manufacturer's rated energy value or 0.35 kip-ft (0.475 kJ) in the case of the SPT hammer.

Often in the SPT literature one finds also reference to the EF2 energy. This evaluation is based on assumed proportionality between force and velocity (see also Section 5):

$$v(t) = F(t) / Z \tag{4}$$

where Z = EA/c is the pile impedance, E is the elastic modulus, A is the cross sectional area and c is the speed of the stress wave in the pile material..

Combining equations 2 and 4 leads to

$$\mathsf{EF}(\mathsf{t}) = \int_{\mathsf{O}} \mathsf{t} \, \mathsf{F}(\mathsf{T})^2 / \, \mathsf{Z} \, \mathsf{d}\mathsf{T} \tag{5}$$

The EF2 transferred energy value is the EF-value at the time t = 2L/c, where L is the drive rod length and c is the stress wave speed in steel (16,800 ft/s or 5,124 m/s). Since the force is easier to measure than both force and velocity, Equation 5 is preferred by some test engineers. However, the EF method is fraught with errors and certain correction factors have to be applied to make it approximately correct. Among the error sources are the following:

- Proportionality is often violated prior to time 2L/c. The proportionality between force and velocity in a downward traveling wave only holds if the wave does not encounter a disturbance prior to reflecting off the pile toe. Such disturbances include a change in cross sectional area, an open or loose splice or joint, or resistance along the shaft.
- Using only one force measurement precludes a data quality check based on the proportionality between force and velocity. Thus, a force measurement that is for some reason in error may not be detectable, which will lead to errors in the EF2 value. Data quality checks will be discussed further in Section 5.

The use if EF2 is therefore not recommended but it is often included in result presentations for the sake of completeness.

4.2 STRESSES

During SPT monitoring, it is also of interest to monitor compressive stresses at both the top of the drive rod and at its bottom.

At the pile top (location of sensors) the maximum compression stress averaged over the rod's cross section, **CSX**, is directly obtained from the measurements. Note that this stress value refers to the instrumented section. If the rod has a different cross sectional area then the stress in the rod will be different from CSX.

The SPTA or PDA can also calculate, in an approximate manner, the force at the rod bottom, **CFB**. To obtain the corresponding stress, this force value should be divided by the appropriate cross sectional area, e.g. by the rod area just above the sampler or by the sampler area itself. Of course, non-uniform stress components as they might occur at the sampler tip due to a sloping rock are not considered in this calculation.

5. DATA QUALITY CHECKS

Quality data is the first and foremost requirement for accurate dynamic testing results. It is therefore important that the measurement engineer performing SPTA or PDA tests has the experience necessary to recognize measurement problems and take appropriate corrective action should problems develop. Fortunately, dynamic pile testing allows for certain data quality checks because two independent measurements are taken that have to conform to the so-called proportionality relationship.

As long as there is only a wave traveling in one direction, as is the case during impact when only a downward traveling wave exists in the rod, force and velocity measured at its top are proportional

$$F = V Z \tag{5}$$

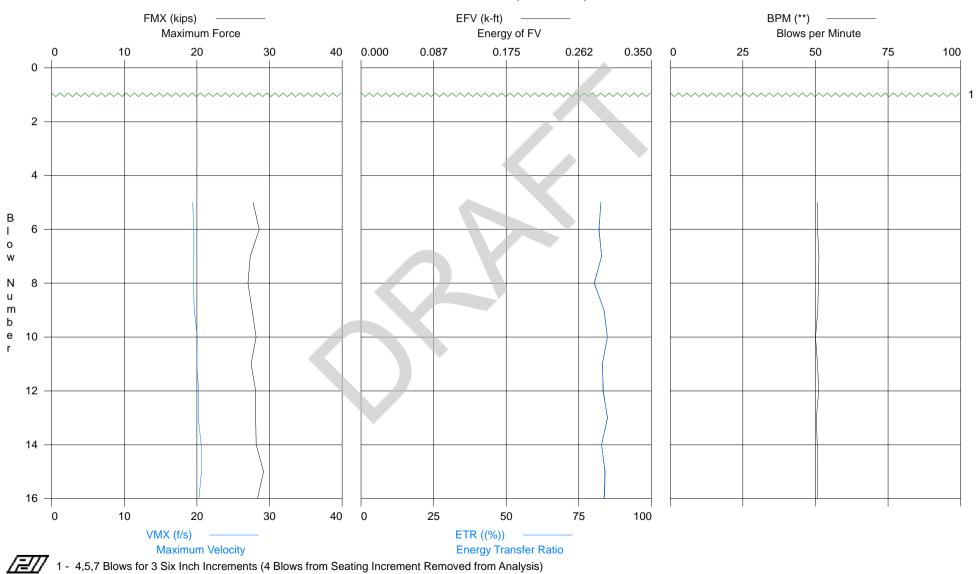
where Z is again the pile impedance, Z = EA/c. This relationship can also be expressed in terms of stress

$$\sigma = F/A = v (E/c) \tag{6}$$

or strain

$$\varepsilon = \sigma/E = v/c$$
 (7)

This means that the early portion of strain times wave speed must be equal to the velocity unless the proportionality is affected by high friction near the pile top or by a pile cross sectional change not far below the sensors. Checking the proportionality is an excellent means of assuring meaningful measurements but is only truly meaningful for perfectly uniform rods. Open or loose splices, for example, will lead to a non-proportionality. For SPT rods it is fortunate that usually no soil resistance acts along the shaft and for that reason, proportionality can exist until the stress wave returns from sampler top or rod bottom unless connectors are not sufficiently tightened or have a significant mass.


Velocity data quality can also be checked by looking at the final displacement, DFN, which is calculated from the acceleration by double integration. If the calculated final displacement is much higher or lower than indicated by the N-value, the accelerometer attachment may be loose or the sensor may be faulty. If major drift in the velocity is observed, the EMX value may be in error, even though proportionality from impact to time 2L/c exists. In this case, it may be useful to evaluate the energy transferred to the drill rod at time 2L/c, which is calculated by the PDA or SPTA as the E2E quantity.

© 2003 GRL Engineers, Inc. App-A-SPT-12-03

Test date: 2-Dec-2013

PDIPLOT Ver. 2012.2 - Printed: 3-Dec-2013

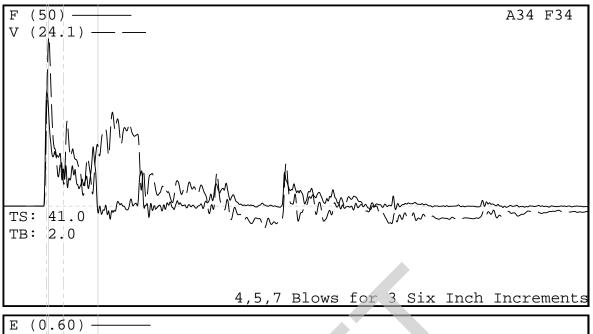
Southern Earth Science - SPT Hammer Calibration - SS1 @ 25 FT Diedrich D50 Automatic, SN#268, AWJ

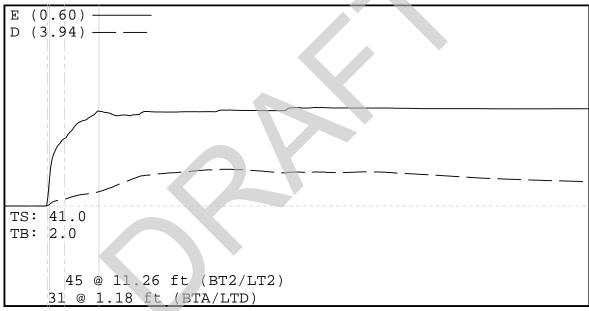
"Confidential Information; Privileged & Confidential Work Product"

PDIPLOT Ver. 2012.2 - Printed: 3-Dec-2013

South OP: N		Science - SF	PT Hamme	er Calibration	on - SS1 (25 FT	Diedrich	D50 Autom Tes	atic, SN#2 t date: 2-D	-
AR:	1.16 in/	^2								492 k/ft3
LE:	28.90 ft								EM: 30,	
WS: 1	6,807.9 f/s								JC: 0	0.00
FMX:	Maximum	Force						BPM: Blo	ws per Mir	nute
VMX:	Maximum	Velocity							ergy of FV	
VT1:	Velocity a	t Time 1						EFV: End	ergy of FV	
DMX:	Maximum	Displaceme	ent					ETR: En	ergy Trans	fer Ratio
DFN:	Final Disp	lacement								
BL#	depth	FMX	VMX	VT1	DMX	DFN	BPM	E2E	EFV	ETR
	ft	kips	f/s	f/s	in	in	**	k-ft	k-ft	(%)
5	0.00	28	19.4	19.4	1.12	0.56	50.6	0.271	0.289	82.64
6	0.00	29	19.6	19.6	1.14	0.61	50.7	0.272	0.287	81.90
7	0.00	27	19.6	19.6	1.04	0.26	51.2	0.274	0.290	82.87
8	0.00	27	19.5	19.5	0.97	0.13	51.0	0.270	0.281	80.41
9	0.00	28	19.6	19.6	0.97	0.62	50.8	0.272	0.293	83.65
10	0.00	28	20.0	20.0	0.95	0.37	50.0	0.278	0.297	84.84
11	0.00	27	20.0	20.0	0.87	-0.08	50.7	0.278	0.291	83.17
12	0.00	28	20.3	20.3	0.82	0.16	51.1	0.274	0.292	83.31
13	0.00	28	20.2	20.2	0.83	0.29	50.3	0.275	0.297	84.95
14	0.00	28	20.6	20.6	0.76	0.00	50.6	0.276	0.290	82.81
15	0.00	29	20.6	20.6	0.73	0.11	50.8	0.276	0.294	84.11
16	0.00	28	20.3	20.3	0.72	0.01	50.7	0.273	0.293	83.85
	Average	28	20.0	20.0	0.91	0.25	50.7	0.274	0.291	83.21
				Total	number of	blows ar	nalyzed: 1	2		

BL# depth (ft) Comments


1 0.00 4,5,7 Blows for 3 Six Inch Increments (4 Blows from Seating Increment Removed from Analysis


Time Summary

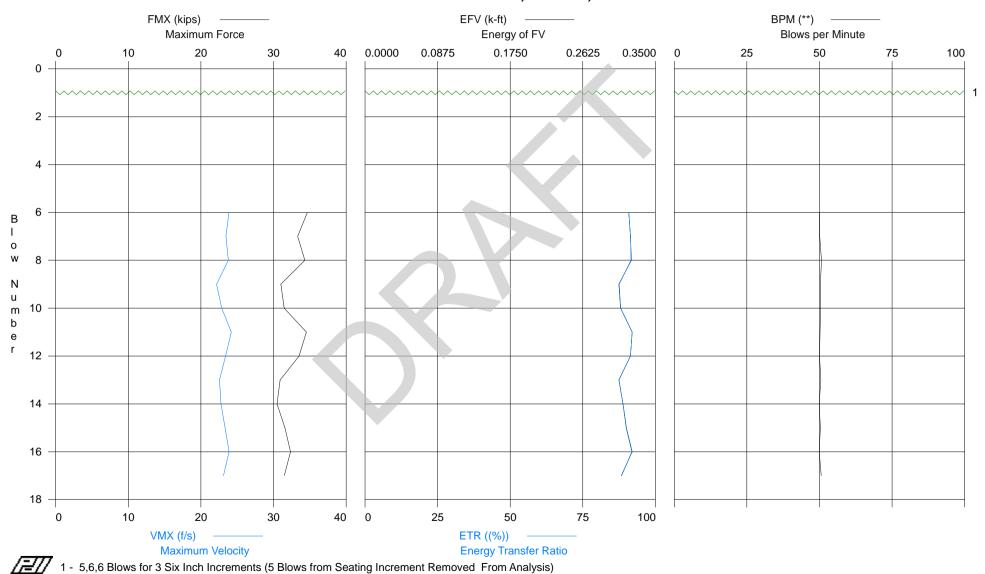
Drive 18 seconds 9:25:45 AM - 9:26:03 AM (12/2/2013) BN 1 - 16

Southern Earth Science - SPT Hammer Calibration

SS1 @ 25 FT

<u>Project Information</u> <u>Quantity Results</u>
PROJECT: Southern Earth Science - SPT Hamm@FMXalib28:ikips

PROJECT: Southern Earth Science - SPT Hammi-MX3lib28:kips
PILE NAME: SS1 @ 25 FT VMX 20.3 f/s
DESCR: Diedrich D50 Automatic, SN#268, AWJVT1 20.3 f/s
OPERATOR: M.J. DMX 0.72 in
FILE: SS1 25 FT.W01 DFN 0.01 in
12/2/2013 9:26:03 AM BPM 50.7 bpm
Blow Number 16 E2E 0.27 k-ft
EFV 0.29 k-ft
Pile Properties ETR 83.8 (%)


LE 28.90 ft

AR <u>Sensors</u> 1.16 in^2 30000 ksi F3: [171AWJ-1] 215.18 (1) ΕM SP 0.492 k/ft3 F4: [171AWJ-2] 214.69 (1) WS 16807.9 f/s A3: [K3540] 382 mv/5000g's (1) EA/C A4: [K2615] 285 mv/5000g's (1) 2.1 ksec/ft 2L/C 3.44 ms CLIP: OK []

Test date: 2-Dec-2013

PDIPLOT Ver. 2012.2 - Printed: 3-Dec-2013

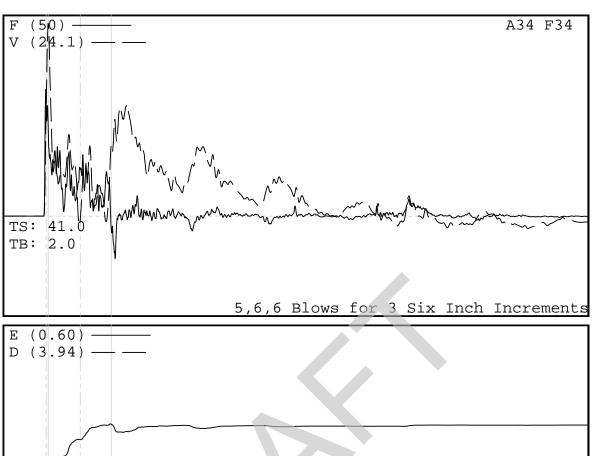
Southern Earth Science - SPT Hammer Calibration - SS2 @ 30 FT Diedrich D50 Automatic, SN#268, AWJ

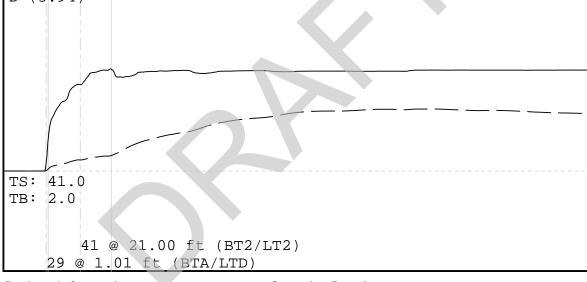
PDIPLOT Ver. 2012.2 - Printed: 3-Dec-2013

Southern Earth Science - SPT Hammer Calibration - SS2 @ 30 FT Diedr OP: M.J.							Diedrich		matic, SN#2 est date: 2-D	
AR:	1.16 in^	2							SP: 0.	492 k/ft3
LE:	36.90 ft								EM: 30,	000 ksi
WS: 1	6,807.9 f/s								JC:	0.00
	Maximum							BPM: B	lows per Mi	nute
	Maximum								nergy of FV	
VT1:									nergy of FV	
	,	Displaceme	ent						nergy Trans	
DFN:	Final Disp								3,	
BL#	depth	FMX	VMX	VT1	DMX	DFN	BPM	E2E	EFV	ETR
	ft	kips	f/s	f/s	in	in	**	k-ft	k-ft	(%)
6	0.00	35	23.9	23.9	1.37	1.37	50.0	0.299	0.318	90.82
7	0.00	33	23.5	23.5	1.40	1.40	50.1	0.300	0.320	91.44
8	0.00	34	23.8	23.8	1.40	1.40	50.7	0.302	0.321	91.58
9	0.00	31	22.2	22.2	1.23	1.23	50.3	0.293	0.306	87.52
10	0.00	31	22.9	22.9	1.19	1.14	50.4	0.294	0.308	88.04
11	0.00	35	24.2	24.2	1.25	1.25	50.2	0.306	0.322	92.04
12	0.00	34	23.4	23.4	1.29	1.29	50.0	0.302	0.320	91.40
13	0.00	31	22.6	22.6	1.04	0.85	50.5	0.298	0.306	87.47
14	0.00	30	22.8	22.8	1.08	0.94	49.9	0.301	0.311	88.84
15	0.00	32	23.3	23.3	1.12	0.94	50.3	0.303	0.315	89.94
16	0.00	32	23.9	23.9	1.26	1.22	49.9	0.306	0.322	91.88
17	0.00	31	23.1	23.1	1.21	0.98	50.6	0.300	0.309	88.40
	Average	32	23.3	23.3	1.24	1.17	50.2	0.300	0.315	89.95

BL# depth (ft) Comments

1 0.00 5,6,6 Blows for 3 Six Inch Increments (5 Blows from Seating Increment Removed From Analys


Total number of blows analyzed: 12


Time Summary

Drive 19 seconds 10:48:40 AM - 10:48:59 AM (12/2/2013) BN 1 - 17

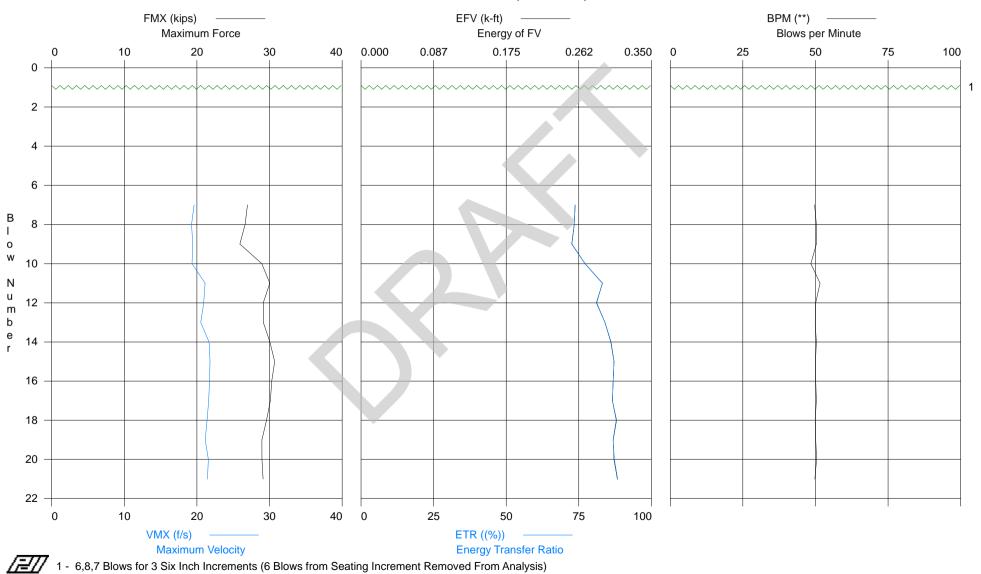
Southern Earth Science - SPT Hammer Calibration

SS2 @ 30 FT

Project Information Quantity Results PROJECT: Southern Earth Science - SPT HammiFMXalib31:ikips

PILE NAME: SS2 @ 30 FT VMX 23.1 f/s DESCR: Diedrich D50 Automatic, SN#268, AWJVT1 23.1 f/s OPERATOR: M.J. DMX 1.21 in FILE: SS2 30 FT.W01 DFN 0.98 in 12/2/2013 10:48:58 AM BPM 50.6 bpm Blow Number 17 E2E 0.30 k-ft EFV 0.31 k-ft ETR 88.4 (%) Pile Properties

36.90 ft AR 1.16 in^2 30000 ksi ΕM SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.1 ksec/ft 2L/C 4.39 ms []


<u>Sensors</u>

F3: [171AWJ-1] 215.18 (1) F4: [171AWJ-2] 214.69 (1) A3: [K3540] 382 mv/5000g's (1) A4: [K2615] 285 mv/5000g's (1) CLIP: OK

Test date: 2-Dec-2013

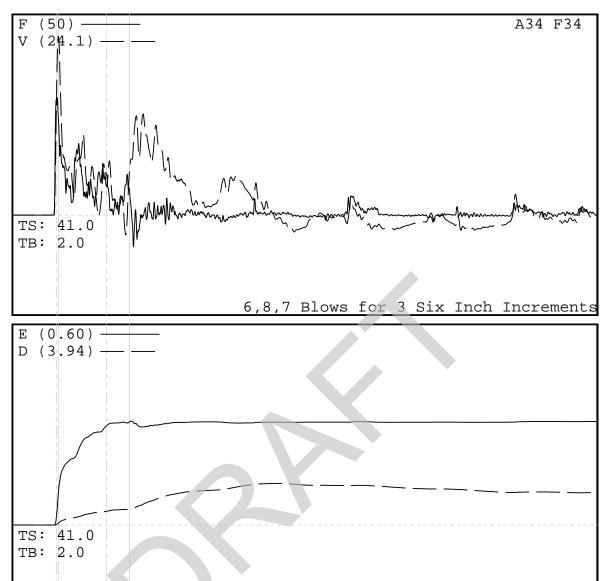
PDIPLOT Ver. 2012.2 - Printed: 3-Dec-2013

Southern Earth Science - SPT Hammer Calibration - SS3 @ 35 FT Diedrich D50 Automatic, SN#268, AWJ

PDIPLOT Ver. 2012.2 - Printed: 3-Dec-2013

Southern Earth Science - SPT Hammer Calibration - SS3 @ 35 FT OP: M.J.									matic, SN#2 est date: 2-D	
AR:	1.16 in^	2							SP: 0.	492 k/ft3
LE:	41.90 ft								EM: 30,	,000 ksi
WS: 1	6,807.9 f/s								JC:	0.00
FMX:	Maximum	Force						BPM: B	lows per Mi	nute
VMX:	Maximum	Velocity						E2E: E	nergy of FV	at 2L/c
VT1:	Velocity at	t Time 1						EFV: E	nergy of FV	'
DMX:	Maximum	Displacem	ent						nergy Trans	
DFN:	Final Disp									
BL#	depth	FMX	VMX	VT1	DMX	DFN	BPM	E2E	EFV	ETR
	ft	kips	f/s	f/s	in	in	**	k-ft	k-ft	(%)
7	0.00	27	19.6	19.6	0.80	-0.02	49.7	0.255	0.258	73.78
8	0.00	27	19.3	19.3	0.86	0.24	50.3	0.254	0.257	73.46
9	0.00	26	19.4	19.4	0.83	-0.08	50.3	0.252		72.65
10	0.00	29	19.3	19.3	0.97	0.36	48.4	0.265	0.270	77.15
11	0.00	30	21.1	21.1	1.03	0.38	51.6	0.286	0.291	83.17
12	0.00	29	20.9	20.9	0.95	-0.06	50.1	0.280	0.284	81.03
13	0.00	29	20.5	20.5	0.92	0.23	49.9	0.290	0.294	84.01
14	0.00	30	21.7	21.7	0.77	0.10	50.3	0.296	0.301	86.11
15	0.00	31	21.8	21.8	0.70	0.02	50.0	0.300	0.305	87.16
16	0.00	30	21.7	21.7	0.72	-0.07	50.1	0.298	0.304	86.81
17	0.00	30	21.6	21.6	0.79	0.20	50.3	0.297	0.303	86.60
18	0.00	30	21.4	21.4	0.85	0.51	49.9	0.302	0.308	87.86
19	0.00	29	21.1	21.1	0.81	0.29	50.1	0.300	0.304	86.79
20	0.00	29	21.6	21.6	0.80	0.24	50.4	0.300	0.305	87.25
21	0.00	29	21.5	21.5	0.81	0.26	49.8	0.305	0.309	88.39
	Average	29	20.8	20.8	0.84	0.17	50.1	0.285	0.290	82.81
				Total	number o	f blows ar	alyzed: 1	5		

BL# depth (ft) Comments


1 0.00 6,8,7 Blows for 3 Six Inch Increments (6 Blows from Seating Increment Removed From Analysi

Time Summary

Drive 24 seconds 11:09:58 AM - 11:10:22 AM (12/2/2013) BN 1 - 21

Southern Earth Science - SPT Hammer Calibration

SS3 @ 35 FT

<u>Project Information</u>	<u>Quantity Results</u>
PROJECT: Southern Earth Science - SPT Hamn	nFMXalib29:ikips
PILE NAME: SS3 @ 35 FT	VMX 21.5 f/s
DESCR: Diedrich D50 Automatic, SN#268, AW	/JVT1 21.5 f/s
OPERATOR: M.J.	DMX 0.81 in
FILE: SS3 35 FT.W01	DFN 0.26 in
12/2/2013 11:10:21 AM	BPM 49.8 bpm
Blow Number 21	E2E 0.30 k-ft
	EFV 0.31 k-ft
<u>Pile Properties</u>	ETR 88.4 (%)
LE 41.90 ft	
AR 1.16 in^2	<u>Sensors</u>
EM 30000 ksi	F3: [171AWJ-1] 215.18 (1)
SP 0.492 k/ft3	F4: [171AWJ-2] 214.69 (1)
WS 16807.9 f/s	A3: [K3540] 382 mv/5000g's (1)
EA/C 2.1 ksec/ft	A4: [K2615] 285 mv/5000g's (1)
2L/C 4.98 ms	CLIP: OK
JC []	

52 @ 30.46 ft (BT2/LT2)

38 @ 1.01 ft (BTA/LTD)

6100 Hillcroft, Houston, Texas 77081 Tel: 713-369-5400 www.fugroconsultants.com

SPT Calibration Report – Fugro Drill Rig SN#361982

Project No: 04.55124092

To: Jennifer Aguettant

Project Manager

From: Michael A. Norfleet, P.E.

Date: September 25, 2013

Subject: SPT Hammer Energy Calibrations

Fugro Consultants, Inc. (Fugro) is pleased to present the results of the Standard Penetration Test (SPT) energy calibration measurements conducted on September 20, 2013 at the Fugro Facilities Yard, in Houston, Texas.

Purpose and Scope. The purpose of SPT energy calibration described herein is to determine the average energy transferred from the exploration rig's hammer to the drilling rods during SPT sampling. The energy testing methods are described in the ASTM D4633 Standard Test Method for Energy Measurement of Dynamic Penetrometers. The measured energy may then be used to correct the measured SPT N-values to a standardized energy level, typically 60% of the theoretical energy (N_{60}) .

Summary of Scope:

- mobilize PDA equipment and personnel to the drill rig location,
- provide energy calibrations by measuring the force (from strain) and velocity (from acceleration) using an instrumented rod section and a PDA.
- present the test results and findings.

Test Summary

Instrumentation and Test Sequence. SPT energy testing was performed in general accord with ASTM D4633 using the Pile Driving Analyzer (PDA) model PAX (SN 3846L) in conjunction with an instrumented 2-foot section of NWJ drilling rod (SN 333NWJ), both manufactured by Pile Dynamics, Inc. of Cleveland, Ohio. The instrumented rod consists of two strain sensors in full-bridge configuration with each strain bridge mounted to cancel any bending in the rod section. Attachment 1 includes a calibration certificate for the rod section. Two accelerometers are also bolted directly to the rod section during data collection. To collect data, the instrumented rod section was threaded tightly onto the top of the drill-rod string, just underneath the SPT hammer. For selected sampling intervals, the PDA digitized and stored strain and acceleration data at a sampling rate of 100 kHz for each impact of the SPT hammer. During the hammer impact, the

Calibration Report - Fugro Drill Rig #361982

PDA multiplied the strain wave by the rod area and modulus to obtain the force wave, and integrated the acceleration to obtain the velocity wave. By integrating the product of force and velocity over the time of the impact, the PDA can then determine the net energy delivered to the sample rods during each blow. The PDA operator reviewed the results, performed data quality checks, and obtained an adequate number and range of sample SPT blows to properly characterize the hammer energy performance for Fugro Drill Rig #361982 tested.

The automatic SPT hammer was operated by the lead driller on Rig #361982. The drill rig used NWJ drill rods. Fugro tested the attached automatic hammer for this report, which had no serial number or identifying marks. The automatic hammer was completely encased for safety reasons and appeared to be in good operating condition. During normal drilling operations on Rig #361982 four data sets were collected as listed below in Table 1 (exceeding the minimum of three required by ASTM D4633). Each table includes the date, location, sample starting depths, the blow count for each 6-inch depth interval, and the uncorrected N-value (sum of last two blow counts).

Table 1: Summary of SPT Data Sets – Automatic Hammer on Rig #361982

Test Date	Data Set No.	Boring Location	Sample Depth	150mm Blow Counts and N-value
09-20-13	SPT-1	Fugro Yard	10 ft	3 / 2 / 2 N=4
09-20-13	SPT-2	Fugro Yard	12 ft	2 / 3 / 4 N=7
09-20-13	SPT-3	Fugro Yard	14 ft	7 / 7 / 9 N=16
09-20-13	SPT-4	Fugro Yard	16 ft	17 / 21 / 24 N=45

Evaluation of SPT Energy. Test results were evaluated utilizing the F-V energy method described in ASTM D4633. The PDA computes EMX, the energy transferred to the rods as measured at the gage location using force, F(t), and velocity, v(t), by the following equation:

$$EMX = EFV = \int_{0}^{b} F(t) \cdot v(t) dt$$

The time "a" corresponds to the start of the record just before impact of the hammer and "b" is the time the energy transferred reaches a maximum value.

Calibration Report - Fugro Drill Rig #361982

Discussion of SPT Calibration Results

In Attachment 2 we present field notes, wave traces for representative hammer blows, and plots and tables prepared from the PDA data for each data set. Each PDA plot contains three main graphs. The left-hand graph shows CSX (maximum average compressive stress) and CSI (maximum individual gage stress) plotted versus blow number. Together these plots show the difference between the two force measurements. The center plot shows EMX (maximum energy) and ETR (EMX divided by theoretical hammer energy). These plots indicate the hammer efficiency and consistency during testing. The right-hand graph shows FMX (maximum force) and BPM (blows per minute) to give a relative hammer "operational performance" during testing. The tabulated output for each data set also includes statistical evaluations: average, maximum, minimum, and standard deviation. To arrive at overall performance of the hammer tested, we used the average statistical evaluations from the data sets, shown in Table 2.

The uncorrected N-values can be corrected using the following equations:

$$N_{60} = N_{measured} x Correction Factor$$

$$N_{60} = N_{\text{measured}} \times (ETR/60\%)$$

The average value of all the ETR values for each data set was used in the above equation to calculate an average correction factor. These correction factors may be applied to N-values from sampling intervals in these and other borings not tested with the PDA, provided the hammers are not modified and are maintained in their current condition.

Table 2: Summary of SPT Results – Automatic Hammer on Rig #361982

Data Set	ВРМ	FMX (kips)	EMX (k-ft)	ETR (%)	N _{measured}	N ₆₀
SPT-1	32	39	0.264	76	4	6
SPT-2	47	41	0.337	96	7	10
SPT-3	44	40	0.290	83	16	23
SPT-4	50	40	0.307	88	45	64
Average Overall Performance	43	40	0.300	86	Correction Factor = 1.43	

Calibration Report - Fugro Drill Rig #361982

Conclusions

Fugro obtained SPT energy measurements for one automatic hammer attached to Fugro Drill Rig #361982 during sampling events on 9/20/2013 in the Fugro Facilities Yard. The hammer appeared to be operating normally. Tables 1 to 2 above summarize the data collected and the average calculated transferred energies in accordance with ASTM D4633. On average, the ETR, Energy Transfer Ratio, was 86% for the automatic hammer attached to Fugro Drill Rig #361982.

We appreciate the opportunity to be of service. Please call us if you have any questions or comments concerning the field notes, SPT plots and tables, or when we may be of further assistance.

Sincerely,

FUGRO CONSULTANTS, INC.

Michael Norfleet, P.E. Sr. Project Professional

Attachments:

Attachment 1: Test Photos and Sensor Calibrations

Attachment 2: Fugro Drill Rig #361982 SPT Test Records and Field Notes

FUGRO CONSULTANTS, INC. Calibration Report – Fugro Drill Rig #361982

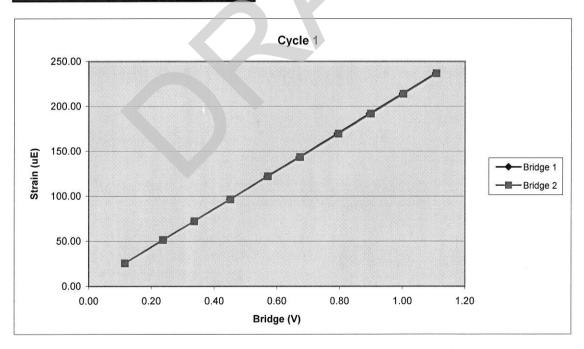
ATTACHMENT #1

Test Photos and Sensor Calibrations

Rig #361982 Plaque

Striking Surface Attachment to Instrumented Rod

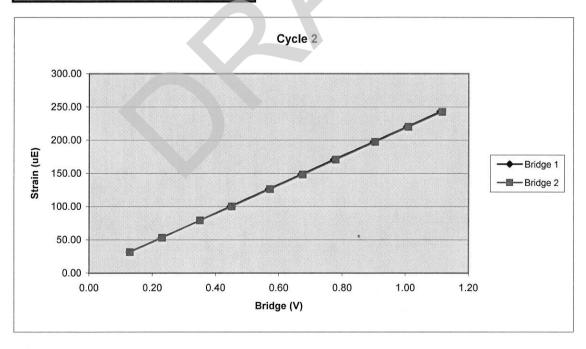
FUGRO CONSULTANTS, INC. Calibration Report – Fugro Drill Rig #361982



Mounted Automatic Hammer on Rig #361982

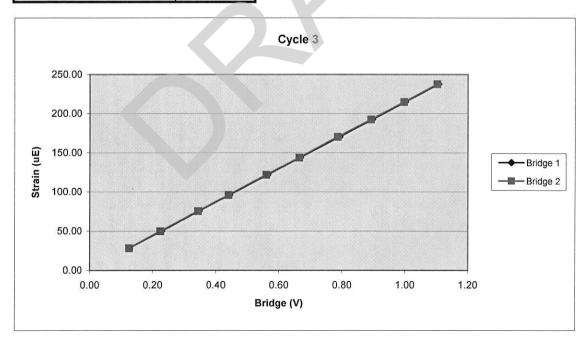
333NWJ		Cycle 1		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1038.93	25.63	0.12	0.12
3	2112.50	51.34	0.24	0.24
4	2998.51	72.10	0.34	0.34
5	4030.95	96.42	0.45	0.45
6	5109.63	121.88	0.57	0.57
7	6031.46	143.53	0.67	0.67
8	7140.85	169.65	0.79	0.80
9	8079.21	191.78	0.90	0.90
10	9034.10	214.09	1.00	1.00
11	9994.90	236.67	1.11	1.11

Bridge 1		Bridge 2	
Force Calibration (lb/V)	9062.28	Force Calibration (lb/V)	9020.00
Offset	-38.24	Offset	-28.48
Correlation	0.999990	Correlation	0.999989
Strain Calibration (µE/V)	213.39	Strain Calibration (µE/V)	212.39
Offset	0.56	Offset	0.79
Correlation	0.999996	Correlation	0.999994


Force Strain Calibration	
EA (Kips)	42468.92
Offset	-61.97
Correlation	0.999998

333NWJ		Cycle 2		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1138.32	31.42	0.13	0.13
3	2045.78	53.13	0.23	0.23
4	3129.98	79.01	0.35	0.35
5	4010.08	99.98	0.45	0.45
6	5118.68	126.12	0.57	0.57
7	6067.28	148.26	0.67	0.67
8	7005.84	170.48	0.77	0.78
9	8154.78	197.38	0.90	0.90
10	9110.07	219.90	1.00	1.01
11	10089.37	242.56	1.11	1.12

Bridge 1		Bridge 2	
Force Calibration (lb/V)	9123.54	Force Calibration (lb/V)	9074.39
Offset	-49.69	Offset	-53.66
Correlation	0.999993	Correlation	0.999988
Strain Calibration (µE/V)	215.17	Strain Calibration (µE/V)	214.02
Offset	3.89	Offset	3.79
Correlation	0.999998	Correlation	0.999998


Force Strain Calibration	
EA (Kips)	42400.74
Offset	-214.40
Correlation	0.999992

333NWJ		Cycle 3		
Sample	Force (lb)	Strain (µE)	Bridge 1 (V)	Bridge 2 (V)
1	0.00	0.00	0.00	0.00
2	1125.52	28.24	0.13	0.12
3	2016.06	49.68	0.23	0.22
4	3101.05	75.29	0.35	0.34
5	3977.02	95.97	0.44	0.44
6	5073.81	121.83	0.56	0.56
7	6005.68	143.75	0.67	0.66
8	7133.76	170.21	0.79	0.79
9	8082.95	192.52	0.90	0.89
10	9043.75	214.97	1.00	1.00
11	10017.53	237.71	1.11	1.10

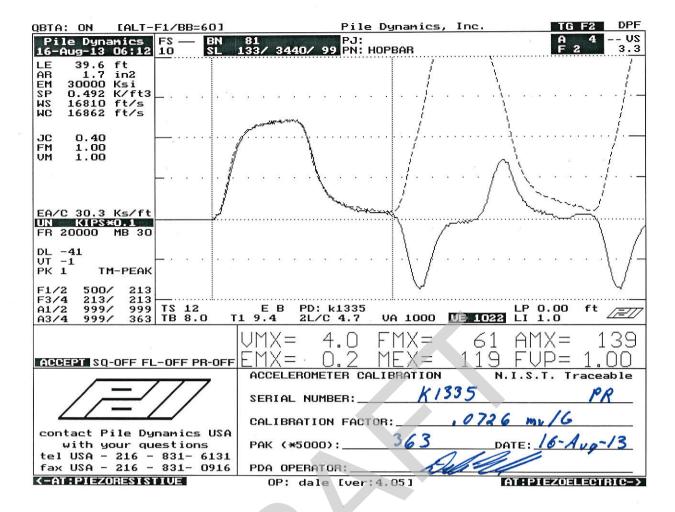
Bridge 1		Bridge 2	
Force Calibration (lb/V)	9067.17	Force Calibration (lb/V)	9087.50
Offset	-32.75	Offset	-17.10
Correlation	0.999991	Correlation	0.999996
Strain Calibration (µE/V)	213.44	Strain Calibration (µE/V)	213.91
Offset	1.42	Offset	1.79
Correlation	0.999998	Correlation	0.999998

Force Strain Calibration	
EA (Kips)	42481.93
Offset	-93.13
Correlation	0.999995

Bridge Excitation (V) Shunt Resitor (ohm)

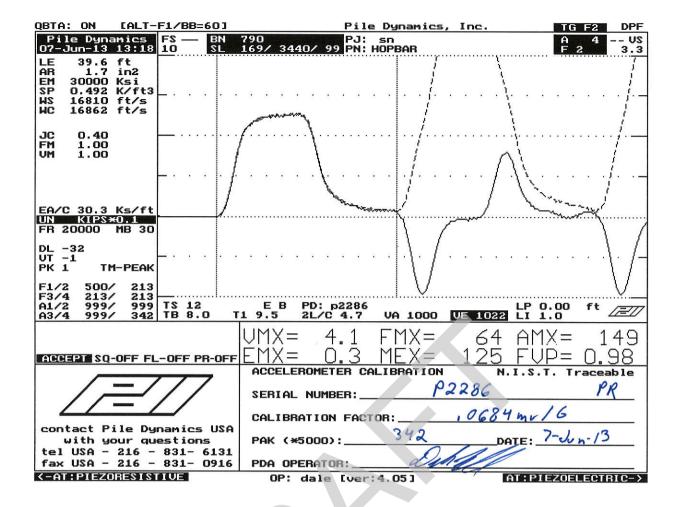
60.4k

Calibration Factors	333NWJ		
Bridge 1 (μΕ/V)	214.00	Bridge 2 (µE/V)	213.44
EA Factor (Kips)	42450.53	Area (in^2)	1.42


Calibrated by:

Calibrated Date:

3/26/2013


Pile Dynamics Inc 30725 Aurora Rd Solon, OH 44139

Traceable to N.I.S.T.

Smart Sensor

Smart Chip Programmed By DB on 16-Avg-/3 CRC Value A6BF

FUGRO CONSULTANTS, INC. Calibration Report – Fugro Drill Rig #361982

ATTACHMENT #2

Fugro Drill Rig #361982 SPT Records and Field Notes

Fugro Consultants, Inc.

6100 Hillcroft, 77081 P.O. Box 740010 Houston, TX 77274 Ph: (713) 369-5400 F (713) 369-5518

Project #	04.55124092
Project Name	
SPT Tester	Michael Norfleet
Rig(s)	CME 850 - SN#361982
Rig Operator(s)	Jose
Test Date(s)	9/20/13

SPT ENERGY CALIBRATION – HAMMER: Rig #361982

CME 850 Track mounted Drill Rig, Serial Number #361982	
Automatic hammer attached, no identifying marks	

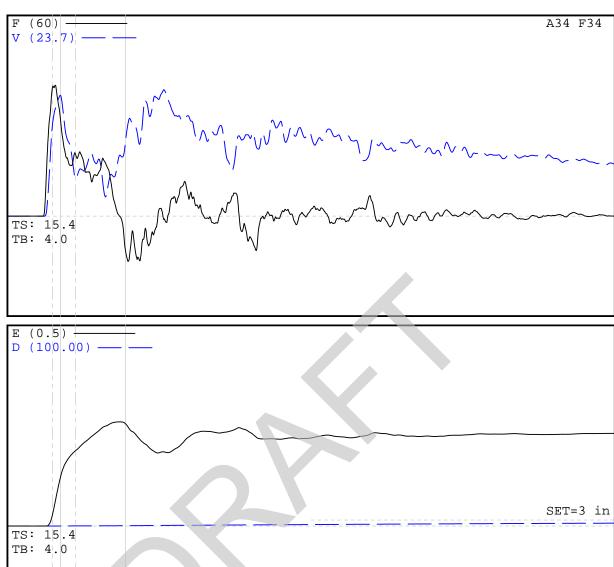
Notes on Operational Performance

	or on operational continuation
Ha	mmer appears to be in good operational conditions
"[" - Effective Length of Pod Sections input into SPT Analyzor

Instrumentation

Name: 333NWJ Area: 1.42 in ²	
Strains: F3: 333NWJ-1, Gage Factor = 214.00 με/V	Accelerometers: A3: K1335, Gage Factor = 363 (mV/G x 5000)
F4: 320NWJ-2, Gage Factor = 213.44 με/V	Accelerometers: A4: P2286, Gage Factor = 342 (mV/G x 5000)

Data Set 1	Location: Fugro Yard	Rig	361962	Time: 9/20/13 10:05
Starting depth of s	ample		10ft	
Gage location from	n tip of sampler "LE"		"LE" = 35.5in	+ 120in + 10in = 165.5in = 13.79ft
List of rod sections	from sampler to instrument		Sampler / [5ft	t x 2] / Instrument / Hammer
Length from impac	et surface to gages		18 inches	
Blows observed (u	ncorrected)		3/2/2 per 6	inches N=4


Data Set 2	Location: Fugro Yard	Rig:	361962	Time: 9/20/13 15:57
Starting depth of	sample		12ft	
Gage location fro	m tip of sampler "LE"		"LE" = 35.5in + 12	0in + 60in + 10in = 225.5in = 18.79ft
List of rod section	is from sampler to instrument		Sampler / [10ft][5ft	t] / Instrument / Hammer
Length from impa	act surface to gages		18 inches	
Blows observed (uncorrected)		2/3/4 per 6 inch	es N=7

Data Set 3	Location: Fugro Yard	Rig:	361962	Time: 9/20/13 10:19
Starting depth of	sample		14ft	
Gage location fro	m tip of sampler "LE"		"LE" = 35.5in + 1	20in + 60in + 10in = 225.5in = 18.79ft
List of rod section	ns from sampler to instrument		Sampler / [10ft][5ft] / Instrument / Hammer
Length from impa	act surface to gages		18 inches	
Blows observed (uncorrected)		7 / 7 / 9 per 6 inc	ches N=16

Data Set 4	Location : Fugro Yard	Rig:	361962	Time: 9/20/13 10:40
Starting depth of	sample		16ft	
Gage location fro	om tip of sampler "LE"		"LE" = 35.5in + 1	120in + 120in + 10in = 285.5in = 23.79ft
List of rod section	ns from sampler to instrument		Sampler / [10ft][10ft] / Instrument / Hammer
Length from impa	act surface to gages		18 inches	
Blows observed	(uncorrected)		17 / 21 / 24 per 6	6 inches N=45

04.55124092

SPT-1 RIG 361982 10FT FUGRO YARD

Project Information

PROJECT: 04.55124092

PILE NAME: SPT-1 RIG 361982 10FT FUGRO YACSI 27.9 ksi

46 @ 6.55 ft 35 @ 1.68 ft

DESCR: SAMPLE 10FT OPERATOR: MAN

FILE: SPT-1 RIG 361982 10FT FUGRO YARD

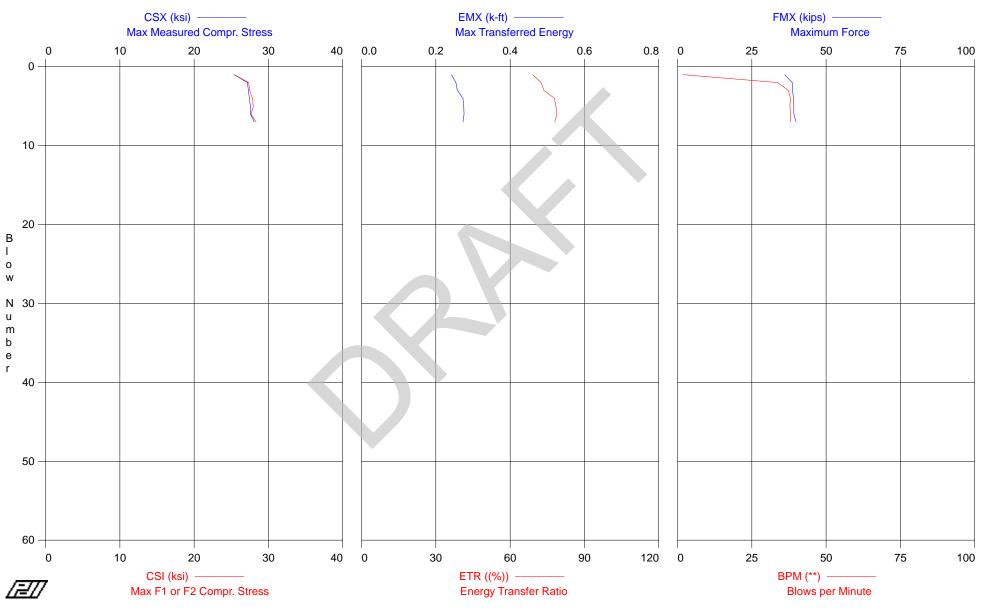
9/20/2013 11:14:50 AM

Blow Number 4

Pile Properties

LE 13.79 ft
AR 1.42 in^2
EM 30000 ksi
SP 0.492 k/ft3
WS 16807.9 f/s
EA/C 2.5 ksec/ft
2L/C 1.64 ms

JC [] LP 10.75 ft


Quantity Results

CSX 27.4 ksi
ACSI 27.9 ksi
EMX 0.3 k-ft
ETR 77.9 (%)
FMX 39 kips
BPM 38.0 bpm
QNV 0.00 []
QNV 0.00 []
QNV 0.00 []

<u>Sensors</u>

F3: [SPT-333NWJ-1] 214 (1) F4: [SPT-333NWJ-2] 213.44 (1) A3: [K1335] 363 mv/5000g's (1) A4: [2286] 342 mv/5000g's (1) CLIP: OK

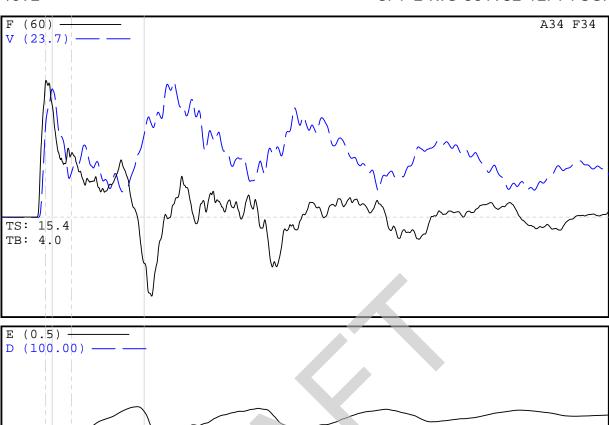
04.55124092 - SPT-1 RIG 361982 10FT FUGRO YARD

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 25-Sep-2013

SAMPLE 10FT 04.55124092 - SPT-1 RIG 361982 10FT FUGRO YARD

OP: MAN	Test date: 20-Sep-2013
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 13.79 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.00
00V MM	ETD. E T (c. D. C.

	leasured Compr.					ETR: Energy Tra	
CSI: Max F	1 or F2 Compr. S	tress				FMX: Maximum	Force
EMX: Max Ti	ransferred Energy	y				BPM: Blows per	Minute
BL#	BLC	CSX	CSI	EMX	ETR	FMX	BPM
	bl/ft	ksi	ksi	k-ft	(%)	kips	**
1	6	25	25	0.242	69	36	2
2	6	27	27	0.254	73	39	34
3	6	27	27	0.258	74	39	37
4	4	27	28	0.273	78	39	38
5	4	28	28	0.275	79	39	38
6	4	28	28	0.276	79	39	38
7	4	28	28	0.273	78	40	38
Average		27	27	0.264	76	39	32
Std. Dev.		1	1	0.012	4	1	12
Maximum		28	28	0.276	79	40	38
@ Blow#		7	7	6	6	7	6
Minimum		25	25	0.242	69	36	2
@ Blow#		1	1	1	1	1	1


1 1 Total number of blows analyzed: 7

Time Summary

11:14:45 AM - 11:14:55 AM (9/20/2013) BN 1 - 7 Drive 10 seconds

04.55124092

SPT-2 RIG 361982 12FT FUGRO YARD

SET=2 in TS: 15.4 TB: 4.0 42 @ 6.72 ft 30 @ 1.38 ft

Project Information PROJECT: 04.55124092

PILE NAME: SPT-2 RIG 361982 12FT FUGRO YACSI 29.0 ksi

DESCR: SAMPLE 12FT OPERATOR: MAN

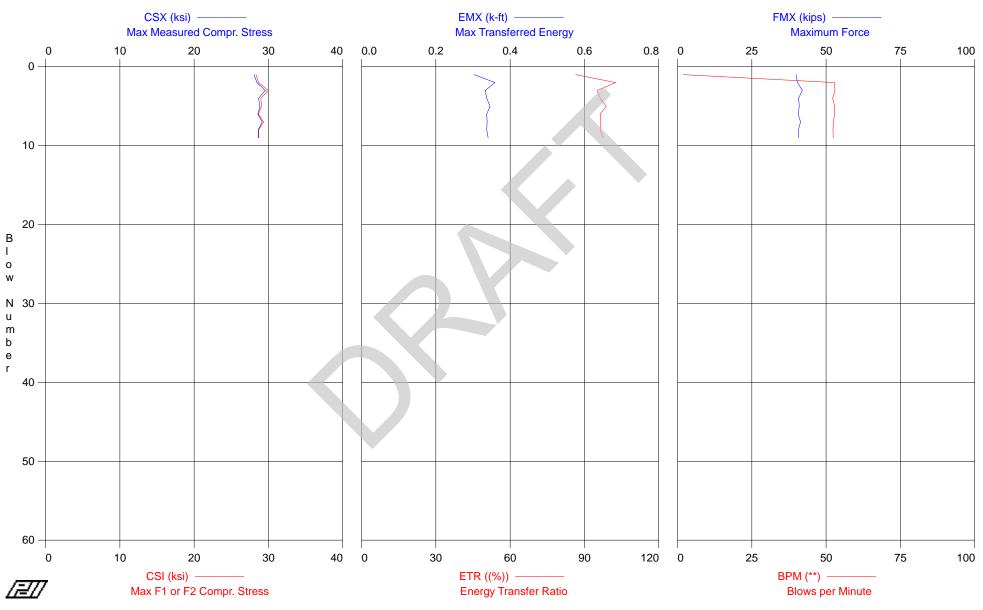
FILE: SPT-2 RIG 361982 12FT FUGRO YARD

9/20/2013 11:28:47 AM

Blow Number 4

Pile Properties

LE 18.79 ft AR 1.42 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.5 ksec/ft 2L/C 2.32 ms JC LP 12.83 ft


Quantity Results

CSX 28.7 ksi EMX 0.3 k-ft ETR 96.4 (%) FMX 41 kips BPM 52.2 bpm QNV 0.00 [] QNV 0.00 [] QNV 0.00 []

<u>Sensors</u>

F3: [SPT-333NWJ-1] 214 (1) F4: [SPT-333NWJ-2] 213.44 (1) A3: [K1335] 363 mv/5000g's (1) A4: [2286] 342 mv/5000g's (1) CLIP: OK

04.55124092 - SPT-2 RIG 361982 12FT FUGRO YARD

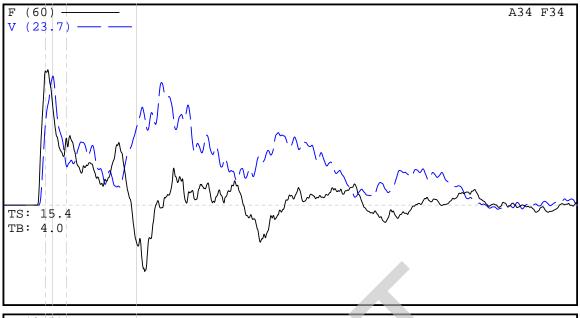
Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 25-Sep-2013

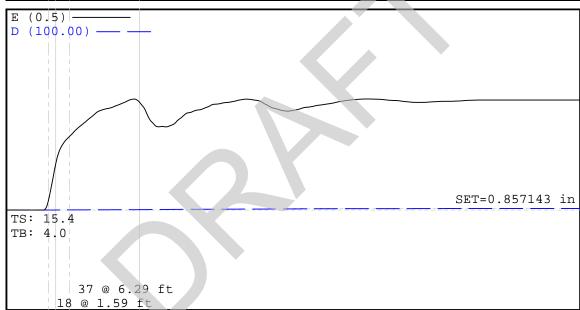
	•
04.55124092 - SPT-2 RIG 361982 12FT FUGRO YARD	SAMPLE 12FT
OP: MAN	Test date: 20-Sep-2013

OP: MAN	Test date: 20-Sep-2013
AR: 1.42 in^2	SP: 0.492 k/ft3
LE: 18.79 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.00
CSY: Max Massured Compr. Stress	ETD: Energy Transfer Patio

VV3. 10,607.8	7 1/5					JC.	0.00
CSX: Max M	easured Compr.	Stress				ETR: Energy Tra	
CSI: Max F	1 or F2 Compr. S	FMX: Maximum	Force				
EMX: Max Ti	ansferred Energy	y				BPM: Blows per	Minute
BL#	BLC	CSX	CSI	EMX	ETR	FMX	BPM
	bl/ft	ksi	ksi	k-ft	(%)	kips	**
1	4	28	28	0.303	86	40	2
2	4	28	29	0.359	103	40	53
3	6	30	30	0.333	95	42	53
4	6	29	29	0.337	96	41	52
5	6	29	29	0.346	99	41	53
6	8	29	29	0.337	96	41	53
7	8	29	29	0.338	97	41	53
8	8	29	29	0.337	96	41	52
9	8	29	29	0.341	98	41	52
Average		29	29	0.337	96	41	47
Std. Dev.		0	0	0.014	4	1	16
Maximum		30	30	0.359	103	42	53
@ Blow#		3	3	2	2	3	3
Minimum		28	28	0.303	86	40	2
@ Blow#		1	1	1	1	1	1

1 Total number of blows analyzed: 9


Time Summary


Drive 9 seconds

11:28:44 AM - 11:28:53 AM (9/20/2013) BN 1 - 9

04.55124092

SPT-3 RIG 361982 14FT FUGRO YARD

Project Information PROJECT: 04.55124092

PILE NAME: SPT-3 RIG 361982 14FT FUGRO YACSI 28.5 ksi

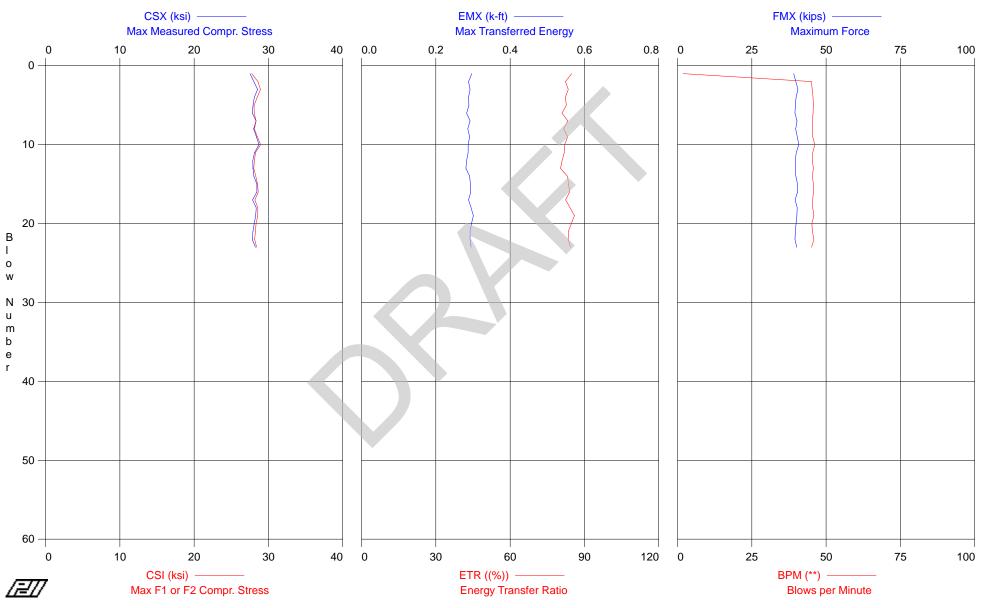
DESCR: SAMPLE 12FT OPERATOR: MAN

FILE: SPT-3 RIG 361982 14FT FUGRO YARD 9/20/2013 11:45:23 AM

Blow Number 9

Pile Properties

LE 18.79 ft AR 1.42 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.5 ksec/ft 2L/C 2.24 ms JC 14.64 ft LP


Quantity Results

CSX 28.4 ksi EMX 0.3 k-ft ETR 83.2 (%) FMX 40 kips BPM 45.5 bpm QNV 0.00 [] QNV 0.00 [] QNV 0.00 []

<u>Sensors</u>

F3: [SPT-333NWJ-1] 214 (1) F4: [SPT-333NWJ-2] 213.44 (1) A3: [K1335] 363 mv/5000g's (1) A4: [2286] 342 mv/5000g's (1) CLIP: OK

04.55124092 - SPT-3 RIG 361982 14FT FUGRO YARD

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 25-Sep-2013

04.55124092 - SPT-3 RIG 361982 14FT FUGRO YARD SAMPLE 12FT

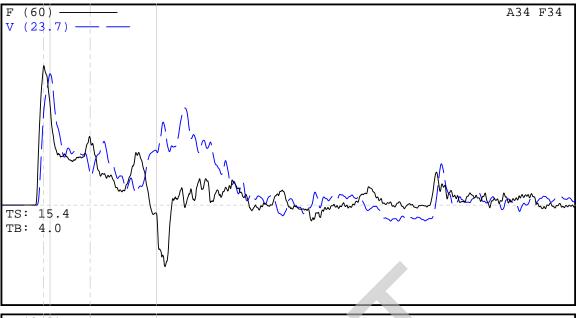
 OP: MAN
 Test date: 20-Sep-2013

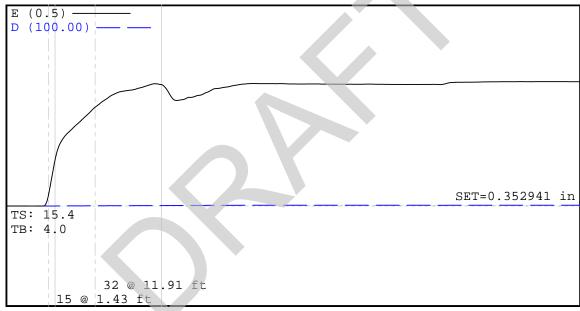
 AR: 1.42 in^2
 SP: 0.492 k/ft3

 LE: 18.79 ft
 EM: 30,000 ksi

 WS: 16,807.9 f/s
 JC: 0.00

CSI:	Max Measured Compr. St Max F1 or F2 Compr. Str Max Transferred Energy					ETR: Energy Tra FMX: Maximum BPM: Blows per	Force
BL#	BLC	CSX	CSI	EMX	ETR	FMX	BPM
	bl/ft	ksi	ksi	k-ft	(%)	kips	**
1	14	28	28	0.297	85	39	2
2	14	28	29	0.288	82	40	45
3	14	29	29	0.292	83	41	45
4	14	28	28	0.288	82	40	46
5	14	28	28	0.289	83	40	46
6	14	28	28	0.283	81	40	46
7	14	28	28	0.292	83	40	45
8	14	28	28	0.286	82	40	45
9	14	28	29	0.291	83	40	46
10	14	29	29	0.287	82	41	46
11	14	28	28	0.287	82	40	46
12	14	28	28	0.283	81	40	45
13	14	28	28	0.281	80	40	46
14	14	28	28	0.291	83	40	45
15	18	28	29	0.293	84	40	46
16	18	28	29	0.294	84	40	46
17	18	28	28	0.288	82	40	46
18	18	28	29	0.295	84	40	46
19	18	28	29	0.301	86	40	46
20	18	28	28	0.296	85	40	45
21	18	28	28	0.292	84	40	45
22	18	28	28	0.292	83	40	46
23	18	28	28	0.295	84	40	45
Averag	ge	28	28	0.290	83	40	44
Std. D		0	0	0.005	1	0	9
Maxim	ium	29	29	0.301	86	41	46
@ Blo	w#	10	10	19	19	10	10
Minim		28	28	0.281	80	39	2
@ Blo	w#	1	1	13	13	1	1
			Total	number of blows ar	nalyzed: 23		


Time Summary


Drive 29 seconds

11:45:13 AM - 11:45:42 AM (9/20/2013) BN 1 - 23

04.55124092

SPT-4 RIG 361982 16FT FUGRO YARD

Project Information

PROJECT: 04.55124092 PILE NAME: SPT-4 RIG 361982 16FT FUGRO YACSI 29.7 ksi

DESCR: SAMPLE 12FT OPERATOR: MAN

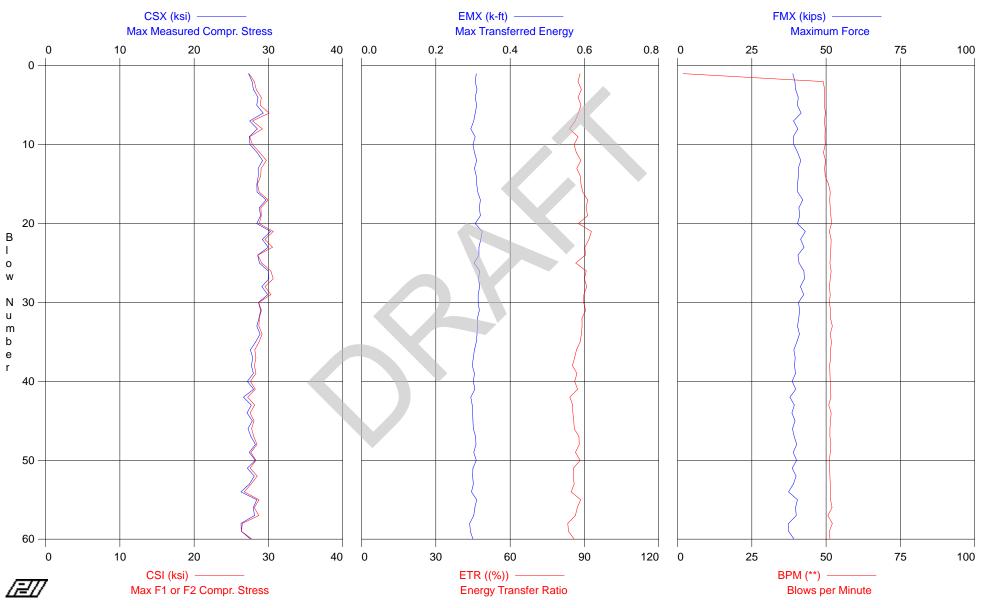
FILE: SPT-4 RIG 361982 16FT FUGRO YARD

9/20/2013 12:09:46 PM

Blow Number 12

Pile Properties

LE 23.79 ft AR 1.42 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.5 ksec/ft 2L/C 2.84 ms JC 16.35 ft LP


Quantity Results

CSX 29.2 ksi EMX 0.3 k-ft ETR 88.6 (%) FMX 41 kips BPM 49.8 bpm QNV 0.00 [] QNV 0.00 [] QNV 0.00 []

<u>Sensors</u>

F3: [SPT-333NWJ-1] 214 (1) F4: [SPT-333NWJ-2] 213.44 (1) A3: [K1335] 363 mv/5000g's (1) A4: [2286] 342 mv/5000g's (1) CLIP: OK

04.55124092 - SPT-4 RIG 361982 16FT FUGRO YARD

Page 1 of 2 PDIPLOT Ver. 2012.2 - Printed: 25-Sep-2013

SAMPLE 12FT

04.55124092 - SPT-4 RIG 361982 16FT FUGRO YARD

 OP: MAN
 Test date: 20-Sep-2013

 AR: 1.42 in^2
 SP: 0.492 k/ft3

 LE: 23.79 ft
 EM: 30,000 ksi

 WS: 16,807.9 f/s
 JC: 0.00

	10,007.91/5	<u> </u>					0.00
CSI:	Max Measured Compr. St Max F1 or F2 Compr. St	ress				ETR: Energy Tra	Force
	Max Transferred Energy					BPM: Blows per	
BL#	BLC	CSX	CSI	EMX	ETR	FMX	BPM
	bl/ft	ksi	ksi	k-ft	(%)	kips	**
1	34	27	27	0.309	88	39	2
2	34	28	28	0.306	87	39	49
3	34	28	28	0.311	89	40	50
4	34	29	29	0.306	87	41	50
5	34	28	29	0.310	89	40	49
6	34	29	30	0.306	88	42	50
7	34	27	28	0.302	86	39	49
8	34	29	29	0.294	84	40	50
9	34	27	27	0.306	87	39	50
10	34	28	28	0.300	86	39	50
11	34	28	29	0.304	87	40	49
12	34	29	30	0.310	89	41	50
13	34	29	29	0.304	87	41	50
14	34	29	29	0.304	88	41	50
15	34	28	29	0.310	89	40	51
16	34	28	29	0.313	89	40	51
17	34	30	30	0.320	91	42	51
18	42	29	29	0.317	91	41	51
19	42	29	29	0.320	91	41	52
20	42	28	29	0.306	88	40	52
21	42	30	31	0.325	93	43	51
22	42	29	30	0.321	92	41	52
23	42	30	31	0.316	90	43	52
24	42	29	29	0.316	90	41	52
25	42	29	29	0.303	86	41	51
26	42	30	30	0.318	91	43	52
27	42	30	31	0.315	90	43	51
28	42	29	30	0.318	91	41	51
29	42	30	30	0.314	90	42	51
30	42	29	29	0.314	90	41	51
31	42	29	29	0.317	91	41	52
32	42	29	29	0.312	89	41	52
33	42	28	29	0.312	89	40	52
34	42	29	29	0.311	89	41	51
35	42	28	29	0.309	88	40	52
36	42	28	28	0.304	87	39	52
37	42	28	28	0.301	86	40	52
38	42	28	28	0.298	85	39	51
39	48	28	28	0.304	87	40	51
40	48	27	28	0.304	86	39	51
41	48	28	28 28	0.305	87	40	52
		27	26 27				
42	48			0.294	84	38	52
43	48	28	28	0.298	85 85	39	51
44	48	27	28	0.299	85	39	52
45	48	28	28	0.300	86	40	52
46	48	27	28	0.301	86	39	51
47	48	28	28	0.307	88	39	51
48	48	28	28	0.308	88	40	52
49	48	27	28	0.302	86	39	51
50	48	28	28	0.309	88	40	51
51	48	27	28	0.300	86	39	51
52	48	28	29	0.299	85	40	51
53	48	27	28	0.301	86	39	51
54	48	26	27	0.296	85	37	51
55	48	28	29	0.310	88	40	52
56	48	28	28	0.305	87	40	52
57	48	28	29	0.302	86	40	51
58	48	26	26	0.291	83	37	52
59	48	26	26	0.293	84	37	51
60	48	28	28	0.300	86	39	51
61	48	27	27	0.298	85	38	52
62	48	28	28	0.307	88	39	52
~-							~-

Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 25-Sep-2013

04.55124092 - SPT-4 RIG 361982 16FT FUGRO YARD

SAMPLE 12FT

OP: MAN					Test date: 2	0-Sep-2013	
	CSX	CSI	EMX	ETR	FMX	BPM	
	ksi	ksi	k-ft	(%)	kips	**	
Average	28	29	0.307	88	40	50	
Std. Dev.	1	1	0.008	2	1	6	
Maximum	30	31	0.325	93	43	52	
@ Blow#	21	21	21	21	21	33	
Minimum	26	26	0.291	83	37	2	
@ Blow#	54	59	58	58	54	1	
	Total number of blows analyzed: 62						

Time Summary

Drive 1 minute 11 seconds 12:09:33 PM - 12:10:44 PM (9/20/2013) BN 1 - 62

11955 Lakeland Park Blvd. Ste. 100 Baton Rouge, Louisiana 70809 225.293.2460

January 13, 2014

HDR Engineering, Inc. 2365 Iron Point Road, Suite 300 Folsom, CA 95630

Attention: Mr. Mark Stanley, GE

Senior Geotechnical Advisor

Subject: Letter Report

SPT Energy Measurement

Cathead-Operated Safety Hammer on Marsh Buggy #23 Drill Rig State of Louisiana Coastal Protection and Restoration Authority

Mid Barataria Diversion (BA-153) Project

Plaquemines Parish, Louisiana File No. 18274-001-00, Task 0300

GeoEngineers, Inc. (GeoEngineers) recently completed the standard penetration test (SPT) energy measurement testing on the cathead operated safety hammer of the Marsh Buggy #23 drill rig. The drill rig is owned and operated by Specialized Environmental Resources (SER).

Measurements were made January 10, 2014 by Ivy A. Harmon, a GeoEngineers staff engineer, using a Pile Dynamic Analyzer (PDA) model PAX and a calibrated, instrumented drill rod. The energy testing was completed between 27.5 and 39 feet below the ground surface. Measurements were recorded at four depth intervals; this report includes results from three depth intervals. The unused depth interval was determined to not provide representative test data.

The drill rig used was a pontoon-tracked marsh buggy, SER #23, hull identification MBD#01 WWC-709. The driller was Johnny Gallow, and John Francis was the drilling assistant. The hammer was a CME-style cathead-driven safety hammer in good condition. The 1-inch diameter rope was in good condition, and was wrapped 1 turn around the cathead. The drill rod used is proprietary to SER and is light-weight shothole casing type rod. The SPT procedures were conducted in general accordance with ASTM D-1586-08-a. GeoEngineers observed that the driller was hesitant when performing the initial SPT operations due to the presence of instrumentation, but as he gained confidence in the testing equipment the procedure continued normally. The hesitation during the first test made the record unusable as a measurement of the SPT energy.

A summary of the energy measurement results is included in the table below for selected test intervals between 27.5 and 39 feet below the ground surface. Based on the collected data, the overall average energy measured in the drill pipe was about 58% of the expected SPT hammer energy.

SPT HAMMER ENERGY MEASUREMENT RESULTS

Depth Increment (ft)	Cathead/Hammer Operator	Average Energy Transfer Ratio (%)	Penetration Resistance (Blows/ft)
27.5 to 29	J. Gallow	53.5	24
30 to 31.5	J. Gallow	57.3	15
37.5 to 39	J. Gallow	62.4	20

Measurement details are available in the attached PDA output reports, including an example Force-Velocity-Time graph generated may a single sample blow at each test increment.

We appreciate the opportunity to work with HDR on this project. Please call up at 225.293.2460 if you have any comments or questions.

Sincerely,

GeoEngineers, Inc.

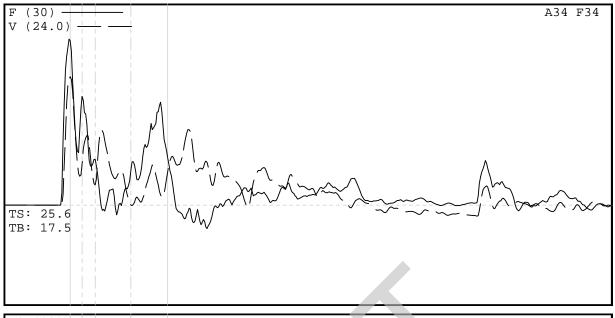
Wy A. Harmon, E.I.

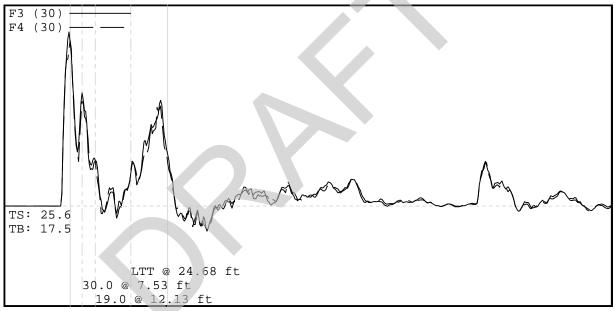
Staff Geotechnical Engineer

er S. Custer Charles L. Eustis, P.E.

Principal

Appendix A. SPT Energy Measurement Reports


Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.


Confidential Information: Privileged and Confidential Work Product.

Copyright@ 2014 by GeoEngineers, Inc. All rights reserved.

MID BARATARIA CALIBRATION

SER MARSH BUGGY, 27.5-29

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: SER MARSH BUGGY, 27.5-29 DESCR: SPT ENERGY MEASURE

ODEDATOD: IAII

OPERATOR: IAH

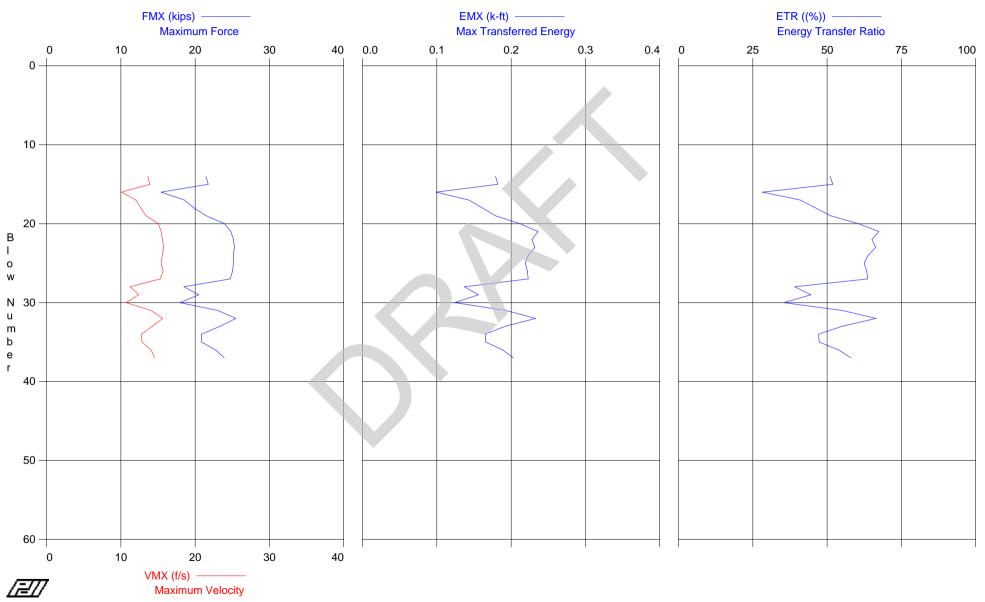
FILE: SER MARSH BUGGY, TEST 2.W01

1/10/2014 9:22:00 AM

Blow Number 27

Pile Properties

LE 34.30 ft AR 0.70 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 1.2 ksec/ft 2L/C 4.10 ms JC 0.90 [] LP 28.62 ft


Quantity Results

FMX 25 kips VMX 15.3 f/s DMX 0.53 in EMX 0.22 k-ft CSX 35.30 ksi CSI 37.02 ksi BTA 19.0 (%) RX9 4 kips BPM 15.4 bpm

Sensors

F3: [402SW-1] 210.62 (1) F4: [402SW-2] 204.74 (1) A3: [K1578] 325 mv/5000g's (1) A4: [K1580] 355 mv/5000g's (1) CLIP: OK

MID BARATARIA CALIBRATION - SER MARSH BUGGY, 27.5-29

Page 1 of 1

PDIPLOT Ver. 2014.1 - Printed: 13-Jan-2014

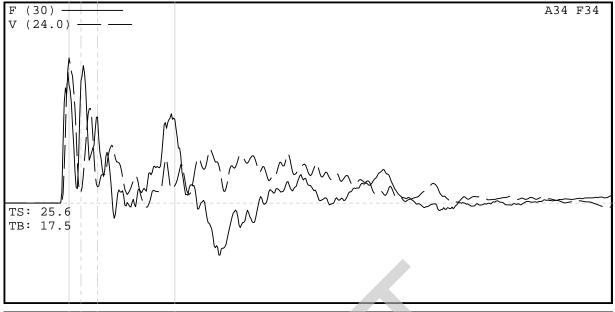
SPT ENERGY MEASURE

MID BARATARIA CALIBRATION - SER MARSH BUGGY, 27.5-29 OP: IAH Test date: 10-Jan-2014

AR: 0.70 in^2 SP: 0.492 k/ft3 LE: 34.30 ft EM: 30,000 ksi WS: 16,807.9 f/s JC: 0.90

FMX: Maximum Force CSX: Max Measured Compr. Stress VMX: Maximum Velocity

BTA: BETA Integrity Factor
RX9: Max Case Method Capacity (JC=0.9) DMX: Maximum Displacement


EMX: Max Transferred Energy						BPM: Blows per Minute					
ETR:	Energy Trai	nsfer Ratio									
BL#	depth	BLC	FMX	VMX	DMX	EMX	ETR	CSX	BTA	RX9	BPM
	· ft	bl/ft	kips	f/s	in	k-ft	(%)	ksi	(%)	kips	**
14	28.05	22	21	13.6	0.59	0.18	51.0	30.64	20.0	· 4	35.0
15	28.09	22	22	13.9	0.58	0.18	51.9	31.10	21.0	4	35.0
16	28.14	22	15	10.1	0.55	0.10	28.2	22.01	16.0	5	32.6
17	28.18	22	19	12.0	0.55	0.14	40.9	26.50	22.0	5	35.9
18	28.23	22	20	12.7	0.55	0.16	46.1	28.32	21.0	5	34.3
19	28.27	22	22	13.4	0.55	0.18	51.2	30.74	24.0	5	34.2
20	28.32	22	24	15.0	0.57	0.21	60.5	34.22	23.0	5	35.1
21	28.36	22	25	15.4	0.62	0.24	67.4	35.44	23.0	5	34.8
22	28.41	22	25	15.6	0.57	0.23	65.1	35.97	14.0	4	35.3
23	28.45	22	25	15.8	0.58	0.23	66.3	36.12	17.0	5	34.2
24	28.50	22	25	15.6	0.55	0.22	63.8	35.90	16.0	3	35.6
25	28.54	26	25	15.4	0.51	0.22	62.5	35.91	15.0	4	35.9
26	28.58	26	25	15.7	0.53	0.22	63.3	35.78	17.0	4	35.2
27	28.62	26	25	15.3	0.53	0.22	63.6	35.30	19.0	4	15.4
28	28.65	26	18	11.3	0.46	0.14	39.1	26.42	23.0	6	35.2
29	28.69	26	20	12.4	0.46	0.16	44.6	29.28	24.0	4	26.5
30	28.73	26	18	10.7	0.46	0.12	35.4	25.61	24.0	4	29.5
31	28.77	26	23	14.1	0.46	0.19	55.1	32.94	23.0	4	35.7
32	28.81	26	25	15.6	0.53	0.23	66.5	36.41	21.0	4	30.9
33	28.85	26	23	14.2	0.46	0.19	55.0	33.34	17.0	5	14.4
34	28.88	26	21	12.8	0.46	0.17	47.1	29.79	20.0	5	33.0
35	28.92	26	21	12.8	0.46	0.17	47.3	29.83	27.0	4	34.7
36	28.96	26	23	14.1	0.46	0.19	54.0	32.53	22.0	5	33.3
37	29.00	26	24	14.6	0.46	0.20	58.0	34.16	22.0	4	33.7
		Average	22	13.8	0.52	0.19	53.5	31.84	20.5	4	32.3
		Std. Dev.	3	1.7	0.05	0.04	10.6	3.92	3.3	1	5.7
		Maximum	25	15.8	0.62	0.24	67.4	36.41	27.0	6	35.9
		@ Blow#	32	23	21	21	21	32	35	28	17
	Total number of blows analyzed: 24										

Time Summary

Drive 1 minute 13 seconds 9:21:08 AM - 9:22:21 AM (1/10/2014) BN 1 - 37

MID BARATARIA CALIBRATION

SER MARSH BUGGY, 30-31.5

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: SER MARSH BUGGY, 30-31.5 DESCR: SPT ENERGY MEASURE

OPERATOR: IAH

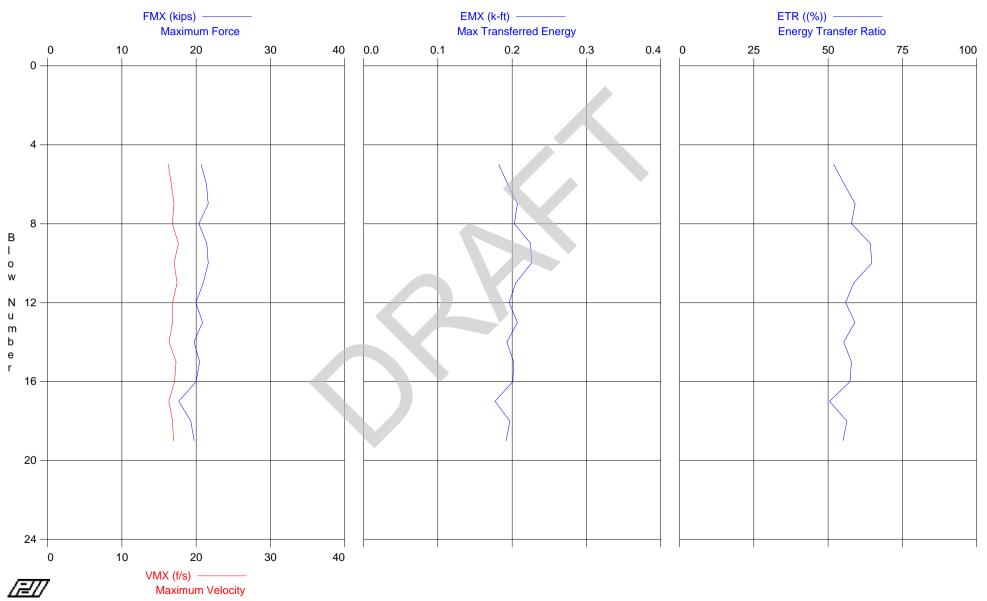
FILE: SER MARSH BUGGY, TEST 3.W01

1/10/2014 9:41:29 AM

Blow Number 15

Pile Properties

LE 37.30 ft AR 0.70 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 1.2 ksec/ft 2L/C 4.46 ms JC 0.90 [] LP 31.28 ft


Quantity Results

FMX 20 kips VMX 17.3 f/s DMX 0.71 in EMX 0.20 k-ft CSX 29.23 ksi CSI 30.66 ksi BTA 0.0 (%) RX9 11 kips BPM 36.5 bpm

Sensors

F3: [402SW-1] 210.62 (1) F4: [402SW-2] 204.74 (1) A3: [K1578] 325 mv/5000g's (1) A4: [K1580] 355 mv/5000g's (1) CLIP: OK

MID BARATARIA CALIBRATION - SER MARSH BUGGY, 30-31.5

MID BARATARIA CALIBRATION - SER MARSH BUGGY, 30-31.5

Page 1 of 1

PDIPLOT Ver. 2014.1 - Printed: 13-Jan-2014

SPT ENERGY MEASURE Test date: 10-Jan-2014

AR: 0.70 in^2 SP: 0.492 k/ft3 LE: 37.30 ft EM: 30,000 ksi WS: 16,807.9 f/s JC: 0.90

FMX: Maximum Force CSX: Max Measured Compr. Stress VMX: Maximum Velocity BTA: **BETA Integrity Factor**

DMX: Maximum Displacement RX9: Max Case Method Capacity (JC=0.9)

BPM: Blows per Minute EMX: Max Transferred Energy ETR: Energy Transfer Ratio **FMX** VMX DMX **EMX ETR** RX9 BPM BL# depth CSX **BTA** bl/ft kips f/s k-ft (%) ksi (%) kips 5 30.58 12 21 16.2 1.07 0.18 51.9 29.52 0.0 12 24.3 6 12 21 16.7 55.5 30.56 29.0 30.67 1.08 0.19 0.0 6 1.08 30.75 12 22 59.1 30.90 10 32.3 7 17.0 0.21 0.0 8 12 20 57.9 29.10 30.83 16.8 1.04 0.20 0.0 11 28.8 9 30.92 12 21 17.6 1.02 0.23 64.2 30.62 0.0 10 29.6 10 31.00 12 22 17.0 1.01 0.23 64.7 30.89 0.0 4 31.0 0.21 13 11 31.06 18 21 17.4 0.79 58.6 29.94 0.0 30.7 12 10 32.0 18 20 16.8 0.75 0.20 55.9 28.53 0.0 31.11 21 29.81 13 31.17 18 16.8 0.75 0.21 59.0 0.0 9 32.2 14 31.22 18 20 16.3 0.73 0.19 55.2 28.15 0.0 15 34.2 15 31.28 18 20 17.3 0.71 0.20 57.8 29.23 0.0 36.5 11 35.5 16 31.33 18 20 17.1 0.73 0.20 57.4 28.58 0.0 11 17 31.39 18 18 0.18 50.5 25.22 0.0 9 32.1 16.3 0.67 18 31.44 18 19 16.8 0.67 0.20 56.3 27.54 0.0 11 39.8 19 31.50 18 20 16.9 0.67 0.19 55.0 28.19 0.0 15 36.8

0.85

Std. Dev. 1 0.4 0.17 0.01 3.7 1.46 0.0 3 3.7 Maximum 22 17.6 1.08 0.23 64.7 30.90 15 39.8 0.0 @ Blow# 10 10 5 19 18 6

57.3

29.12

0.0

10

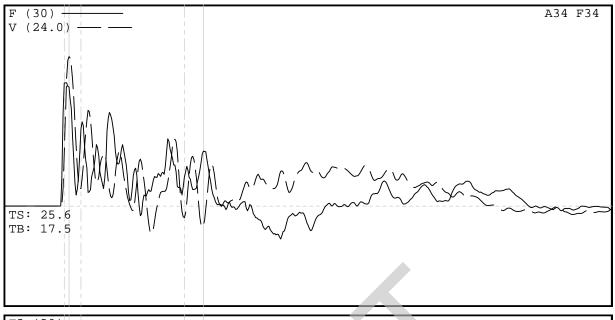
32.3

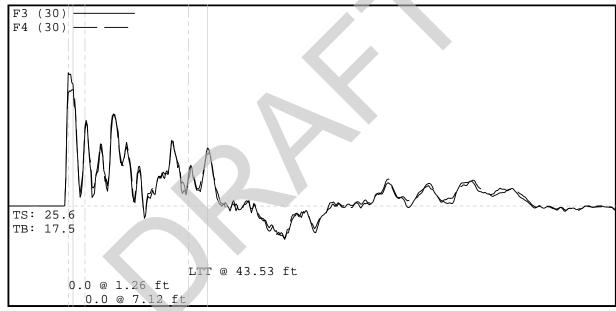
Total number of blows analyzed: 15

0.20

Time Summary

Average


20


Drive 35 seconds 9:41:02 AM - 9:41:37 AM (1/10/2014) BN 1 - 19

16.9

MID BARATARIA CALIBRATION

SER MARSH BUGGY, 37.5-39

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: SER MARSH BUGGY, 37.5-39

DESCR: SPT ENERGY MEASURE

OPERATOR: IAH

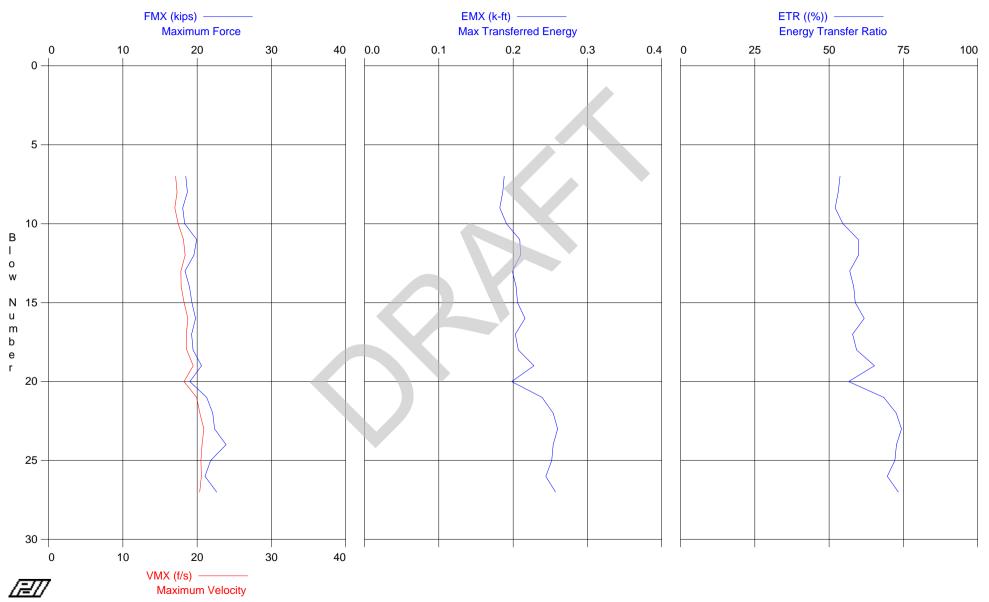
FILE: SER MARSH BUGGY, TEST 5_1.W01

1/10/2014 10:12:11 AM

Blow Number 13

Pile Properties

LE 47.30 ft AR 0.70 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 1.2 ksec/ft 2L/C 5.65 ms JC 0.90 [] LP 38.33 ft


Quantity Results

FMX 18 kips VMX 17.8 f/s DMX 0.68 in EMX 0.20 k-ft CSX 26.22 ksi CSI 28.35 ksi BTA 0.0 (%) RX9 13 kips BPM 37.7 bpm

<u>Sensors</u>

F3: [402SW-1] 210.62 (1) F4: [402SW-2] 204.74 (1) A3: [K1578] 325 mv/5000g's (1) A4: [K1580] 355 mv/5000g's (1) CLIP: OK

MID BARATARIA CALIBRATION - SER MARSH BUGGY, 37.5-39

Page 1 of 1

PDIPLOT Ver. 2014.1 - Printed: 13-Jan-2014

MID BARATARIA CALIBRATION - SER MARSH BUGGY, 37.5-39

SPT ENERGY MEASURE

OP: I	AH	lest date: 10-Jar	1-2014
AR:	0.70 in^2	SP: 0.49	92 k/ft3
LE:	47.30 ft	EM: 30,00)0 ksi
WS:	16,807.9 f/s	JC: 0.9) 0

FMX: Maximum Force VMX: Maximum Velocity

CSX: Max Measured Compr. Stress BTA: BETA Integrity Factor RX9: Max Case Method Capacity (JC=0.9) DMX: Maximum Displacement

EMX: Max Transferred Energy							BPM: Blows per Minute					
ETR:		ansfer Ratio						2 2.0	o po:a.o			
BL#	depth	BLC	FMX	VMX	DMX	EMX	ETR	CSX	BTA	RX9	BPM	
	· ft	bl/ft	kips	f/s	in	k-ft	(%)	ksi	(%)	kips	**	
7	38.00	14	18	17.1	0.86	0.19	53.7	26.38	0.0	12	35.0	
8	38.06	18	19	17.3	0.68	0.19	53.1	26.69	0.0	13	35.5	
9	38.11	18	18	17.0	0.67	0.18	52.0	25.81	0.0	11	35.6	
10	38.17	18	18	17.4	0.70	0.19	54.6	26.16	0.0	13	37.0	
11	38.22	18	20	18.2	0.72	0.21	59.8	28.48	0.0	13	36.9	
12	38.28	18	20	18.4	0.67	0.21	59.9	27.93	0.0	12	36.2	
13	38.33	18	18	17.8	0.68	0.20	57.0	26.23	0.0	13	37.7	
14	38.39	18	19	17.8	0.67	0.20	58.3	27.10	9.0	8	36.8	
15	38.44	18	19	18.2	0.68	0.21	58.8	27.57	5.0	14	37.4	
16	38.50	18	20	18.8	0.67	0.22	61.8	28.27	1.0	14	36.8	
17	38.55	22	19	18.5	0.61	0.20	57.9	27.51	1.0	14	35.8	
18	38.59	22	19	18.6	0.57	0.21	59.3	27.78	4.0	11	36.7	
19	38.64	22	21	19.5	0.66	0.23	65.3	29.43	3.0	16	37.2	
20	38.68	22	19	18.2	0.57	0.20	56.6	27.18	3.0	11	36.0	
21	38.73	22	21	19.9	0.68	0.24	68.4	30.41	0.0	17	35.3	
22	38.77	22	22	20.4	0.67	0.25	72.6	31.58	1.0	15	36.4	
23	38.82	22	22	20.9	0.70	0.26	74.4	31.92	4.0	17	36.7	
24	38.86	22	24	20.7	0.70	0.25	72.7	34.13	0.0	14	37.4	
25	38.91	22	22	20.5	0.62	0.25	72.1	31.18	0.0	13	34.7	
26	38.95	22	21	20.6	0.65	0.24	69.6	30.08	2.0	15	37.1	
27	39.00	22	23	20.3	0.62	0.26	73.3	32.32	0.0	14	37.7	
		Average	20	18.9	0.67	0.22	62.4	28.77	1.6	13	36.5	
		Std. Dev.	2	1.3	0.06	0.03	7.3	2.31	2.3	2	0.9	
		Maximum	24	20.9	0.86	0.26	74.4	34.13	9.0	17	37.7	
		@ Blow#	24	23	7	23	23	24	14	21	13	

23 23 Total number of blows analyzed: 21

Time Summary

Drive 44 seconds 10:11:51 AM - 10:12:35 AM (1/10/2014) BN 1 - 27

11955 Lakeland Park Blvd, Suite 100 Baton Rouge, Louisiana 70809 225.293.2460

August 1, 2013

HDR Engineering, Inc. 2365 Iron Point Road, Suite 300 Folsom, CA 95630

Attention: Mr. Mark Stanley, GE

Senior Geotechnical Advisor

Subject: Letter Report

SPT Energy Measurement

Cathead-Operated Safety Hammer on Failing 1500 Drill Rig State of Louisiana Coastal Protection and Restoration Authority

Mid Barataria Diversion (BA-153) Project

Plaquemines Parish, LA

File No. 18274-001-00, Task 0300

GeoEngineers, Inc. (GeoEngineers) is sending this document to report on the recent standard penetration test (SPT) energy measurement testing we completed on the Failing 1500 drill rig with the cathead-operated safety hammer. Testing was completed prior to mobilizing the drilling equipment to the project site in Plaquemines Parish, Louisiana.

Measurements were made by Ivy A. Harmon, a GeoEngineers staff engineer, using a PDA model PAX and a calibrated, instrumented drill rod. The energy testing was completed between 25 and 34.5 feet below the ground surface. Measurements were taken at three depth intervals; this report includes results from the each depth interval.

The drill rig used was a truck-mounted Failing 1500 Drill Rig, GeoEngineers Rig 49. The hammer was a CME-style cathead-driven safety hammer in good condition. In general, the rope was in very good condition (a nearly new, 1-inch diameter rope was used). The rope was typically wrapped 2 ¼ turns around the cathead. The SPT procedures were conducted in general accordance with ASTM D1586-08a. We observed that the driller was hesitant when performing initial STP operations due to the presence of instrumentation, but as he gained confidence in the testing equipment the procedure continued normally.

A summary of the energy measurement results is included in the table below for selected increments between 25 and 34.5 feet below the ground surface. Based on the collected data (see the table below), the overall average energy measured in the drill pipe was about 72% of the expected SPT hammer energy.

SPT HAMMER ENERGY MEASUREMENT RESULTS

Depth increment (ft)	Cathead/Hammer Operator	Average Energy Transfer Ratio (%)	Penetration Resistance (Blows/ft)
25 to 26.5	R. Clark	56.4	6
30 to 31.5	R. Clark	80.3	39
33 to 34.5	R. Clark	78.2	36

Measurement details are available in the attached PDA output reports, including an example Force-Velocity-Time graph generated by a single sample blow at each depth.

We appreciate the opportunity to work with HDR Engineering, Inc. on this project. Please call us at 225.293.2460 if you have any comments and questions.

Sincerely,

GeoEngineers, Inc.

Ivy A. Harmon, E.I.

Staff Geotechnical Engineer

Charles L. Eustis, P.E.

Principal

Appendix A. SPT Energy Measurement Reports

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Confidential Information: Privileged and Confidential Work Product.

Copyright@ 2014 by GeoEngineers, Inc. All rights reserved.

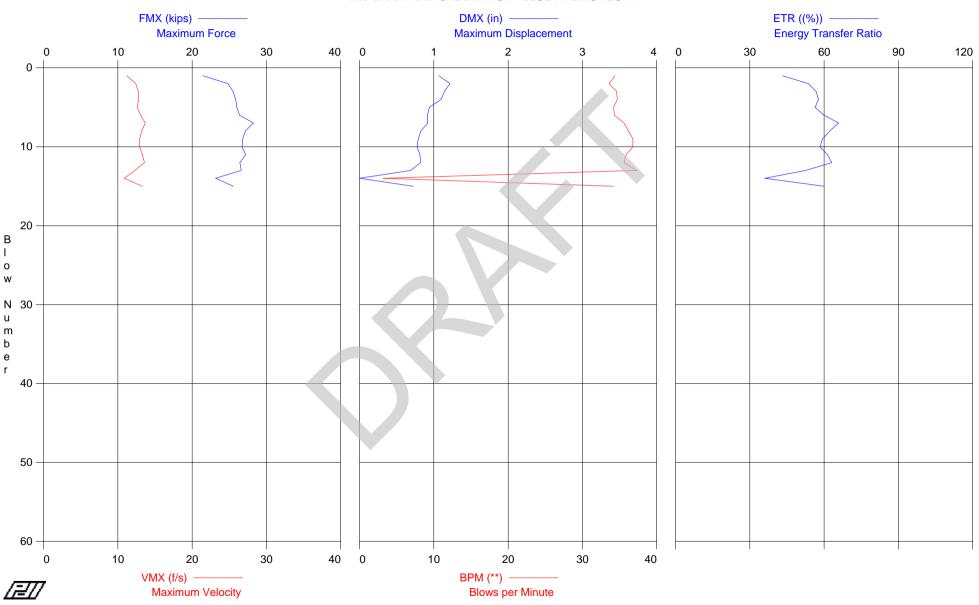
11955 Lakeland Park Blvd, Suite 100 Baton Rouge, Louisiana 70809 225.293.2460

APPENDIX A SPT Energy Measurement Reports

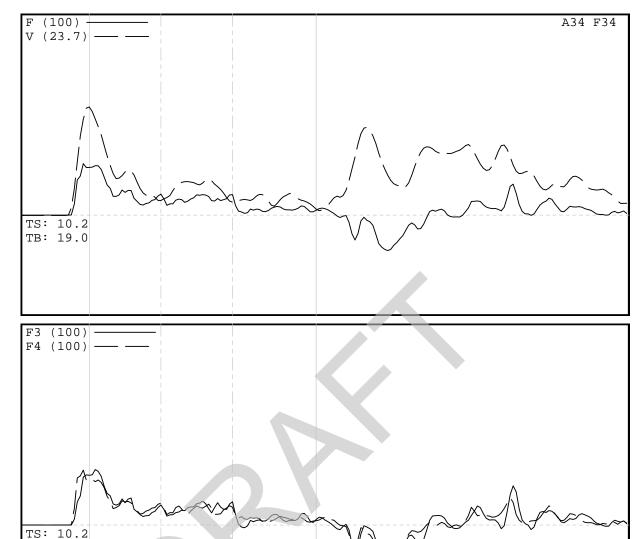
MID BARATARIA CALIBRATION - BLUE FAILING TEST 1 SPT NRG MEAS. 1

MID DANATANIA CALIDINATION - DECET AILING TEST T	SI I NICO MEAS. I
OP: IAH	Test date: 21-Jun-2013
AR: 2.36 in^2	SP: 0.492 k/ft3
LE: 32.00 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.35
FMX: Maximum Force	EMX: Max Transferred Energy
VMX: Maximum Velocity	ETR: Energy Transfer Ratio
DMX: Maximum Displacement	RX6: Max Case Method Capacity (JC=0.6)
BPM: Blows per Minute	LTD: Length to Damage
EFV: Energy of FV	

Statistics for entire file (15 blows)


dodoo for critic in	c (10 blows)								
	FMX	VMX	DMX	BPM	EFV	EMX	ETR	RX6	LTD
	kips	f/s	in	**	k-ft	k-ft	(%)	kips	ft
Average	26	12.7	0.85	33.2	0.20	0.20	56.4	15	9.67
Std. Dev.	2	0.8	0.27	8.1	0.03	0.03	7.5	4	5.27
Maximum	28	13.7	1.22	37.3	0.23	0.23	65.8	17	12.99
@ Blow#	7	7	2	13	7	7	7	15	1

Time Summary


11:32:40 AM - 11:33:20 AM (6/21/2013) BN 1 - 15 Drive 40 seconds

Test date: 21-Jun-2013

MID BARATARIA CALIBRATION - BLUE FAILING TEST 1

BLUE FAILING TEST 1

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: BLUE FAILING TEST 1

DESCR: SPT NRG MEAS. 1

OPERATOR: IAH

TB: 19.0

FILE: BLUE FAILING TEST 1.W01

6/21/2013 11:32:43 AM

Blow Number 3

Pile Properties

LP

LE 32.00 ft
AR 2.36 in^2
EM 30000 ksi
SP 0.492 k/ft3
WS 16807.9 f/s
EA/C 4.2 ksec/ft
2L/C 3.82 ms
JC 0.35 []

25.00 ft

Quantity Results

73 @ 22.63 ft

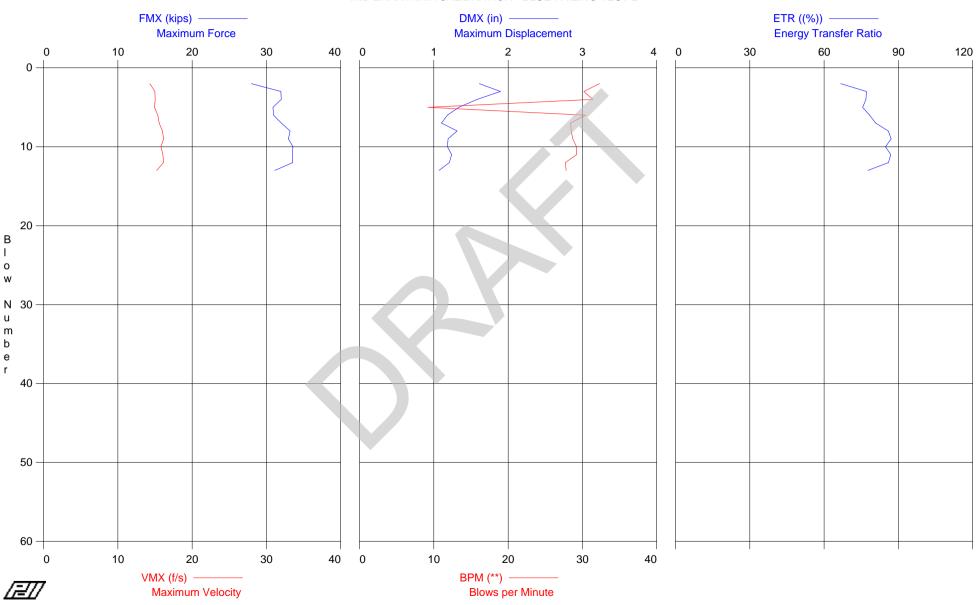
73 @ 12.57 ft

FMX 26 kips VMX 12.7 f/s DMX 1.14 in BPM 34.6 bpm EFV 0.20 k-ft EMX 0.20 k-ft ETR 56.8 (%) RX6 16 kips LTD 12.57 ft

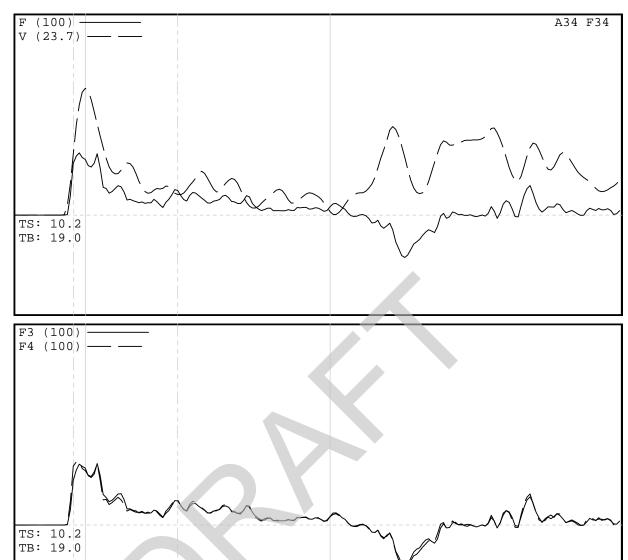
Sensors

F3: [151 N3-1] 215.1 (1) F4: [151 N3-2] 216.74 (1) A3: [K1580] 355 mv/5000g's (1) A4: [K1578] 325 mv/5000g's (1) CLIP: OK

MID BARATARIA	CALIBRATION -	BLUE FAILING	TEST 2
OD 1411			


MID BARATARIA CALIBRATION - BLUE FAILING TEST 2								SPT NR	G MEAS. 2	
OP: IAH							Т	est date: 21	I-Jun-2013	
AR: 2.36 in^2								SP:	0.492 k/ft3	
LE: 34.00 ft								EM: 3	0,000 ksi	
WS: 16,807.9 f/s								JC:	0.35	
FMX: Maximum Ford	ce					EMX: M	ax Transferre	ed Energy		
VMX: Maximum Velo	city					ETR: E	nergy Transfe	er Ratio		
DMX: Maximum Disp	lacement					RX6: M	RX6: Max Case Method Capacity (JC=0.6)			
BPM: Blows per Mini	ute					LTD: Le	ength to Dam	age		
EFV: Energy of FV										
Statistics for entire file	e (12 blows)									
	FMX	VMX	DMX	BPM	EFV	EMX	ETR	RX6	LTD	
	kips	f/s	in	**	k-ft	k-ft	(%)	kips	ft	
Average	32	15.5	1.33	27.8	0.28	0.28	80.3	23	1.73	
Std. Dev.	2	0.6	0.24	5.8	0.02	0.02	5.9	3	1.61	
Maximum	34	16.2	1.90	32.3	0.31	0.31	87.1	26	7.07	
@ Blow#	10	9	3	2	9	9	9	12	13	

Time Summary


11:53:12 AM - 11:53:41 AM (6/21/2013) BN 1 - 13 Drive 29 seconds

Test date: 21-Jun-2013

MID BARATARIA CALIBRATION - BLUE FAILING TEST 2

BLUE FAILING TEST 2

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: BLUE FAILING TEST 2 DESCR: SPT NRG MEAS. 2

51 @ 1.25 ft

OPERATOR: IAH

FILE: BLUE FAILING TEST 2.W01

6/21/2013 11:53:23 AM

Blow Number 5

Pile Properties

LE 34.00 ft AR 2.36 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 4.2 ksec/ft 2L/C 4.09 ms JC 0.35 [] LP 30.00 ft

Quantity Results

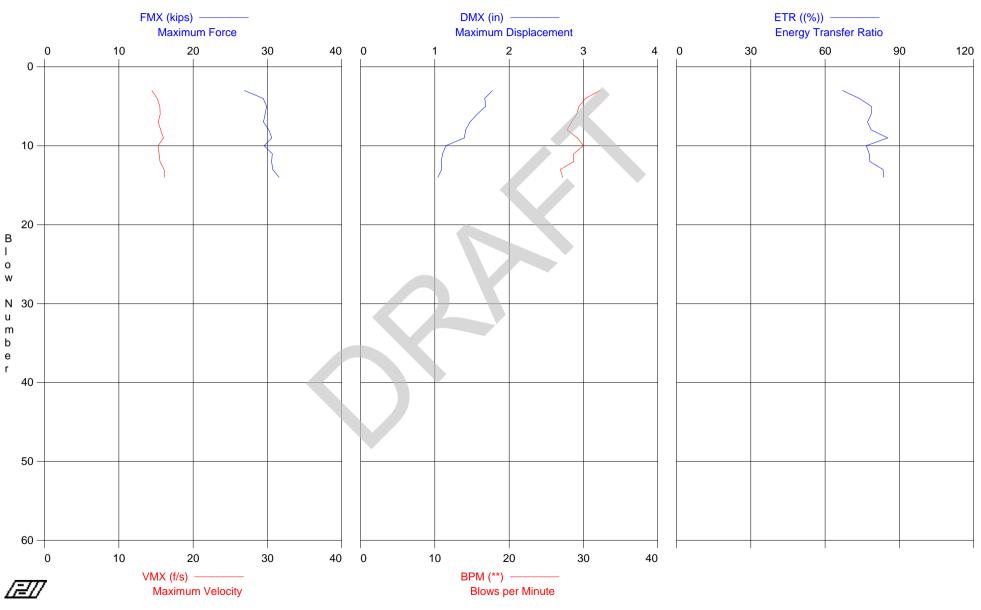
74 @ 15.79 ft

FMX 31 kips VMX 14.9 f/s DMX 1.34 in BPM 9.2 bpm EFV 0.26 k-ft EMX 0.26 k-ft ETR 75.6 (%) RX6 21 kips LTD 1.25 ft

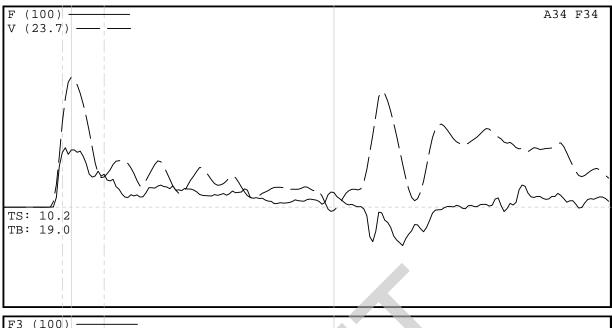
Sensors

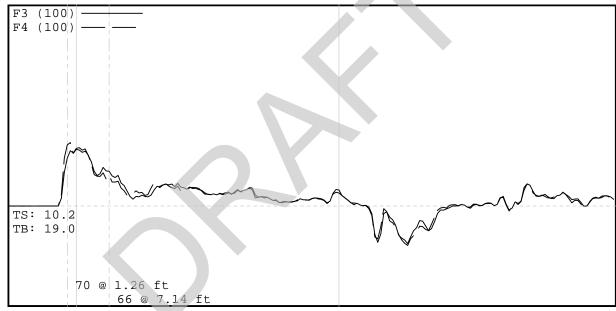
F3: [151 N3-1] 215.1 (1) F4: [151 N3-2] 216.74 (1) A3: [K1580] 355 mv/5000g's (1) A4: [K1578] 325 mv/5000g's (1) CLIP: OK

Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 21-Jun-2013


MID BARATARIA	CALIBRATION -	BLUE FAILING	TEST 3
00 1411			

MID BARATARIA CALIBRATION - BLUE FAILING TEST 3								SPT NR	G MEAS. 3	
OP: IAH							Т	est date: 21	I-Jun-2013	
AR: 2.36 in^2								SP:	0.492 k/ft3	
LE: 37.00 ft								EM: 3	0,000 ksi	
WS: 16,807.9 f/s								JC:	0.35	
FMX: Maximum Ford	e					EMX: M	ax Transferre	ed Energy		
VMX: Maximum Velo	city					ETR: E	nergy Transfe	er Ratio		
DMX: Maximum Disp	lacement					RX6: M	RX6: Max Case Method Capacity (JC=0.6)			
BPM: Blows per Min	ute					LTD: Le	ength to Dam	age		
EFV: Energy of FV										
Statistics for entire file	e (12 blows)									
	FMX	VMX	DMX	BPM	EFV	EMX	ETR	RX6	LTD	
	kips	f/s	in	**	k-ft	k-ft	(%)	kips	ft	
Average	30	15.5	1.37	29.0	0.27	0.27	78.2	25	5.18	
Std. Dev.	1	0.4	0.26	1.4	0.02	0.02	4.6	1	2.77	
Maximum	32	16.2	1.78	32.2	0.30	0.30	85.3	27	7.14	
@ Blow#	14	14	3	3	9	9	9	9	3	


Time Summary


12:06:47 PM - 12:07:21 PM (6/21/2013) BN 1 - 14 Drive 34 seconds

MID BARATARIA CALIBRATION - BLUE FAILING TEST 3

BLUE FAILING TEST 3

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: BLUE FAILING TEST 3 DESCR: SPT NRG MEAS. 3

OPERATOR: IAH

FILE: BLUE FAILING TEST 3.W01 6/21/2013 12:07:06 PM

Blow Number 7

Blow Number 7

Pile Properties

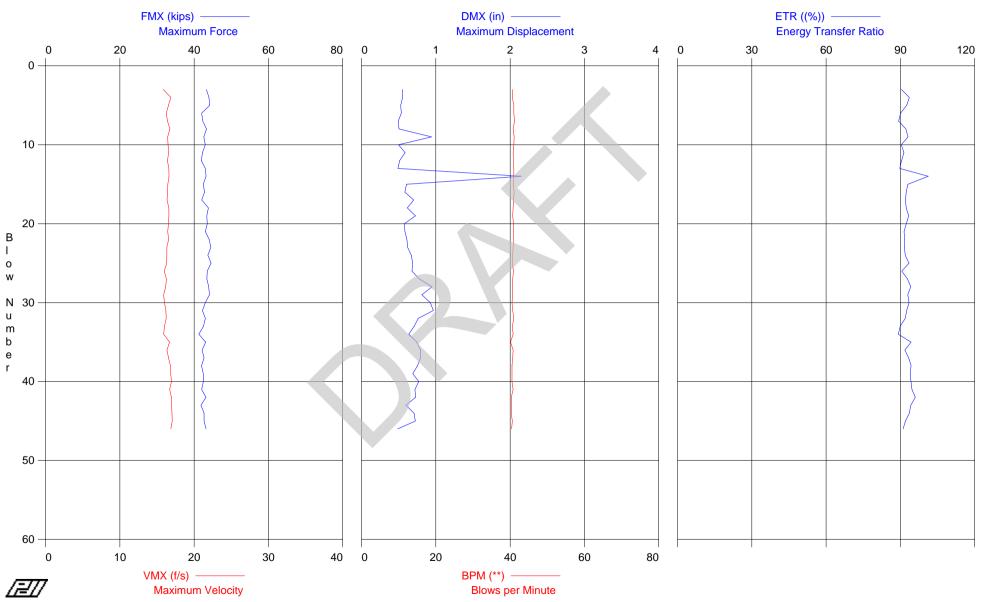
LE 37.00 ft AR 2.36 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 4.2 ksec/ft 2L/C 4.41 ms JC 0.35 [] LP 33.00 ft

Quantity Results

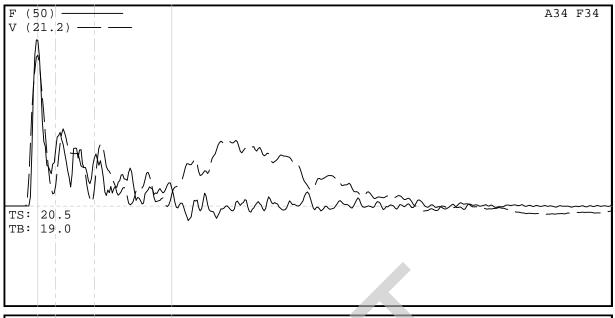
FMX 29 kips VMX 15.3 f/s DMX 1.47 in BPM 28.4 bpm EFV 0.27 k-ft EMX 0.27 k-ft ETR 77.1 (%) RX6 26 kips LTD 7.14 ft

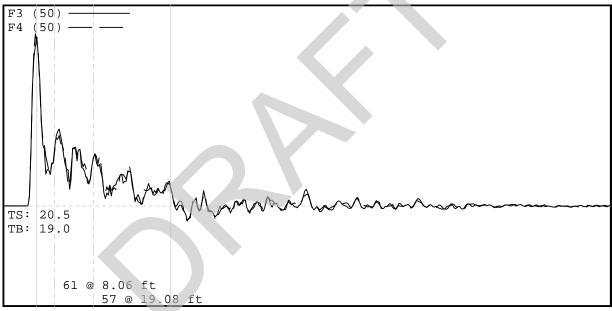
Sensors

F3: [151 N3-1] 215.1 (1) F4: [151 N3-2] 216.74 (1) A3: [K1580] 355 mv/5000g's (1) A4: [K1578] 325 mv/5000g's (1) CLIP: OK


MID BARATARIA CALIBRATION - SPT 32.33 TO 33.83	
00 100//14174	

MID BARATARIA CALIBRATION - SPT 32.33 TO 33.83								SPT NRC	MEAS. 7	
OP: NICK MATA							Te	est date: 11-	-May-2013	
AR: 1.32 in^2								SP:	0.492 k/ft3	
LE: 38.16 ft								EM: 3	0,000 ksi	
WS: 16,807.9 f/s								JC:	0.35	
FMX: Maximum Ford	e					EMX: N	lax Transferre	d Energy		
VMX: Maximum Velo	city					ETR: E	nergy Transfe	er Ratio		
DMX: Maximum Disp	lacement					RX6: N	RX6: Max Case Method Capacity (JC=0.6)			
BPM: Blows per Min	ute					LTD: L	LTD: Length to Damage			
EFV: Energy of FV										
Statistics for entire file	e (44 blows)									
	FMX	VMX	DMX	BPM	EFV	EMX	ETR	RX6	LTD	
	kips	f/s	in	**	k-ft	k-ft	(%)	kips	ft	
Average	43	16.5	0.71	40.7	0.32	0.32	92.5	18	17.80	
Std. Dev.	1	0.3	0.25	0.2	0.01	0.01	2.0	1	3.43	
Maximum	45	17.1	2.15	41.2	0.36	0.36	101.3	21	19.50	
@ Blow#	25	45	14	7	14	14	14	3	12	


Time Summary


11:38:29 AM - 11:41:51 AM (5/11/2013) BN 1 - 46 Drive 3 minutes 22 seconds

MID BARATARIA CALIBRATION - SPT 32.33 TO 33.83

SPT 32.33 TO 33.83

Project Information

PROJECT: MID BARATARIA CALIBRATION PILE NAME: SPT 32.33 TO 33.83 DESCR: SPT NRG MEAS. 7 OPERATOR: NICK MATA FILE: SPT 32.33 TO 33.83.W01 5/11/2013 11:41:32 AM

Blow Number 34

Pile Properties

38.16 ft 1.32 in^2 AR ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.4 ksec/ft 2L/C 4.50 ms JC 0.35 [] LP 32.33 ft

Quantity Results

FMX 41 kips VMX 15.9 f/s DMX 0.64 in BPM 40.8 bpm EFV 0.31 k-ft EMX 0.31 k-ft ETR 89.1 (%) RX6 17 kips LTD 19.08 ft

Sensors

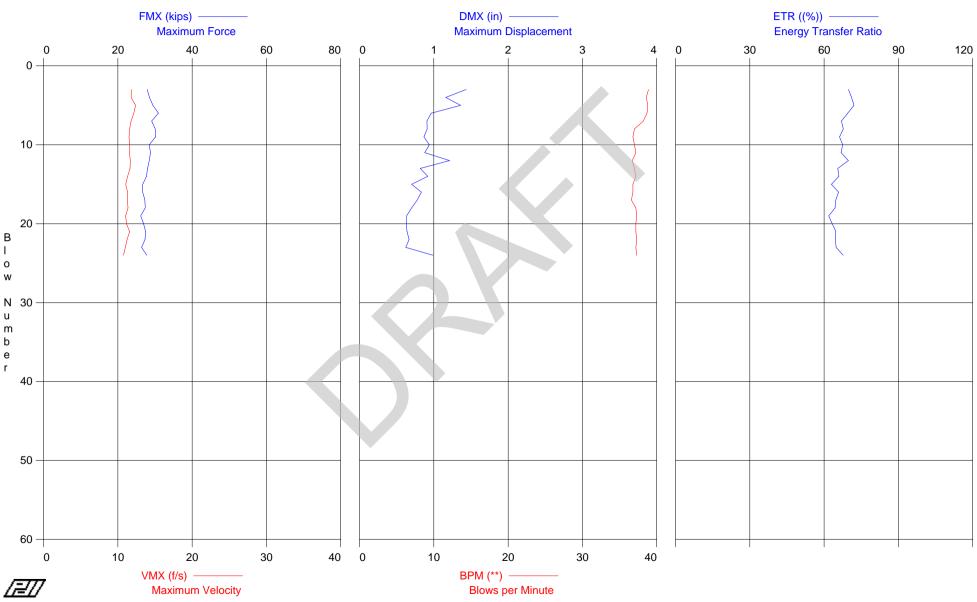
F3: [213BR1] 214.16 (1) F4: [213BR2] 216.06 (1) A3: [K1580] -355 mv/5000g's (1) A4: [K1578] -325 mv/5000g's (1) CLIP: OK MID BARATARIA CALIBRATION - 1_1 SPT NRG MEAS. 2

OP: IAH Test date: 13-May-2013 AR: 1.32 in^2 SP: 0.492 k/ft3 LE: 43.16 ft EM: 30,000 ksi WS: 16,807.9 f/s JC: 0.35

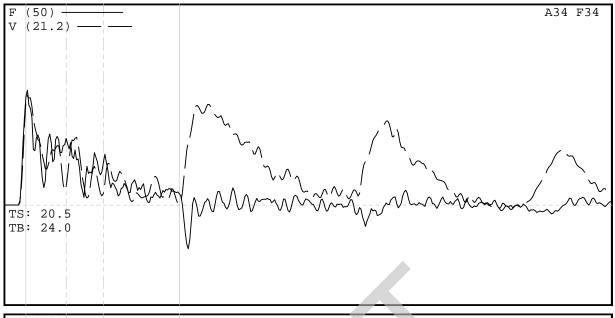
FMX: Maximum Force EMX: Max Transferred Energy VMX: Maximum Velocity

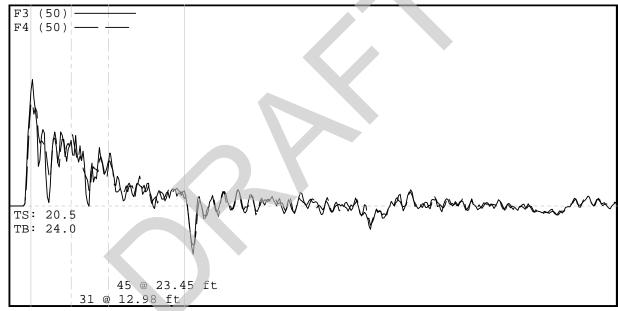
ETR: Energy Transfer Ratio
RX6: Max Case Method Capacity (JC=0.6) DMX: Maximum Displacement

BPM: Blows per Minute LTD: Length to Damage EFV: Energy of FV


Statistics for entire file (22 blows) FMX VMX DMX BPM EFV EMX

ETR RX6 LTD f/s k-ft k-ft (%) kips ft Average 37.4 28 11.5 0.89 0.23 0.23 66.5 6 17.00 Std. Dev. 2 0.4 0.23 0.7 0.01 0.01 2.6 4.99 1 Maximum 31 12.4 1.43 23.03 38.9 0.25 0.25 72.1 12 @ Blow# 10 6 5 3 3 5 4


Time Summary


7:36:53 AM - 7:37:30 AM (5/13/2013) BN 1 - 24 Drive 37 seconds

1_1

Project Information

PROJECT: MID BARATARIA CALIBRATION

PILE NAME: 1_1

DESCR: SPT NRG MEAS. 2

OPERATOR: IAH FILE: 1_1.W01 5/13/2013 7:37:07 AM Blow Number 10

Pile Properties

LE 43.16 ft
AR 1.32 in^2
EM 30000 ksi
SP 0.492 k/ft3
WS 16807.9 f/s
EA/C 2.4 ksec/ft
2L/C 5.15 ms
JC 0.35 []

Quantity Results

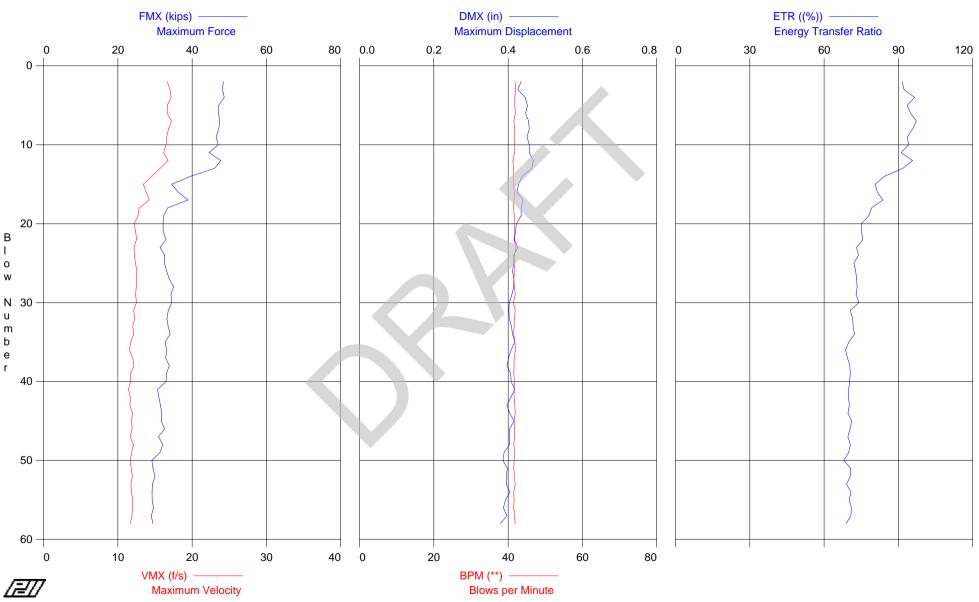
FMX 28 kips VMX 11.6 f/s DMX 0.94 in BPM 37.0 bpm EFV 0.24 k-ft EMX 0.24 k-ft ETR 67.5 (%) RX6 12 kips LTD 12.98 ft

Sensors

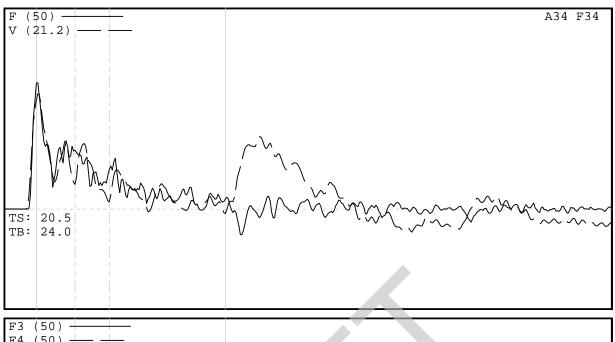
F3: [213BR1] 214.16 (1) F4: [213BR2] 216.06 (1) A3: [K1580] -355 mv/5000g's (1) A4: [K1578] -325 mv/5000g's (1) CLIP: OK

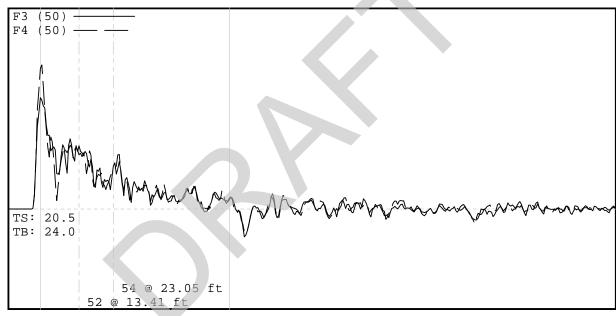
Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 20-Jun-2013

MID BARATARIA CALIBRATION - 1	1_2
OD. IAII	


MID BARATARIA CALIBRATION - 1_2 SPT								SPT NR	G MEAS. 3		
OP: IAH							Te	est date: 13	-May-2013		
AR: 1.32 in^2								SP:	0.492 k/ft3		
LE: 53.16 ft								EM: 3	0,000 ksi		
WS: 16,807.9 f/s								JC:	0.35		
FMX: Maximum Force						EMX: M	ax Transferre	d Energy			
VMX: Maximum Veloci	ty					ETR: E	nergy Transfe	er Ratio			
DMX: Maximum Displa	cement					RX6: M	RX6: Max Case Method Capacity (JC=0.6)				
BPM: Blows per Minute)					LTD: Le	LTD: Length to Damage				
EFV: Energy of FV											
Statistics for entire file (57 blows)										
	FMX	VMX	DMX	BPM	EFV	EMX	ETR	RX6	LTD		
	kips	f/s	in	**	k-ft	k-ft	(%)	kips	ft		
Average	36	13.2	0.42	41.7	0.27	0.27	77.1	15	13.26		
Std. Dev.	6	1.9	0.02	0.2	0.03	0.03	9.5	2	1.35		
Maximum	49	17.2	0.47	42.1	0.34	0.34	97.3	20	23.05		
@ Blow#	4	7	12	2	7	7	7	7	25		

Time Summary


8:23:57 AM - 8:25:19 AM (5/13/2013) BN 1 - 58 Drive 1 minute 22 seconds


Test date: 13-May-2013

MID BARATARIA CALIBRATION - 1_2

Project Information

PROJECT: MID BARATARIA CALIBRATION

PILE NAME: 1_2

DESCR: SPT NRG MEAS. 3

OPERATOR: IAH FILE: 1_2.W01 5/13/2013 8:24:29 AM Blow Number 23

Pile Properties

LE 53.16 ft AR 1.32 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.4 ksec/ft 2L/C 6.34 ms JC 0.35 [] LP 47.33 ft

Quantity Results

FMX 31 kips VMX 12.2 f/s DMX 0.43 in BPM 42.1 bpm EFV 0.26 k-ft EMX 0.26 k-ft ETR 73.1 (%) RX6 14 kips LTD 13.41 ft

Sensors

F3: [213BR1] 214.16 (1) F4: [213BR2] 216.06 (1) A3: [K1580] 355 mv/5000g's (1) A4: [K1578] 325 mv/5000g's (1) CLIP: OK

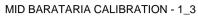
Page 1 of 1 PDIPLOT Ver. 2012.2 - Printed: 20-Jun-2013

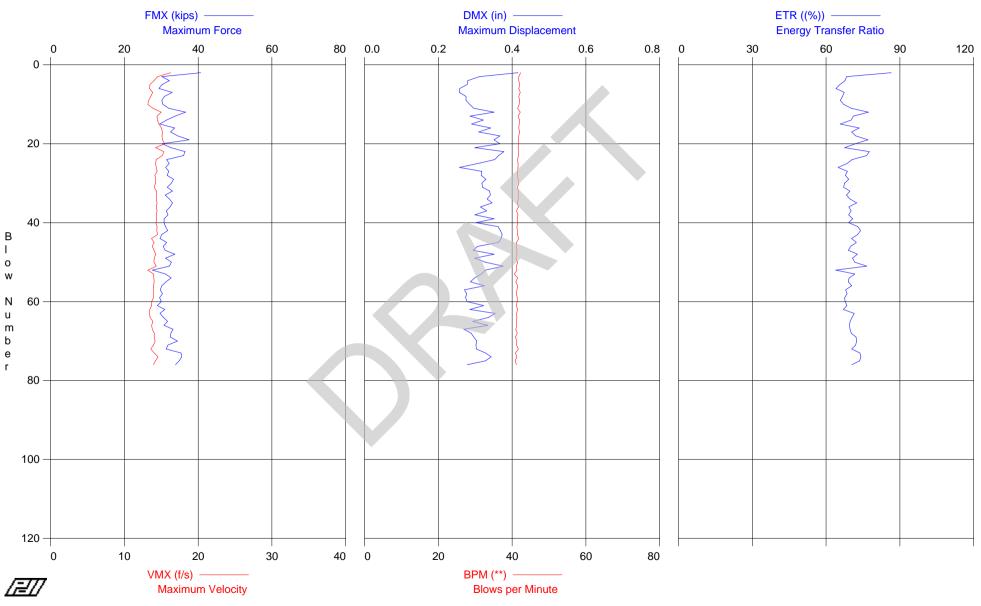
/IID BARATARIA CALIBRATION - 1_3	SPT NRG MEAS. 4
DP: IAH	Test date: 13-May-2013

OP: IAH	Test date: 13-May-2013
AR: 1.32 in^2	SP: 0.492 k/ft3
LE: 56.16 ft	EM: 30,000 ksi
WS: 16,807.9 f/s	JC: 0.35
FMX: Maximum Force	FMX: Max Transferred Energy

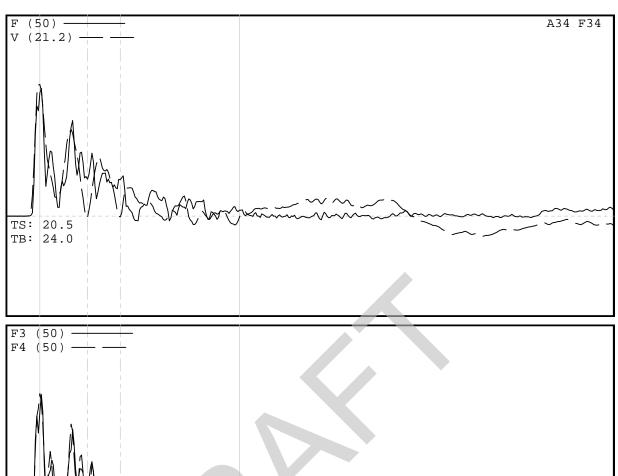
FIVIX:	Maximum Force	FIVIX:	Max Transferred Energy
VMX:	Maximum Velocity	ETR:	Energy Transfer Ratio
DMX:	Maximum Displacement	RX6:	Max Case Method Capacity (JC=0.6)

LTD: Length to Damage


BPM: Blows per Minute EFV: Energy of FV


Statistics for entire fil	e (75 blows)								
	FMX	VMX	DMX	BPM	EFV	EMX	ETR	RX6	LTD
	kips	f/s	in	**	k-ft	k-ft	(%)	kips	ft
Average	32	14.2	0.32	41.5	0.25	0.25	70.4	13	16.69
Std. Dev.	2	0.5	0.03	0.3	0.01	0.01	3.5	1	1.22
Maximum	41	16.3	0.42	42.3	0.30	0.30	86.5	15	17.60
@ Blow#	2	2	2	2	2	2	2	71	31

Time Summary


9:06:23 AM - 9:08:11 AM (5/13/2013) BN 1 - 76 Drive 1 minute 48 seconds

Test date: 13-May-2013

Project Information

PROJECT: MID BARATARIA CALIBRATION

40 @ 15.93 ft

49 @ 25.15 ft

PILE NAME: 1_3

20.5

24.0

TS:

TB:

DESCR: SPT NRG MEAS. 4

OPERATOR: IAH FILE: 1_3.W01 5/13/2013 9:07:55 AM Blow Number 65

Pile Properties

LE 56.16 ft 1.32 in^2 AR ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.9 f/s EA/C 2.4 ksec/ft 2L/C 6.70 ms JC 0.35 [] LP 52.33 ft

Quantity Results

FMX 32 kips VMX 13.9 f/s DMX 0.29 in BPM 41.1 bpm EFV 0.24 k-ft EMX 0.24 k-ft ETR 69.7 (%) RX6 14 kips LTD 15.93 ft

Sensors

F3: [213BR1] 214.16 (1) F4: [213BR2] 216.06 (1) A3: [K1580] 355 mv/5000g's (1) A4: [K1578] 325 mv/5000g's (1) CLIP: OK