

File No.: 18274-001-00 Explorations: Between Sta. 26+00 and Sta. 140+00 Clay PointID Depth Percent Finer Silt %Sand Test S-1A 35 56.4 #200 43.6 S-1A 45 82.4 17.6 #200 S-1A 64 35.9 #200 64.1 S-1A 79 45.6 #200 54.4 S-1A 91.5 53.9 #200 46.1 S-2A 24.6 75.6 #200 24.4 25 96.3 #200 79.1 S-2A 17.2 3.7 S-2A 25.5 #200 S-2A 29.3 74.4 25.6 Sieve S-2A 31.25 95.3 #200 4.7 S-2A 34 70.4 #200 29.6 S-2A 39 59.3 Sieve 40.7 S-2A 45.7 #200 40.9 59.1 54 S-2A 40.8 #200 59.2 58 84.7 #200 S-2A 15.3 S-2A 60 33.1 #200 66.9 S-2A 65 53.2 #200 46.8 S-2A 70 53.8 #200 15.8 46.2 38 S-2A 72 32.2 #200 67.8 75 S-2A 11.3 Sieve 88.7 77.5 19.7 #200 S-2A 80.3 S-2A 80 21.6 78.4 Sieve S-2A 82.5 S-2A 92.5 62.5 #200 49.7 12.8 37.5 S-2A 95 19.2 80.8 Sieve S-2A 97.5 33.5 #200 66.5 S-3A 36 43.4 #200 56.6 46 S-3A 16.8 Sieve 83.2 #200 S-3A 48.5 S-3A 53.5 58.4 #200 41.6 S-3A 56 86.7 #200 13.3 58.5 S-3A 27.8 72.2 Sieve S-3A 61 89.1 #200 50.21 38.89 10.9 S-3A 66 31.3 #200 68.7 S-3A 76 63.2 #200 48.74 14.46 36.8 S-3A 78.5 20.7 Sieve 79.3 S-3A 98.5 34.7 #200 65.3 IS-7A 10 93 #200 7 S-7A 11 99 #200 1 14 S-7A 100 #200 70 30 0 15 #200 22 S-7A 78

Project: Mid Barataria Diversion Project

Project: Mid Barataria Diversion Project File No.: 18274-001-00 Explorations: Between Sta. 26+00 and Sta. 140+00 PointID Depth Percent Finer Clay %Sand Test Silt S-7A 21.6 93 #200 74 19 7 S-7A 89 11 22 #200 S-7A 24 80 #200 54 26 20 S-7A 27 89 #200 73 16 11 31 S-7A S-7A 35 84 #200 64 20 16 40 #200 15 S-7A 85 65 20 S-7A 44 65 #200 35 #200 15 S-7A 47 85 19 66 48 S-7A 78 #200 22 S-7A 52.5 78 #200 17 22 61 S-7A 54.5 73 #200 27 S-7A 57.5 76 #200 24 60 16 S-7A 60 60 #200 40 62.5 #200 12 S-7A 88 69 19 S-7A 66.5 75 #200 25 S-7A 70.5 71 #200 29 S-7A 71.5 S-7A 76.5 12 Sieve 88 81.5 68 S-7A Sieve 32 S-8A 26 62.4 #200 55.06 7.34 37.6 S-8A 30 65.2 #200 59.9 5.3 34.8 S-8A 46 83.4 #200 16.6 S-8A 51 74.9 #200 25.1 54 #200 71.24 8.36 20.4 S-8A 79.6 S-8A 55 72.5 #200 27.5 S-8A 59 81.7 #200 73.68 8.02 18.3 63.5 67.4 S-8A #200 56.92 10.48 32.6 #200 41.7 S-8A 66 58.3 68.5 86.1 #200 75.95 10.15 13.9 S-8A 73.5 55.2 #200 44.8 S-8A S-8A 78.5 42.1 #200 57.9 S-8A 81 84.6 #200 59.85 24.75 15.4 86 91.9 #200 8.1 S-8A S-8A 96 14.4 85.6 Sieve S-8A 101 11.1 Sieve 88.9 S-8A 113.5 10.9 Sieve 89.1 S-8A 121 12.6 87.4 Sieve 146.5 24.3 #200 75.7 S-8A S-8A 147.5 31 Sieve 69 #200 S-8A 150 26.1 73.9

Project: Mid Barataria Diversion Project File No.: 18274-001-00 Explorations: Between Sta. 26+00 and Sta. 140+00 PointID Depth Percent Finer Silt Clay %Sand Test S-9A 27 83.1 #200 16.9 29 76.3 S-9A #200 23.7 16.5 S-9A 41 83.5 #200 S-9A 45 79.8 #200 20.2 47 S-9A 79.9 #200 20.1 49 S-9A 68.9 #200 31.1 51 85.7 #200 S-9A 14.3 S-9A 61 76.2 #200 23.8 #200 S-9A 65 85.2 14.8 S-9A 74 64.1 #200 35.9 S-9A 89 78.4 #200 21.6 S-9A 99 86.1 #200 13.9 S-12A 5.5 99 #200 47 1 52 10 S-12A 100 #200 62 38 0 S-12A 13 #200 99 1 14 S-12A 90 #200 69 21 10 S-12A 15 82 #200 18 S-12A 16.3 75 #200 25 S-12A 19 93 #200 71 7 22 25 S-12A 64 #200 36 S-12A 27 #200 85 15 S-12A 34 79 #200 21 #200 S-12A 37 69 31 40.5 S-12A 68 #200 32 S-12A 45 #200 34 2 98 64 47 S-12A 78 #200 61 17 22 49 S-12A 85 #200 15 53 16 S-12A 84 #200 66 18 #200 S-12A 54 17 20 80 63 S-12A 59 81 #200 19 S-12A 61 81 #200 19 63 S-12A 90 #200 71 19 10 73.1 S-12A 82 #200 67 15 18 S-12A 78 74 #200 26 S-12A 80 75 #200 25 S-13A 23.5 71.5 Sieve 28.5 #200 IS-13A 24 93.7 6.3 77.4 16.3 Sieve S-13A 33.2 89.3 10.7 S-13A 35 89.6 10.4 Sieve S-13A 65.3 98.2 #200 1.8 #200 66 92 S-13A

		Mid Barataria Diversion Project 18274-001-00										
Exp		Between Sta. 26+0	00 and St	a. 140+00								
PointID	Depth	Percent Finer	Test	Silt	Clay	%Sand						
IS-13A	88	87.4	#200	69.6	17.8	12.6						
IS-13A	93	66	#200	48.7	17.3	34						
IS-13A	3A 100.5 36.4					63.6						
IS-16A	5.3	93.4	#200			6.6						
IS-16A	17	83.6	#200	72	11.6	16.4						
IS-16A	27.5	92	#200			8						
IS-16A	30	78.1	Sieve			21.9						
IS-16A	35	64.1	Sieve			35.9						
IS-16A	41	19.2	Sieve			80.8						
IS-16A	46	20.1	Sieve			79.9						
IS-16A	51.5	49.1	#200			50.9						
IS-16A	54	30.2	#200			69.8						
IS-16A	56.5	14.8	Sieve			85.2						
IS-16A	59	63.2	#200			36.8						
IS-16A	61.5	17.4	#200			82.6						
IS-16A						50.1						
IS-16A	72.3	44.3	#200			55.7						
IS-16A	74	39.4	Sieve			60.6						
IS-16A	76.5	19.1	#200			80.9						
IS-16A	94	29.8	Sieve			70.2						
IS-16A	96.5	67.7	#200	55.6	12.1	32.3						
IS-16A	99	59	Sieve	V		41						
IS-17A	38	90	#200			10						
IS-17A	43	28	#200			72						
IS-17A	46.5	57	#200	49	8	43						
IS-17A	48		#200	52	17	31						
IS-17A	50.5	51	#200	24	27	49						
IS-17A	53	17	Sieve			83						
IS-17A	55.5	16	Sieve			84						
IS-17A	58	94	#200	43	51	6						
IS-17A	60.5	90	#200	45	45	10						
IS-17A	63	40	#200	.0	,0	60						
IS-17A	68	33	#200			67						
IS-17A	75.5	36	#200			64						
IS-17A	78.8		#200			32						
IS-17A			#200	66	31	1						
IS-17A IS-17A			#200	00	91	64						
IS-17A IS-17A	93	63	#200			37						
IS-17A IS-17A	98					22						
		78	#200	20	69.7	0.3						
	NL-3A 23 99.7		#200	30								
NL-3A 39 99.		99.2	#200	10	89.8	0.8						

	Project:	Mid Barataria Diversion Project											
	File No.:	18274-001-00											
Ехр	lorations:	Between Sta. 26	+00 and St	a. 140+00									
	1			1									
PointID	Depth	Percent Finer	Test	Silt	Clay	%Sand							
NL-3A	114	28.1	#200			71.9							
NL-3A	116	98.9	#200			1.1							
NL-6A	9.6	92.4	#200			7.6							
NL-6A	12.4	74	#200			26							
NL-6A	13	42.8	#200	39	3.8	57.2							
NL-6A	14	26	#200			74							
NL-6A	16.8	44.5	#200			55.5							
NL-6A	17	32	#200			68							
NL-6A	SA 18 53.2		#200			46.8							
NL-6A	6A 19.3 30.6		#200			69.4							
NL-6A	-6A 20 71.9		#200			28.1							
NL-6A	-6A 27 22.8		#200			77.2							
NL-6A	30.5	74.4	#200			25.6							
NL-6A	31.7	71.2	#200			28.8							
NL-6A	33	90.1	#200										
NL-6A	37	63.1	#200			36.9							
NL-8A	13.3	99.8	#200			0.2							
NL-8A	24.5	98.9	#200			1.1							
NL-8A	32.8	93.1	#200			6.9							
NL-8A	115	31.3	#200			68.7							
NL-9A	38	77.1	#200			22.9							
NL-9A	41	35	#200			65							
NL-9A	43.5	29.2	#200			70.8							
NL-9A	46	79	#200	68.3	10.7	21							
NL-9A	51	44	#200			56							
NL-9A	53.5	44.1	#200			55.9							
NL-9A	56	64.2	#200	55.6	8.6	35.8							
NL-9A	63.5	60.6	#200			39.4							
NL-9A	68.5	38	#200			62							
NL-9A	73.5	31.9	#200			68.1							
NL-9A	86												
NL-9A	93.5	64.7	#200	55.1	9.6	35.3							
NL-9A	98.5	29.9	#200			70.1							
PT-1	10	94.9	Н	54.5	40.4	5.1							
	12	97.1	Н	35	62.1	2.9							
Sample B	14	16.7	Sieve			83.3							
Sample A	18	98.2	Н	77.5	20.7	1.8							
Sample B	18	53.6	Н	49.5	4.1	46.4							
	24	95	Н	86.4	8.6	5							
	28	95.6	Н	85.5	10.1	4.4							
	32	97.2	Н	60.9	36.3	2.8							

	Project:	Mid Barataria Dive	rsion Proj	ect				
	File No.:	18274-001-00						
Exp	lorations:	Between Sta. 26+0	00 and St	a. 140+00				
PointID	Depth	Percent Finer	Test	Silt	Clay	%Sand		
PT-2	8	96	Н	82	14	4		
	13	98.4	Н	67.6	30.8	1.6		
	18	95.4	Н	52.6	42.8	4.6		
	23	78.3	Н	66.9	11.4	21.7		
	28	57.6	Н	50.3	7.3	42.4		
	32	67.7	Н	62.3	5.4	32.3		
	36	69.9	Н	56.9	13	30.1		
	40	52.9	Н	42.1	10.8	47.1		
	44	57.8	Н	46.5	11.3	42.2		
	48	61.2	Н	51.8	9.4	38.8		
	52	81.1	Н	55.2	25.9	18.9		
	56	59.7	Н	48.7	11	40.3		
	62	99.8	Н	35	64.8	0.2		
	66	63.5	Н	49	14.5	36.5		
	70	99.6	Н	23.3	76.3	0.4		
	74	63.6	Н	50.5	13.1	36.4		
PZ-1	13	23.8	Н		23.8	76.2		
Sample A	13	98	Н	41	57	2		
	18	99.4	Н		99.4	0.6		
	23	98.3	Н		98.3	1.7		
	33	99.2	Н		99.2	0.8		
PZ-6	18	99.4	Н	37.3	62.1	0.6		
	28	90	Н	78	12	10		
Sample C	28	99	Н	68.7	30.3	1		
	33	86.8	Н	80.6	6.2	13.2		
PZ-8								
Sample B	8	98	H	79.3	18.7	2		
	13	96.4	Н	86.1	10.3	3.6		
	18	71.1	Н	66	5.1	28.9		
	23	81.5	Н	67	14.5	18.5		
Sample A	28	72.5	Н	61.7	10.8	27.5		
Sample B	28	85.3	Н	74.8	10.5	14.7		
	33	69.3	Н	58.7	10.6	30.7		
	38	76.5	Н	67	9.5	23.5		
	43	54.4	Н	45.9	8.5	45.6		
	48	62.7	Н	49.7	13	37.3		
	53	54.1	Н	47.2	6.9	45.9		
PZ-10								
	13	98.6	Н	72.5	26.1	1.4		
	18	85.4	Н	71.6	13.8	14.6		
Sample A	23	83.9	Н	67.7	16.2	16.1		

	Project:	Mid Barataria Diversion Project											
	File No.:	18274-001-00											
Ехр	lorations:	Between Sta. 26+0	00 and St	a. 140+00									
PointID	Depth	Percent Finer	Test	Silt	Clay	%Sand							
Sample B	23	43.9	Н	43.9	0	56.1							
	28	61	Н	52.4	8.6	39							
	33	58.9	Н	52.7	6.2	41.1							
Sample A	38	89.1	Н	74.5	14.6	10.9							
Sample B	38	93.6	Н	89	4.6	6.4							
	43	87	Н	78.9	8.1	13							
Sample A	48	96	Н	75.8	20.2	4							
Sample B	48	58.4	Н	47.2	11.2	41.6							
PZ-11													
	8	99.2	Н	78.3	20.9	0.8							
	13	85.5	Н	76.5	9	14.5							
	18	86	Н	74.3	11.7	14							
Sample A	23	76.4	Н	66.7	9.7	23.6							
Sample B	23	77.6	Н	71.6	6	22.4							
	28	90.5	Н	57	33.5	9.5							
	33	88.8	Н	75.3	13.5	11.2							
	38	56.7	Н	50	6.7	43.3							
Sample A	43	89.7	Н	82.5	7,2	10.3							
Sample B	43	97	Н	70.7	26.3	3							
PZ-13													
	18	99.4	#200		99.4	0.6							
	23	90.5	#200	90.5		9.5							
PZ-15													
	33	80	#200	80		20							
	40	74.1	Н	65.8	8.3	25.9							
	43.5	74.9	Н	68.4	6.5	25.1							
B-1Aa			Y/A										
	20	86.3	Н	77.8	8.5	13.7							
	22	66.6	#200	66.6		33.4							
	23.6		Н	82.2	5.2	12.6							
	27	92.5	Н	77.2	15.3	7.5							
	32		Н	75.8	9.4	14.8							
	34.5	68.8	Н	58.2	10.6	31.2							
	37	60.5	#200	60.5	0	39.5							
	39.5	76.9	Н	63.5	13.4	23.1							
B-2A													
	17	73.9	Н	64.7	9.2	26.1							
	19	71.6	#200	71.6	13.8	28.4							
	23.5 93.1		Н	79.3	6.9								
	36 80.2		Н	68.6	11.6	19.8							
41		83.6	Н	69	14.6	16.4							

	Project:	Mid Barataria Dive	rsion Proj	ect				
	File No.:	18274-001-00						
Exp	lorations:	Between Sta. 26+0	00 and St	a. 140+00				
PointID	Depth	Percent Finer	Test	Silt	Clay	%Sand		
	46.5	84.3	Н	72.1	12.2	15.7		
	47	71.8	#200	71.8		28.2		
	48	83.8	#200	83.8		16.2		
	49	75.7	#200	75.7		24.3		
	51	72.8	Н	63	9.8	27.2		
	52	83.3	Н	70.4	12.9	16.7		
	55	75.8	Н	62.3	13.5	24.2		
	57	58.3	#200	58.3		41.7		
	61.5	70.2	#200	70.2		29.8		
	64	61.8	#200	61.8		38.2		
	66.5	68.2	Н	59.6	8.6	31.8		
	71.5	58.9	#200	58.9		41.1		
	74	74.2	Н	58.7	15.5	25.8		
	76.5	56.4	Н	46.5	9.9	43.6		
	79	63.1	Н	56.2	6.9	36.9		
	81	42.5	#200	42.5		57.5		
	84	33.8	#200	33.8		66.2		
B-4A								
	13	89.1	Н	82	7.1	10.9		
	17	95.4	Н	82.3	13.1	4.6		
	21	83.2	H (74	9.2	16.8		
	38	83.1	Н	68.6	14.5	16.9		
	51	81.2	#200	81.2		18.8		
	53	69.7	Н	60.6	9.1	30.3		
	55	54.8	Н	54.8	0	45.2		
	57	77.7	Н	69.1	8.6	22.3		
	61	72.2	H	64.7	7.5	27.8		
	67	74.6	Н	68.6	6	25.4		
	70.5	84.4	Н	71.3	13.1	15.6		
	80.5	62.9	Н	49.8	13.1	37.1		
	85.5	74.4	Н	63.7	10.7	25.6		

Project: Mid Barataria Diversion Project

File No.: 18274-001-00

Explorations: Between Sta. 26+00 and Sta. 140+00

Boring	Depth Interval	Organic Content	Permeability
PT-1	14-16	7.92%	
	20-22	11.18%	
	22-24	26.13%	
PZ-1	8-10	3.00%	
	13-15A	5.02%	
	13-15B	2.05%	
PZ-2	23-25A	1.75%	
PZ-3	13-15A	5.99%	
	13-15B	12.55%	
	23-25A	9.56%	
PZ-5	18-20A	6.83%	
	23-25	3.20%	
PZ-6	18-20	6.90%	
	23-24	6.03%	
PZ-9	0-2	4.11%	
	3-5	3.51%	
	8-10	2.80%	
PZ-10	0-2	4.90%	
	3-5	3.97%	
	8-10	3.69%	
PZ-11	0-2	2.13%	
	3-5	3.83%	
	8-10	2.83%	
	13-15	2.75%	
PZ-12	0-2	2.58%	
	3-5	2.42%	
	8-10A	3.28%	
	8-10B	4.27%	
IS-2A	38-39		1.42E-06
	55-55.5		3.37E-07
IS-3A	29-30		1.64E-07
	35-36		3.17E-07
	76-77.5	0.93%	
IS-7A	66.5-67.5		1.05E-06
IS-8A	50-51		2.18E-06
IS-9A	46-47		2.08E-06
	55-56		2.83E-06
IS-12A	5.5-6		3.23E-08
	10-11		7.43E-06
	54-55		3.70E-06

Project: Mid Barataria Diversion Project

File No.: 18274-001-00

Explorations: Between Sta. 26+00 and Sta. 140+00

Boring	Depth Interval	Organic Content	Permeability
	64.5-66		1.27E-06
IS-13A	34-35		1.97E-06
	45-46		1.94E-07
	54-55		2.83E-06
IS-16A	47-48		5.14E-04
NL-3A	5-6	5.50%	
	15-16	5.50%	
	23-24	3.90%	
NL-6A	39-40		
NL-8A	1-2	7.20%	
NL-9A	0-0.8	3.60%	
	7-8	2.80%	
	14-15		
B1-Aa	47-48		7.93E-08
	49-50		6.61E-06
B-2A	14-15		2.14E-06
	52-53		7.08E-07
	55-56		5.29E-06
B-4A	27-28		2.51E-06
	42-43		2.05E-06
	49-50		1.08E-06

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00

Title: Lab Manager

CLP

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	.IMITS		SHEAR	STRENGTH INFORMA	ATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-1A	0.1 - 1.0	Stiff tan and gray clay with roots and trace of gravel (CL4)	21										MC	
B-1A	1.0 - 2.0	Medium dense tan and gray clayey silt with sand, shell fragments, and roots (ML)	22			28	22	6					MC,AL	
B-1A	2.7 - 3.0	Tan and gray clay (CL4)	22										MC	
B-1A	3.0 - 4.0	Stiff tan and gray clay with roots, sand lenses, sand pockets, and sand seams (CL4)	28	119.5	93.1	39	24	15	1.74	12	1.91	Multiple Shear	MC,UU- USACE,AL	
B-1A	5.0 - 6.0	Medium brown clay (CL4)	23	125.2	102.1	36	17	19	0.90	15	2.01	Yield	MC,UU- USACE,AL	
B-1A	7.8 - 8.0	Gray silty sand (SM)	29										MC	
B-1A	8.0 - 9.0	Medium gray clay with 5" silty sand layer (CL4)	31	121.7	93.4	33	19	14	0.77	15	3.90	Yield	MC,UU- USACE,AL	
B-1A	9.0 - 10.0	Soft gray clay (CL4)	36										MC	
B-1A	10.0 - 11.0	Soft gray clay (CH2)	42	119.7	85.0	51	25	26	0.43	10	2.28	Multiple Shear	MC,UU- USACE,AL	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG L	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	С	STRAIN	CONFINING	TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%		2				(KSF)	%	PRESSURE (KSF)	FAILURE	TYPE	
B-1Aa	11.8 - 12.0	Gray clay with silt lenses (CL6)	48										MC	
B-1Aa	12.0 - 13.0	Soft gray clay with 2" clayey silt layer at bottom (CL6)	39	119.3	86.9	39	24	15	0.43	10	4.11	Bulge	MC,UU- USACE,AL	
B-1Aa	13.0 - 14.0	Soft gray clay with 4" silty sand layer and silt and sand pockets (CL4)	40										MC	
B-1Aa	14.0 - 15.0	Very soft gray clayey silt with 3" silty sand layer at bottom, silt and sand pockets (ML)	27	125.5	99.2	26	21	5	2.01	15	2.49	Yield	MC,UU- USACE,AL	
B-1Aa	16.0 - 17.0	Soft gray clay with silt and sand pockets (CL6)	41	112.4	78.3	45	22	23	0.29	5	4.32	Bulge	MC,UU- USACE,AL	
B-1Aa	17.0 - 18.0	Soft gray clay with sand lenses (CL4)	39										MC	
B-1Aa	18.0 - 19.0	Very soft gray clay with 4" loose clayey silt layer (CL4)	32	112.4	82.8	34	21	13	0.24	10	2.71	Bulge	MC,UU- USACE,AL	
B-1Aa	20.0 - 21.0	Medium dense gray sandy silt (ML)	32										MC,H	13.7% sand / 77.8% silt / 8.5% clay
B-1Aa	21.0 - 22.0	Medium gray clay with 5" silty sand layer at top (CL4)	33	123.7	93.7	29	20	9	0.90	15	2.87	Yield	MC,UU- USACE,AL	
B-1Aa	22.0 - 23.0	Loose gray sandy silt (ML)	30										MC,M200	33.4% sand / 66.6% fines
B-1Aa	23.6 - 24.0	Loose gray sandy silt (ML)	36										MC,H	12.6% sand / 82.2% silt / 5.2% clay
B-1Aa	24.0 - 25.0	Loose gray silty sand with 5" silty clay layer (SM)	23										MC	
B-1Aa	25.0 - 26.0	Soft gray clay with sand lenses and 4" silty sand layer (CL4)	50										МС	
B-1Aa	26.0 - 27.0	Soft gray clay with sand lenses and pockets (CL4)	34	119.8	90.7	34	21	13	0.54	15	3.12	Yield	MC,UU- USACE,AL	
B-1Aa	27.0 - 28.5	Very loose gray clayey silt (ML)	36										MC,H	7.5% sand / 77.2% silt / 15.3% clay
B-1Aa	29.5 - 31.0	Very loose gray clay silt (ML)	34										MC	
B-1Aa	32.0 - 33.5	Very loose gray sandy silt (ML)	33			27	20	7					MC,AL,H	14.8% sand / 75.8% silt / 9.4% clay
B-1Aa	34.5 - 36.0	Loose gray sandy silt (ML)											Н	31.2% sand / 58.2% silt / 10.6% clay
B-1Aa	37.0 - 38.5	Very loose gray clayey silt with 8" clay layer (ML)	33			45	21	24					MC,AL,M200	39.5% sand / 60.5% fines
B-1Aa	39.5 - 41.0	Very loose gray sandy silt with 4" clay layer (ML)	31										MC,H	23.1% sand / 63.5% silt / 13.4% clay
B-1Aa	42.8 - 43.0	Very soft gray clay with sand lenses, pockets and seams (CL4)	24		*								MC	
B-1Aa	43.0 - 44.0	Medium gray clay with sand lenses (CL4)	31	118.2	90.8	35	20	15	0.73	8	4.01	Multiple Shear	MC,UU- USACE,AL	
B-1Aa	44.0 - 45.0	Soft gray clay with sand lenses, pockets, seams and 3 1/2" silty sand layer (CL4)	35										MC	
B-1Aa	45.0 - 46.0	Medium dense gray silty sand with 1.5 inch and 4 inch CL4 lavers (SM)	31										MC,M200	66.3% sand / 33.7% fines
B-1Aa	46.6 - 47.0	Medium gray clay with sand lenses (CL4)	45										МС	

Disclaimer: The results presented relate only to those samples tested.

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Lab Manager Title:

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS	SH	EAR STF	RENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI		RAIN % P	CONFINING RESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-1Aa	47.0 - 48.0	Medium gray clay with sand lenses, pockets and seams (CL4)	46										MC	
B-1Aa	48.0 - 49.0	Medium gray clay with sand lenses, pockets and seams and 1" sand layer and 2" sand layer (CL4)	34										MC	
B-1Aa	49.0 - 50.0	Medium dense gray silty sand (SM)	30										MC	
B-1Aa	50.5 - 51.5	Loose gray clayey silt with 4" clay layer (ML)	42										MC	
B-1Aa	55.0 - 56.5	Medium dense gray sand (SP)											Dry Sieve	77.4% sand / 22.6% fines
B-1Aa	57.5 - 59.0	Sand with silt (SP)											M200	90.5% sand / 9.5% fines
B-1Aa	62.5 - 64.0	Medium dense gray sand (SP)											Dry Sieve	83.0% sand / 17.0% fines
B-1Aa	67.5 - 69.0	Medium gray clay (CL6)	47			49	24	25					MC,AL,H	11.5% sand / 39.3% silt / 49.2% clay
B-1Aa	70.5 - 71.0	Loose gray silty sand (SM)	29										MC	
B-1Aa	71.0 - 72.0	Medium dense gray silty sand (SM)	29										MC,H	69.1% sand / 30.9% silt / 0% clay
B-1Aa	72.0 - 73.0	Soft gray clay with sand lenses, pockets and seams (CH4)	49	106.2	70.5	81	30	51	0.54	5	7.27	Yield	MC,UU- USACE,AL	
B-1Aa	76.5 - 78.0	Medium dense gray silty sand (SM)											Н	76.4% sand / 18.3% silt / 5.3% clay
B-1Aa	81.5 - 83.0	Very dense gray sand (SP)											Dry Sieve	86.3% sand / 13.7% fines

Disclaimer: The results presented relate only to those samples tested.

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

SUMMARY OF LABORATORY TEST RESULTS

Project:	Mid Barataria	a Diversion		Assigned	By:	
----------	---------------	-------------	--	----------	-----	--

Project Number: 04.55124092 Boring: B-1Aa

Current Date: 11/6/2013

	_																
Sample Number		Visual Classification	uscs	E(f)		Dry Dens (pcf)	Wet Dens (pcf)	Sat %	Type		Cohesion (psf)	Unconf. Comp. Str.	LL	PL	PI	TORVANE (tsf)	Other Tests
16	47	M GR CL6	CL6		38	82	114	99	UU	0	820					0.25	Kv= 7.93E-08, HYD
16	49	GR ML	ML		32	92	121	100									Kh= 6.61E-06, HYD
											>						
			-														
							K										
												:					
									5								

Remarks:		
Fugro Consultants,	Inc.	"Confidential Information: Privileged & Confidential Work Product"

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP 11/22/2013
Plaquemines Parish, LA
Date:

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	LIMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM -TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-2A	0.0 - 1.0		27										MC	
B-2A	2.0 - 3.0		20										MC	
B-2A	5.5 - 6.0		26										MC	
B-2A	6.0 - 7.0		28										MC	
B-2A	7.0 - 8.0		30										MC	
B-2A	9.0 - 10.0		43										MC	
B-2A	10.0 - 11.0		36										MC	
B-2A	11.0 - 12.0		35										MC	
B-2A	12.0 - 13.0		39										MC	
B-2A	13.0 - 14.0		40										MC	
B-2A	14.0 - 15.0		31										MC	
B-2A	17.0 - 18.0		27										MC	
B-2A	18.0 - 19.0		32										MC	
B-2A	19.0 - 20.0		34										MC	
B-2A	21.0 - 22.5		36										MC	
B-2A	23.5 - 25.0		38										MC	
B-2A	26.0 - 27.5		35										MC	
B-2A	28.5 - 30.0		35										MC	
B-2A	31.0 - 32.5		50										MC	
B-2A	33.5 - 35.0		36										MC	
B-2A	36.0 - 37.5		33										MC	
B-2A	38.5 - 40.0		37										MC	
B-2A	41.0 - 42.5		34										MC	
B-2A	43.5 - 45.0		41										MC	
B-2A	46.5 - 47.0		33										MC	
B-2A	47.0 - 48.0		33										MC	
B-2A	48.0 - 49.0		32										MC	
B-2A	49.0 - 50.0		34										MC	
B-2A	50.5 - 51.0		33										MC	
B-2A	51.0 - 52.0		32										MC	
B-2A	52.0 - 53.0		38										MC	
B-2A	53.0 - 54.0		33										MC	
B-2A	55.0 - 56.0		31										MC	
B-2A	56.0 - 57.0		32										MC	
B-2A	57.0 - 58.0		34										MC	
B-2A	59.0 - 60.5		33										MC	
B-2A	61.5 - 63.0		35										MC	
B-2A	64.0 - 65.5		35										MC	
B-2A	69.0 - 70.5		45										MC	

GeoEngineers, Inc.

"Confidential
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

"Confidential Information; Privileged & Confidential Work Product"

Project Name:LA CPRA - Mid-Barataria Diversion (BA-153),Technical Responsibility:CLP11/22/2013

Plaquemines Parish, LA Date:

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTEI	RBERG I	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-2A	74.0 - 75.5		31										MC	
B-2A	76.5 - 78.0		31										MC	

"Confidential Information; Privileged & Confidential Work Product"

Project:	Mid Barataria Diversion	Technical Responsibility:	Z M		Quality	Assurance Office
Client:	GeoEngineers	Project No.: B13-018	PM:	RM	Date of Issue:	10/28/2013

Client.		GeoEngineers					140		D13-010	<u> </u>		FIVI.		KIVI			10/20/2013
								A	STM DESIGNATIO	N							
			D2216		D4318	,	D2	166	D2166 D28	350		D422,	C136	or C11	7		
				Atte	rberg L	imits			Cohesion	g psi		Grain S	Size (%	b)	ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U UU psf psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
B-2A	0-2	St, Br Lean CLAY with Clay	26.0	48	24	24	104.5	82.8								(CL6)	CU Test in progress
B-2A	2-3	Gr and Br Lean CLAY with Silt		34	23	11										(CL4)	Sample too disturbed, unable to trim, No CU Test
B-2A	5.5-6	So, Gr and Br Lean CLAY with Silt and Voids	25.2	36	20	16	114.3	91.3								(CL4)	*CU Test in progress *Poor quality specimen due to voids
B-2A	7-8	M, Gr Silty CLAY		43	22	21										(CL6)	CU Test in progress
B-2A	9-10																CU Test in progress
B-2A	10-11						K										CU Test in progress
B-2A	12.3-13	Alternating Layers of So, Gr Lean CLAY and So, Gr SILT	35.4	35	23	12	116.6	86.1	420.4	16.6						(CL4)	Slumping under own weight
B-2A	13-14	St, Gr SILT with Clay and Fine Sand	32.1	NP	NP	NP	117.6	89.1	1987.1	16.9						(ML)	2.14x10 ⁻⁵ *Slumping under own weight
B-2A	17-18	Gr SILT with Sand and Tr Clay	31.2									26.1	64.7	9.2	73.9	(ML)	
B-2A	19-20	Gr SILT with Sand and Tr Clay	30.2												71.6	(ML)	
B-2A	21-22.5	Gr SILT with Sand and Tr Clay	30.5	NP	NP	NP										(ML)	
B-2A	23.5-25	Gr SILT with Clay and Tr Sand	27.8	34	24	10						6.9	79.3	13.8	93.2	(ML)	
B-2A	26-27.5	Gr SILT with Tr Clay and Tr Sand	34.9	31	26	5										(ML)	
B-2A	28.5-30	Gr Lean CLAY with Tr Sand	36.2	36	23	13										(CL4)	
B-2A	31-32.5	Alternating Layers of Gr CLAY and Sandy SILT	40.6	31	24	7										(ML)	
B-2A	33.5-35	Gr SILT with Tr Clay and Tr Fine Sand	32.3	32	23	9										(ML)	
ootochnical	I I ab	"Confidence of the confidence	ential I	nform	iation;	esult	egest &	e@onf)	dential Work Prod	luct"	1	1		1		ı	Confidential Information

Project:	Mid Barataria Diversion	Technical Responsibility:	ZM		Quality	Assurance Officer
		Project			Date of	
Client:	GeoEngineers	No.: B13-018	PM:	RM	Issue:	10/28/2013

		Georgineers		•					<u> </u>	•		1 IVI.		IXIVI			10/20/2013
								A	STM DESIGNATIO	N							
			D2216		D4318	3	D2	166	D2166 D28			422, (C136	or C11			
				Atte	rberg L	imits			Cohesion	. psi	G	rain S	ize (%)	ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U UU psf psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
B-2A	36-37.5	Gr SILT with Fine Sand and Clay	33.4	NP	NP	NP						19.8	68.6	11.6	80.2	(ML)	
B-2A	41-42.5	Gr SILT with Clay and Sand	32.6	31	24	7						16.4	69.0	14.6	83.6	(ML)	
B-2A	43.5-45	Gr Lean CLAY with Tr Fine SAND	35.9	47	23	24										(CL6)	
B-2A	46.5-47	Gr SILT with Fine Sand and Clay	30.7				116.5	89.1				15.7	72.1	12.2	84.3	(ML)	
B-2A	47-48	Gr SILT with Sand and Tr Clay	31.1												71.8	(ML)	
B-2A	48-49	Gr SILT with Sand and Tr Clay	33.8			\									83.8	(ML)	
B-2A	49-50	Gr SILT with Sand and Tr Clay	32.8		4										75.7	(ML)	
B-2A	51-52	Gr SILT with Sand and Tr Clay	30.3									27.2	63.0	9.8	72.8	(ML)	
B-2A	52-53	M, Gr SILT with Clay and Fine Sand	30.9	31	25	6	118.8	90.8	925.7	31.6		16.7	70.4	12.9	83.3	(ML)	7.08x10 ⁻⁷ Slumping
B-2A	55-56	Gr SILT with Sand and Clay	31.6									24.2	62.3	13.5	75.8	(ML)	5.29x10 ⁻⁶
B-2A	57-58	Gr Sandy SILT with Tr Clay	33.5												58.3	(ML)	
B-2A	61.5-63	Gr Sandy SILT with Tr Clay	35.3												70.2	(ML)	
B-2A	64-65.5	Gr Sandy SILT with Tr Clay	33.7												61.8	(ML)	
B-2A	66.5-68	Gr Silty SAND and Sandy SILT with Tr Clay	29.0									31.8	59.6	8.6	68.3	(SM/ML)	
B-2A	69-70.5	Alternating Layers of Gr Lean CLAY and Sandy SILT	39.4	43	19	24										(CL6)	
B-2A	71.5-73	Gr Sandy SILT with Tr Clay	28.9												58.9	(ML)	

Project:		Mid Barataria Diversion			_	Te	chnical	Respo	nsibility:		Z	m				Qua	ality Assurance Officer
Client:		GeoEngineers		_			Project No.:		B13-018			PM:		RM		Date o	
								Α	STM DESIGNA	TION							
			D2216		D4318	3	D2	166	D2166	D2850		D422,	C136	or C11	7		
				Atte	rberg L	imits.			Cohesion	y psi		Grain S	Size (%)	ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U UU psf psf	l	Gravel	Sand	Silt	Clay	% Pass #200	USCS	Remarks
B-2A	74-75.5	Gr SILT with Sand and Tr Clay	31.7									25.8	58.7	15.5	74.2	(ML)	
B-2A	76.5-78	Gr Sandy SILT with Tr Clay	31.2									43.6	46.5	9.9	56.4	(ML)	No Density, Bag Sample
B-2A	79-80.5	Gr Sandy SILT with Tr Clay	28.5									36.9	56.2	6.9	63.1	(ML)	
B-2A	81.5-83	Gr Silty SAND with Tr Clay	27.8			4									42.5	(SM)	
B-2A	84-85.5	Gr Silty SAND with Tr Clay	31.5												33.8	(SM)	

11/22/2013

Date:

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	.IMITS		SHEAR STR	ENGTH INFORMATION	N		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-4A	0.0 - 1.3	Dark gray clay and wood with sand pockets (CL6)	30										MC	
B-4A	3.0 - 4.0	Very stiff brown and gray clay with 2" clayey silt layer (CL4)	26	120.1	95.2				2.28	11	1.9	Multiple Shear	MC,UU- USACE	
B-4A	6.1 - 7.0	Very stiff brown and gray clay with sand lenses, pockets and seams (CL4)	28	125.5	98.8	31	22	9	2.93	14	2.1	Yield	MC,UU- USACE,AL	
B-4A	7.0 - 8.0	Stiff brown and gray clay with 3" laminated silt and clay layers and sand lenses, pockets and seams (CL6)	28	120.6	94.0	46	20	26	1.40	6	3.9	Multiple Shear	MC,UU- USACE,AL	
B-4A	10.0 - 11.0	Stiff gray clay with sand lenses, pockets and seams and 2" silt layer (CL4)	30	124.2	97.1	42	22	20	1.61	15	2.3	Yield	MC,UU- USACE,AL	
B-4A	11.0 - 12.0	Soft gray clay with sand lenses, pockets and seams and 1 1/2" silty sand layer (CL4)	41										MC	
B-4A	12.6 - 13.0	Medium dense gray silty sand (SM)	31										MC	
B-4A	13.0 - 14.0	Medium dense gray sandy silt with 1 1/2" clay layer (ML)	33										MC,H	10.9% sand / 82.0% silt / 7.1% clay
B-4A	14.0 - 15.0	Soft gray clay with sand lenses, pockets and 1" sand layer (CH2)	50			/-							MC	
B-4A	15.0 - 16.0	Very soft gray clay with sand lenses and 2x 2 1/2" clayey silt layers (CL4)	39	118.0	85.0	39	21	18	0.15	14	0.82	Bulge	MC,UU- USACE,AL	
B-4A	16.5 - 17.0	Loose gray clayey silt (ML)	39										MC	
B-4A	17.0 - 18.0	Loose gray clayey silt (ML)	33	106.8	80.5								MC,UW,H	4.6% sand / 82.3% silt / 13.1% clay
B-4A	18.0 - 19.0	Loose gray clayey silt (ML)	34										MC	
B-4A	19.0 - 20.0	Loose gray clayey silt with 4" very silty clay layer (ML)	36										MC	
B-4A	21.0 - 22.0	Medium dense gray sandy silt with clay (ML)	31										MC,H	16.8% sand / 74.0% silt / 9.2% clay
B-4A	22.0 - 23.0	Medium dense gray clayey silt with 4" very silty clay layer (ML)	35										MC	
B-4A	23.0 - 24.0	Loose gray clayey silt (ML)	31										MC	
B-4A	24.5 - 25.0	Loose gray clayey silt (ML)	34										MC	
B-4A	25.0 - 26.0	Loose gray clayey silt (ML)	33	53.0	39.8								MC,UW	
B-4A	26.0 - 27.0	Loose gray clayey silt (ML)	32										MC	
B-4A	27.0 - 28.0	Loose gray clayey silt (ML)	32										MC	
B-4A	28.0 - 29.5	Very loose gray clayey silt (ML)	35										MC	

GeoEngineers, Inc.

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 "Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested. Soil Description: ASTM(D2487) AASHTO(M145) Moisture Content:

11/22/2013

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP Date:

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	.IMITS		SHEAR STRE	ENGTH INFORMATION			
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-4A	30.5 - 32.0	Very soft gray clay (CL4)	41										MC	
B-4A	33.0 - 34.5	Very soft gray clay (CL4)	35										MC	
B-4A	35.5 - 37.0	Very loose gray clayey silt (ML)	34										MC	
B-4A	38.0 - 39.5	Very loose gray sandy silt with clay (ML)	35										MC,H	16.9% sand / 68.6% silt / 14.5% clay
B-4A	41.0 - 42.0	Medium dense gray clayey silt (ML)	29										MC	
B-4A	42.0 - 43.0	Medium dense gray clayey silt (ML)	32										MC	
B-4A	43.0 - 44.0	Medium dense gray clayey silt (ML)	30										MC	
B-4A	44.6 - 45.0	Loose gray clayey silt (ML)	32										MC	
B-4A	45.0 - 46.0	Medium dense gray clayey silt (ML)	27	126.6	96.6	25	20	5	0.63	15	4.1	Yield	MC,UU- USACE,AL	
B-4A	46.0 - 47.0	Medium dense gray clayey silt with 4" very silty clay layer (ML)	35										MC	
B-4A	47.0 - 48.0	Medium dense gray clayey silt with 4" clayey fine sand layer (ML)	33										MC	
B-4A	48.5 - 49.0	Soft gray clay (CL4)	32										MC	
B-4A	49.0 - 50.0	Soft gray clay (CL4)	31										MC	
B-4A	50.0 - 51.0	Medium gray clay (CL4)	31	126.8	97.0	29	20	9	0.60	15	4.4	Yield	MC,UU- USACE,AL	
B-4A	51.0 - 52.0	Soft gray clay with 3 inch clayey silt layer (CL4)	27										MC,M200	18.8% sand / 81.2% fines
B-4A	52.6 - 53.0	Loose gray clayey silt (ML)	32										MC	
B-4A	53.0 - 54.0	Medium dense gray sandy silt (ML)	34										MC,H	30.3% sand / 60.6% silt / 9.1% clay
B-4A	54.0 - 55.0	Medium dense gray clayey silt (ML)	33										MC	
B-4A	55.0 - 56.0	Medium dense gray sandy silt (ML)	33										MC,M200	45.2% sand / 54.8% fines
B-4A	57.0 - 58.0	Medium dense gray sandy silt (ML)	31										MC,H	22.3% sand / 69.1% silt / 8.6% clay
B-4A	58.0 - 59.0	Medium dense gray clayey silt (ML)	33										MC	
B-4A	59.0 - 60.0	Loose gray clayey silt (ML)	32										MC	
B-4A	61.0 - 62.0	Medium dense gray sandy silt (ML)	33										MC,H	27.8% sand / 64.7% silt / 7.5% clay
B-4A	62.0 - 63.0	Medium dense gray clayey silt (ML)	33										MC	
B-4A	63.0 - 64.0	Medium dense gray clayey silt (ML)	27										MC	
B-4A	64.8 - 65.0	Gray clayey silt (ML)	32										MC	
B-4A	65.0 - 66.0	Medium dense gray clayey silt (ML)	34										MC	

GeoEngineers, Inc.

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 "Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested. Soil Description: ASTM(D2487) AASHTO(M145) Moisture Content:

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR STRE	ENGTH INFORMATION			
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
B-4A	66.0 - 67.0	Medium dense gray clayey silt (ML)	33										MC	
B-4A	67.0 - 68.0	Medium dense gray sandy silt (ML)	31										MC,H	25.4% sand / 68.6% silt / 6.0% clay
B-4A	68.0 - 69.5	Loose gray clayey silt (ML)	33										MC	
B-4A	70.5 - 72.0	Loose gray clayey sandy silt (ML)	32										MC,H	15.6% sand / 71.3% silt / 13.1% clay
B-4A	73.0 - 74.5	Loose gray clayey silt (ML)	36										MC	
B-4A	75.5 - 77.0	Medium dense gray clayey silt with 4" clay layer (ML)	29										MC	
B-4A	78.0 - 79.5	Medium gray silty clay with sand pockets(CL4)	36										MC	
B-4A	80.5 - 82.0	Medium gray clayey sandy silt (ML)											Н	37.1% sand / 49.8% silt / 13.1% clay
B-4A	83.0 - 84.5	Medium gray clayey silt (ML)	31										MC	
B-4A	85.5 - 87.0	Loose gray clayey sandy silt (ML)	33				1						MC,H	25.6% sand / 63.7% silt / 10.7% clay

Disclaimer: The results presented relate only to those samples tested. Soil Description: ASTM(D2487) AASHTO(M145) Moisture Content:

SUMMARY OF LABORATORY TEST RESULTS

Project:	Mid Barataria	Diversion	As:	signed :	By:	
rroject.	MIC Dalacalla	D		-	_	

Project Number: 04.55124092 Boring: B-4A

Current Date: 11/6/2013

DOLLI	5																
Sample Number	1	Visual Classification	uscs CL	E(f)	₩% 28	Dry Dens (pcf) 97	Wet Dens (pcf) 124	Sat % 100	Shear Test Type	Angle	Cohesion (psf)	Unconf. Comp. Str.	IL	PL	PI	TORVANE (tsf) 0.15	Other Tests Kv= 2.51E-06,
14	42	SO GR CL W/ ARS SP	CL		29	95	123	100				·				0.20	HYD Kv= 2.05E-06, HYD
16	49	SO GR CL W/ ARS SP	CL		32	89	118	98	UU	0	357		29	22	7	0.25	Kh= 1.08E-06, HYD

Kemarks.	
Remarks:	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

	DEPTH (FT)			UNIT WE	IGHT (PCF)	ATTE	RBERG I	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-1A	2.3 - 3.0	Very stiff tan and gray clay with sand pockets and sand seams (CL4)	20	126.6	104.8	36	19	17	4.00	2	5.31	Multiple Shear	MC,UU- USACE,AL	
IS-1A	3.0 - 4.0	Stiff gray clay with 2" sand layer (CH4)	22										MC	
IS-1A	6.0 - 7.0	Stiff gray clay with sand pockets and seams and 1/2" sand layer (CL4)	25										МС	
IS-1A	7.0 - 8.0	Soft gray clay with sand pockets and seams (CL4)	27	115.9	91.1	39	20	19	0.37	4	0.39	Multiple Shear	MC,UU- USACE,AL	
IS-1A	8.3 - 9.0	Soft gray clay (CH4)	32										MC	
IS-1A	9.0 - 10.0	Medium gray clay with organic material (CL6)	31	116.9	88.7	44	21	23	0.73	15	2.23	Multiple Shear	MC,UU- USACE,AL	
IS-1A	13.3 - 14.0	Medium gray clay (CL4)	32	123.1	93.6				0.94	15	0.71	Multiple Shear	MC,UU- USACE	
IS-1A	14.0 - 15.0	Medium dense gray clayey silt with 3" clay layer (ML)	33										MC	
IS-1A	15.0 - 16.0	Medium dense gray clayey silt with clay pockets and clay seams (ML)	34										MC	
IS-1A	16.7 - 17.5	Medium dense gray clayey silt (ML)	32										MC	
IS-1A	17.5 - 18.5	Soft gray clay (CL4)	30	122.1	80.3	35	20	15	0.46	15	4.41	Bulge	MC,UU- USACE,AL	
IS-1A	18.5 - 19.5	Medium dense gray clayey silt (ML)	34										MC	
IS-1A	20.7 - 21.0	Medium dense gray clayey silt (ML)	29										MC	
IS-1A	21.0 - 22.0	Medium dense gray clayey silt (ML)	33						ĺ				MC	
IS-1A	22.0 - 23.0	Medium dense gray silty sand with 1 1/2" clay layer (SM)	28										MC	
IS-1A	23.0 - 24.0	Medium dense gray silty sand with 3 1/2" clay layer	31										MC	
IS-1A	25.5 - 26.0	Loose gray clayey silt (ML)	41	112.7	82.3				0.26	15	3.07	Yield	MC,UU- USACE	
IS-1A	26.0 - 27.0	Medium dense gray clayey silt (ML)	31										MC	
IS-1A	28.4 - 29.0	Loose gray clayey silt (ML)	35										MC	
IS-1A	29.0 - 30.0	Medium dense gray clayey silt with 3" clay layer and 1 1/2" silty sand laver (ML)	51										MC	
IS-1A	30.0 - 31.0	Soft gray clay with sand pockets, seams silt lenses, and two sand layers (1/2" and 1") (CL4)	44	108.7	75.3	40	23	17	0.47	3	1.63	Multiple Shear	MC,UU- USACE,AL	
IS-1A	31.0 - 32.0	Loose gray clayey silt with two clay layers (1" & 2") (ML)	47										MC	
IS-1A	33.0 - 34.0	Medium dense gray clayey silt with 4" clay layer (ML)	34			_							MC	
IS-1A	34.0 - 35.0	Medium dense gray silty sand (SM)	31	127.6	98.1				0.78	15	3.54	Multiple Shear	MC,UU- USACE	
IS-1A	35.0 - 36.0	Loose gray sandy silt with 3" and 1 1/2" clayey silt layers (ML)	39										MC,Dry Sieve	43.6% sand / 56.4% fines

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

	DEPTH (FT)			UNIT WE	IGHT (PCF)	ATTER	BERG L	IMITS	SHEAR STRENGTH INFORMATION	ON		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-1A	36.7 - 37.5	Medium dense gray silty sand (SM)	29								MC	
IS-1A	37.5 - 38.5	Medium dense gray silty sand (SM)	32								MC	
IS-1A	40.0 - 41.5	Very soft gray clay (CL4)	37			32	19	13			MC,AL	
IS-1A	42.5 - 44.0	Medium gray clay (CL4)	32								MC	
IS-1A	44.7 - 45.0	Medium dense gray silty sand (SM)	32								MC	
IS-1A	45.0 - 46.0	Loose gray sandy silt with 4" clay layer (ML)	35								MC,Dry Sieve	17.6% sand / 82.4% fines
IS-1A	46.0 - 47.0	Medium dense gray clayey silt with 3" silty sand layer (ML)	36								MC	
IS-1A	47.0 - 48.0	Medium dense gray silty sand with 4" clay layer (SM)	34								MC	
IS-1A	48.0 - 49.5	Medium gray clay (CL4)	35			33	23	10			MC,AL	
IS-1A	50.5 - 52.0	Loose gray clayey sand (SC)	32								MC	
IS-1A	53.0 - 54.5	Medium dense gray clayey silt (ML)	32								MC	
IS-1A	56.0 - 57.5	Loose gray clayey silt (ML)	37								MC	
IS-1A	59.0 - 60.5	Medium dense gray clayey sand (SC)	35								MC	
IS-1A	61.5 - 63.0	Loose gray clayey sand (SC)	31								MC	
IS-1A	64.0 - 65.5	Medium dense gray silty sand (SM)									Dry Sieve	64.1% sand / 35.9% fines
IS-1A	66.5 - 68.0	Loose gray clayey silt (ML)	38								MC	
IS-1A	69.0 - 70.5	Medium dense gray clayey sand (SC)	34								MC	
IS-1A	71.5 - 73.0	Medium dense gray clayey sand with 4" silt layer (SC)	31								MC	
IS-1A	74.0 - 75.5	Medium dense gray clayey sand (SC)	32								MC	
IS-1A	79.0 - 80.5	Medium dense gray silty sand (SM)									Dry Sieve	54.4% sand / 45.6% fines
IS-1A	84.0 - 85.5	Medium dense gray clayey sand (SC)	31								MC	
IS-1A	89.0 - 90.5	Medium dense gray clayey sand (SC)	33								MC	
IS-1A	91.5 - 93.0	Medium dense gray sandy silt (ML)									Dry Sieve	46.1% sand / 53.9% fines
IS-1A	94.0 - 95.5	Medium dense gray silty sand with 6 inch clayey silt layer (SM)	31								MC	
IS-1A	96.5 - 98.0	Medium dense gray clayey sand (SC)	30								MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH II	NFORMAT	TON		
BORING NUMBER	FROM TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF	STRAIN %	CONFINI PRESSURE		TYPE FAILURE	TEST TYPE	COMMENTS
IS-2A	2.2 - 3.0	Very stiff tan and gray clay with silt pockets and silt seams (CL4)	22											MC	
IS-2A	3.0 - 4.0	Very stiff tan and gray clay with 3" clay sand layer and silt seams and pockets (CL4)	23											МС	
IS-2A	5.0 - 6.0	Medium tan and gray clay with sand pockets and sand seams (CL4)	28											MC	
IS-2A	6.0 - 7.0	Medium tan and gray clay with sand pockets and sand seams (CL4)	28											MC	
IS-2A	7.0 - 8.0	Soft tan and gray clay with sand pockets and sand seams (CL4)	31											MC	
IS-2A	8.7 - 9.0	Medium tan and gray clay (CL4)	32											MC	
IS-2A	9.0 - 10.0	Medium tan and gray clay (CL4)	32				R							МС	
IS-2A	10.0 - 11.0	Medium dense tan and gray clayey sand (SC)	30											MC	
IS-2A	11.0 - 12.0	Medium dense gray sand with 1" wood layer and 3" clay layer (SP)	39					X						MC	
IS-2A	12.8 - 13.0	Medium gray clay (CL4)	34											MC	
IS-2A	13.0 - 14.0	Medium gray clay (CL4)	37											MC	
IS-2A	14.0 - 15.0	Medium gray clay (CL4)	33											MC	
IS-2A	15.0 - 16.0	Medium gray clay (CL4)	36											MC	
IS-2A	16.7 - 17.0	Soft gray clay (CL4)	36											MC	
IS-2A	17.0 - 18.0	Medium gray clay (CL4)	33											MC	
IS-2A	18.0 - 19.0	Medium gray clay (CL4)	36											MC	
IS-2A	19.0 - 20.0	Medium gray clay with 1/2" sand layer (CL4)	36											MC	
IS-2A	20.0 - 21.5	Soft gray clay (CL4)	39											MC	
IS-2A	21.5 - 22.0	Medium gray clay with sand seams and sand pockets (CL4)	37											МС	
IS-2A	22.0 - 23.0	Medium gray clay with sand seams and sand pockets (CL4)	36											MC	
IS-2A	23.0 - 24.0	Medium gray clay with sand seams, sand pockets, and 1 1/2" clayey sand layer (CL4)	37											МС	
IS-2A	24.6 - 25.0	Loose gray silty sand (SM)	28											MC	
IS-2A	25.0 - 26.0	Loose gray clayey silt with 4" silty sand layer (ML)	27											MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-2A	26.0 - 27.0	Soft gray clay with 4" silty sand layer, sand seams and sand pockets (CL4)	35										MC	
IS-2A	27.0 - 28.0	Medium gray clay with sand seams and sand pockets (CL4)	61										MC	
IS-2A	29.3 - 30.0	Medium dense gray silty sand with 1" clay layer (SM)	42										MC	
IS-2A	30.0 - 31.0	Medium dense gray silty sand (SM)	38										MC	
IS-2A	31.0 - 32.0	Loose gray silty sand with 3" clay layer (SM)	45										MC	
IS-2A	32.3 - 33.0	Medium gray clay with sand lenses, pockets, and seams (CH2)	48										MC	
IS-2A	33.0 - 34.0	Medium gray clay with 6" silty sand layer (CL6)	50										MC	
IS-2A	34.0 - 35.0	Medium dense gray silty sand with 1/2" clay layer (SM)	43										MC	
IS-2A	35.0 - 35.6	Medium gray clay with sand streaks and seams (CL6)	45										MC	
IS-2A	36.0 - 37.5	Medium tan and gray clay with 6" silty sand layer (CL4)	55										MC	
IS-2A	37.5 - 38.0	Medium dense gray silty sand with 3" clay layer (SM)	45										MC	
IS-2A	38.0 - 39.0	Soft gray clay with 4" silty sand layer (CL4)	48										MC	
IS-2A	39.0 - 40.0	Medium dense gray silty sand (SM)	29										MC	
IS-2A	45.0 - 46.5	Medium dense gray silty sand with 6" clay layer (SM)	39										MC	
IS-2A	50.0 - 51.0	Gray clay (CL4)	57										MC	
IS-2A	51.0 - 52.0	Medium gray clay with sand pockets, seams, and 1" sand layer (CL4)	53										MC	
IS-2A	53.3 - 54.0	Medium dense gray silty sand with 4" clay layer (SM)	26										MC	
IS-2A	54.0 - 55.0	Medium dense gray silty sand (SM)	28										МС	
IS-2A	55.0 - 56.0	Medium gray clay with sand lenses and 5 1/2" silty sand layer (CL6)	57										MC	
IS-2A	57.6 - 58.0	Medium gray clay with sand pockets and sand seams (CL4)	30										MC	
IS-2A	58.0 - 59.0	Medium gray clay with sand seams, sand pockets and 6" sand layer (CL6)	25										MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG I	LIMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-2A	59.0 - 60.0	Medium dense gray clayey silt with sand pockets, sand seams, and 2" sand layer (ML)	33										МС	
IS-2A	67.5 - 69.0	Stiff tan and gray clay with sand pockets (CL4)	56										MC	
IS-2A	70.0 - 71.5	Medium dense gray clayey sand (SC)	34										МС	
IS-2A	82.5 - 84.0	Medium dense gray clayey sand (SC)	30										МС	
IS-2A	85.0 - 86.5	Very stiff tan and gray clay with sand pockets (CL4)	45										МС	
IS-2A	87.5 - 89.0	Very stiff gray clay (CL6)	49										MC	
IS-2A	90.0 - 91.5	Very stiff gray clay with 6" silty sand layer (CL6)	44										МС	
IS-2A	92.5 - 94.0	Medium dense gray clayey sand (SC)	31										МС	
IS-2A	100.0 - 101.5	Dense gray silty sand with 8" clay layer (SM)	44										MC	

Project:		Mid Barataria Diversion			_	Tec	hnical	Respo	nsibility:			K	m				Quali	ty Assurance Office
Client:		GeoEngineers					Project No.:		B13-01	18	_		PM:		RM		Date of Issue:	7/17/2013
								Α	STM DES	IGNATIC	N							
			D2216		D4318	}	D2	166	D2166	D28	850		D422, (C136 o				
				Atte	rberg L	imits			Cohe	esion	psi	(Grain S	ize (%))	ng		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U psf	UU psf	Confining Pressure p	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
IS-2A	5.1-6	Gray and Brown Lean CLAY with Trace Fine Sand	28.4	39	24	15											(CL)	Sample fell apart wher trimming
IS-2A	7-8	Medium, Brown and Light Gray Lean CLAY	31.31 30.86 31.76				117.6 118.7 118.0	89.5 90.7 89.5		521.6 653.1 522.5	2.7 14.7 26.7						(CL4)	
IS-2A	13-14	Medium, Gray Lean CLAY with Trace Fine Sand and Trace Organics	35.82 33.52 34.68				120.8 118.2 117.7	88.8 88.4 87.4		944.3 801.3 945.2	4.9 16.9 28.9						(CL4)	
IS-2A	17-18	Soft, Gray Lean CLAY	35.88 37.18 37.74	40	25	15	126.0 123.2 123.7	92.7 89.8 89.8		371.2 315.2 348.3	6.4 18.4 30.4						(CL4)	
IS-2A	22-23	Soft Gray Lean CLAY	35.27 36.08 33.89			7	124.4 124.1 128.0	91.9 91.2 95.6		381.1 439.8 426.5	8.2 20.2 32.2						(CL4)	
IS-2A	24.6-25	Gray SILT with Sand	26.2				120.0	30.0		420.0	OZ.Z					75.6	(ML)	
IS-2A	25-26	Gray SILT with Clay and Trace Fine Sand	32.6										3.7	79.1	17.2		(ML)	
IS-2A	26-27	Firm, Gray SILT with Clay and Trace Fine Sand	30.41 30.93 31.72	34	27	7	126.2	96.8		1112.9	9.7 21.7 33.7						(ML)	Unable to trim points 1 and 3
IS-2A	29.3-30	Gray SILT with Clay and Sand	36.2													74.4	(ML)	
IS-2A	31-32	Gray Lean Clay with Trace Ferrous Nodules	38.3													95.3	(CL4)	
IS-2A	32.3-33	Medium, Gray Fat CLAY with Silty Sand, Lenses and Layers	58.75 61.70 57.95				106.2 105.7 106.1	66.8 65.3 67.2		503.3 486.7 444.8	11.9 23.9 35.9						(CH3)	
IS-2A	34-35	Gray Sandy SILT with Clay	30.6													70.4	(ML)	
IS-2A	39-40	Gray Sandy Sll T with Trace Clay	26.0													59.3	(ML)	

Project:		Mid Barataria Diversion			_	Tec	hnical	Respo	nsibility:			R	m				Quali	ty Assurance Officer
Client:		GeoEngineers		_			Project No.:		B13-01	8			PM:		RM		Date of Issue:	7/17/2013
								A	STM DES	IGNATIO	N							
			D2216		D4318	3	D21	166	D2166	D28			D422,	C136 o				
				Atte	rberg L	imits			Cohe	esion	g psi	(Grain S	Size (%)	1	ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U psf	UU psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
IS-2A	45.7-56.5	Gray Sandy SILT with Clay	26.7													59.1	(ML)	
IS-2A	50-51	No Sample																
IS-2A	54-55	Gray Silty SAND with Clay	27.2													40.8	(SM)	
IS-2A	58-58.5	Gray SILT with Clay and Sand	33.8					V								84.7	(ML)	
IS-2A	58.5-59	Firm, Gray SILT with Clay and Fine Sand	30.02 33.92 31.24			7	132.3 120.9 126.4	101.7 90.3 96.3		1218.6 565.9 1074.7	21.4 33.4 45.4						(ML)	
IS-2A	60-61.5	Gray Silty SAND	25.2													33.1	(SM)	
IS-2A	65-66.5	Gray Silty CLAY with Sand	26.6													53.2	(CL-ML)	
IS-2A	70-71.5	Gray Sandy Clayey SILT	31.6	V									46.2	38.0	15.8		(CL-ML)	
IS-2A	72.5-74	Gray Silty SAND with Clay	32.1													32.2	(SM)	
IS-2A	75-76.5	Gray Fine SAND with Silt and Trace Clay	21.9													11.3	(SM)	
IS-2A	77.5-79	Gray Silty SAND with Clay	23.1													19.7	(SM)	
IS-2A	80-81.5	Gray Silty SAND with Trace Clay	20.7													21.6	(SM)	

Project:		Mid Barataria Diversion			_	Tec	hnical	Respo	nsibility:			R	m				Quali	ty Assurance Officer
Client:		GeoEngineers		-			Project No.:		B13-01	18	_		PM:		RM		Date of Issue:	7/17/2013
								Α	STM DES	IGNATIC	N							
			D2216		D4318		D2	166	D2166		850	_	D422, (
				Atte	rberg L	imits			Cohe	esion	ing tre ps		Grain S	ize (%)	ssing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U psf	UU psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
IS-2A	82.5-84	Gray Sandy CLAY with Silt or Clayey Sand	27.1														(CL)	Not enough sample for Hydrometer
IS-2A	85-86.5	Gray Lean CLAY Saturated with Silt Pockets	41.3	45	16	29											(CL6)	
IS-2A	92.5-94	Gray Sandy SILT with Clay	29.5										37.5	49.7	12.8		(ML)	
IS-2A	95-96.5	Gray Silty SAND with Trace Clay	27.1													19.2	(SM)	
IS-2A	97.5-99	Gray Silty SAND with Trace Clay	27.6													33.5	(SM)	
		-																
				V														

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG L	.IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM -TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-3A	2.4 - 3.0		19							•		•	MC	
IS-3A	3.0 - 4.0		18										MC	
IS-3A	4.7 - 5.0		32										MC	
IS-3A	5.0 - 6.0		32										MC	
IS-3A	6.0 - 7.0		28										MC	
IS-3A	7.0 - 8.0		30										MC	
IS-3A	8.5 - 9.0		31										MC	
IS-3A	9.0 - 10.0		33										MC	
IS-3A	10.0 - 11.0		32										MC	
IS-3A	11.0 - 12.0		39										MC	
IS-3A	12.7 - 13.0		33										MC	
IS-3A	13.0 - 14.0		35										MC	
IS-3A	14.0 - 15.0		41										MC	
IS-3A	15.0 - 16.0		34										MC	
IS-3A	17.2 - 18.0		32										MC	
IS-3A	18.0 - 19.0		34										MC	
IS-3A	19.0 - 20.0		36										MC	
IS-3A	20.5 - 21.0		35										MC	
IS-3A	21.0 - 22.0		36										MC	
IS-3A	22.0 - 23.0		38										MC	
IS-3A	23.0 - 24.0		35										MC	
IS-3A	24.5 - 25.0		37										MC	
IS-3A	25.0 - 26.0		39										MC	
IS-3A	26.0 - 27.0		46										MC	
IS-3A	27.0 - 28.0		37										MC	
IS-3A	28.5 - 29.0		40										MC	
IS-3A	29.0 - 30.0		40										MC	
IS-3A	30.0 - 31.0		40										MC	
IS-3A	31.0 - 32.0		35										MC	
IS-3A	32.4 - 33.0		45										MC	
IS-3A	33.0 - 34.0		44										MC	
IS-3A	34.0 - 35.0		35										MC	
IS-3A	35.0 - 36.0		40										MC	
IS-3A	36.0 - 37.5	Very loose gray clayey silty sand (ML)											M200	56.6% sand / 43.4% fines
IS-3A	41.0 - 42.5		35										MC	
IS-3A	46.0 - 47.5	Medium dense gray silty sand (SM)											Dry Sieve	83.2% sand / 16.8% fines
IS-3A	53.5 - 55.0	Loose gray sandy silt (ML)											M200	41.6% sand / 58.4% fines
IS-3A	56.0 - 57.5	Medium dense gray sandy silt with 5" clay layer (ML)	44										MC,M200	13.3% sand / 86.7% fines

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	LIMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-3A	58.5 - 60.0	Medium dense gray silty sand with 1" clay layer (SM)											Dry Sieve	72.2% sand / 27.8% fines
IS-3A	61.0 - 62.5	Medium dense gray clayey silt with sand and 6" clay layer (ML)	40										MC,H	10.9% sand / 50.2% silt / 38.9% clay
IS-3A	66.0 - 67.5	Dense gray silty sand (SM)									_		M200	68.7% sand / 31.3% fines
IS-3A	71.0 - 72.5	Medium tan and gray clay with 6" sand layer (CH4)	58			78	30	48					MC,AL	
IS-3A	76.0 - 77.5	Medium dense sandy silt with clay, organic matter, and 3" silty clay layer (ML)											Н	36.8% sand / 48.7% silt / 14.5% clay
IS-3A	78.5 - 80.0	Dense gray silty sand (SM)											Dry Sieve	79.3% sand / 20.7% fines
IS-3A	81.0 - 82.5	Medium gray clay (CL4)	43										MC	
IS-3A	83.5 - 85.0	Very stiff gray clay with sand pockets and 8" silty sand layer (CL4)	43										MC	
IS-3A	86.0 - 87.5	Very stiff gray clay with sand pockets and 4" clay layer (CL4)	36										MC	
IS-3A	88.5 - 90.0	Very stiff tan and gray clay with sand pockets (CL4)	54										MC	
IS-3A	91.0 - 92.5	Stiff tan and gray clay with sand pockets (CH2)	55			55	18	37					MC,AL	
IS-3A	93.5 - 95.0	Very stiff tan and gray clay with sand pockets (CL4)	44										MC	
IS-3A	96.0 - 97.5	Very stiff gray clay with sand pockets (CL4)	41			47	19	28					MC,AL	
IS-3A	98.5 - 100.0	Medium dense gray silty sand (SM)											M200	65.3% sand / 34.7% fines

"Confidential Information; Privileged & Confidential Work Product"

<u>Sou</u>	outhern Earth Sciences, Inc. Laboratory Test Results																
Project:	Mid Barataria Diversion				Technical Responsibility:						ZM				Quality Assurance Officer		
Client:		GeoEngineers					Project No.:		B13-01	8	i		PM:		RM	Date of Issue:	7/10/2013
								Α	STM DES	IGNATIO	N						
			D2216		D4318		D2	166	D2166	D28	350		D422,	C136 d	or C117		
			Atte		tterberg Limits					Cohesion		Grain Size (%)) lug		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U psf	UU psf	Confining Pressure p	Gravel	Sand	Silt	Clay % Passi #200	USCS	Remarks
IS-3A	2.4-3	Stiff to Very Stiff, Tan Lean CLAY with Clay Pockets and Shell Fragments	18.1	40	21	19										(CL4)	could not run UU, too brittle
IS-3A	9-10	Soft, Tan Lean CLAY with Trace Fragments of Sand	31.7 31.1 31.2	36	22	14	108.9 111.4 114.7	82.6 85.0 87.4		417.1 658.2 622.8	3.5 15.5 27.5					(CL4)	
IS-3A	13-14	Medium, Gray Lean CLAY with Clay Pockets	33.1 32.5 34.8				114.2 115.5 110.6	85.7 87.2 82.0		449.2 659.1 566.9	4.9 16.9 28.9					(CL4)	
IS-3A	21-22	Loose, Gray SILT with Clay	36.9 35.3 34.8	36	27	9	126.4 121.2 126.5	92.3 89.5 93.8		321.5 374.2 348.4	7.9 19.9 31.9					(ML)	
IS-3A	24.5-25	Loose, Gray SILT with Clay and Fine Sand	31.5 34.5 33.8			7	122.8 118.7 126.2	93.4 88.2 94.3		1655.6 625.9 1772.4	8.9 20.9 32.9					(ML)	
IS-3A	26-27	Medium, Gray Fat CLAY with Silt and Sandy Silt Lenses and Layers	61.0 61.8 61.0				104.1 104.6 103.4	64.6 64.7 64.2		538.7 617.9 562.0	9.7 21.7 33.7					(CH2)	
IS-3A	32.4-33	Medium, Gray Fat CLAY with Silt and Sandy Silt Lenses and Layers	48.6 45.9 46.9	60	25	35	110.8 113.0 112.0	74.6 77.4 76.2		482.3 503.3 524.2	11.9 23.9 35.9					(CH2)	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

BORING NUMBER FROM - TO DESCRIPTION MOISTURE WET DRY LL PL PI C STRAIN CONFINING TYPE FAILURE	TEST TYPE MC MC MC MC MC	COMMENTS
IS-7A 1.0 - 2.0 22 S-7A 2.0 - 3.0 30	MC MC	
IS-7A 2.0 - 3.0 30	MC	
IS-7A 3.0 - 4.0 33	MC	
10 177		
IS-7A 6.0 - 7.0 32	MC	
IS-7A 7.0 - 8.0 29	MC	
IS-7A 9.5 - 10.0 34	MC	
IS-7A 10.0 - 11.0 36	MC	
IS-7A 11.0 - 12.0 33	MC	
IS-7A 14.0 - 15.0 33	MC	
IS-7A 15.0 - 16.0 30	MC	
IS-7A 16.0 - 17.5 34	MC	
IS-7A 18.5 - 20.0 33	MC	
IS-7A 21.6 - 22.0 34	MC	
IS-7A 22.0 - 23.0 36	MC	
IS-7A 23.0 - 24.0 34	MC	
IS-7A 24.0 - 25.0 36	MC	
IS-7A 26.0 - 27.0 35	MC	
IS-7A 27.0 - 28.0 29	MC	
IS-7A 28.0 - 29.0 32	MC	
IS-7A 30.0 - 31.0 33	MC	
IS-7A 31.0 - 32.0 33	MC	
IS-7A 32.0 - 33.0 32	MC	
IS-7A 33.6 - 34.0 31	MC	
IS-7A 34.0 - 35.0 32	MC	
IS-7A 35.0 - 36.0 34	MC	
IS-7A 36.0 - 37.0 33	MC	
IS-7A 37.5 - 38.0 32	MC	
IS-7A 38.0 - 39.0 32	MC	
IS-7A 39.0 - 40.0 31	MC	
IS-7A 40.0 - 41.0 32	MC	
IS-7A 43.3 - 44.0 30	MC	
IS-7A 44.0 - 45.0 31	MC	
IS-7A 46.0 - 47.0 31	MC	
IS-7A 47.0 - 48.0 33	MC	
IS-7A 48.0 - 49.0 31	MC	
IS-7A 49.0 - 50.5 30	MC	
IS-7A 52.0 - 52.5 30	MC	
IS-7A 52.5 - 53.5 31	MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: L

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-7A	53.5 - 54.5		33										MC	
IS-7A	54.5 - 55.5		31										MC	
IS-7A	56.5 - 57.5		27										MC	
IS-7A	57.5 - 58.5		31										MC	
IS-7A	58.5 - 59.5		30										MC	
IS-7A	60.0 - 60.5		31										MC	
IS-7A	60.5 - 61.5		32										MC	
IS-7A	61.5 - 62.5		32										MC	
IS-7A	62.5 - 63.5		30										MC	
IS-7A	64.5 - 65.5		32										MC	
IS-7A	65.5 - 66.5		31										MC	
IS-7A	66.5 - 67.5		31										MC	
IS-7A	68.0 - 68.5		30										MC	
IS-7A	68.5 - 69.5		30										MC	
IS-7A	69.5 - 70.5		29										MC	
IS-7A	70.5 - 71.5		31										MC	
IS-7A	71.5 - 73.0		29										MC	
IS-7A	74.0 - 75.5		40										MC	
IS-7A	81.5 - 83.0		33										MC	

SUMMARY OF LABORATORY TEST RESULTS

Project: Mid Barataria Diversion Assigned By: _____

Project Number: 04.55124092

Boring: IS-7A

Sample Number	Depth	Visual Classification	USCS	E(f)	W%	Dry Dens (pcf)	Wet Dens (pcf)	Sat %	Shear Test Type	Angle	Cohesion (psf)	Unconf. Comp. Str.	LL	PL	PI	TORVANE (tsf)	Other Tests
N/A	1	ST BR CL6 W/ G	CL6		28	96	123	100	UU	0	1192		45	21	24	0.65	
N/A	3	M BR CL4	CL4		34	89	118	100	UU	0	786		37	23	14	0.35	
N/A	6	M LGR CH3	CH3		40	82	115	100	ŲÚ	0	708		63	22	41	0.40	
N/A	9.5	SO GR CL6	CL6		34	86	116	98	UU	0	304					0.10	
N/A	10	M GR CL4	CL4		31												-200
N/A	11	M GR CL4	CL4		31	90	117	96									CON, -
																	200
N/A		BR ML W/ O	ML														SV, HYD
N/A		GR ML	ML		36					_							-200
N/A	21.6	BR ML W/ O	ML														SV, HYD
N/A		GR ML W/ ARS CH	ML		28												-200
N/A	24	BR ML W/ ARS CH, ARS SP, O	ML														SV, HYD
N/A		BR ML W/ ARS SP, O	ML														SV, HYD
N/A		SAMPLE MISSING															
N/A		BR ML W/ ARS SP, O	ML														SV, HYD
N/A		BR ML W/ ARS SP, O	ML			N N											SV, HYD
N/A		GR ML W/ ARS SP	ML		28												-200
N/A		BR ML W/ ARS SP, O	ML														SV, HYD
N/A		GR ML W/ ARS CH & SP	ML		32												-200
N/A		GR ML W/ ARS CH	ML										28	25	3		
N/A		BR ML W/ ARS SP, O	ML														SV, HYD
N/A		GR ML W/ ARS SP	ML		30												-200
N/A		BR ML W/ ARS SP, O	ML														SV, HYD
N/A		GR ML W/ ARS CH & SP	ML		28												-200
N/A		BR ML W/ ARS SP, O	ML														SV, HYD
N/A		GR CL6 W/ LNS ML	CL6										46	19	27		
N/A	66.5	M GR CL4 W/ LNS SP	CL4		27	90	115	85									KV=
																	1.05E-06,
N1/A	70 -	OD MI															-200
N/A		GR ML	ML		29												-200
N/A		SAMPLE MISSING	01.4												4.0		
N/A		BR CL4	CL4										33	20	13		0) (
N/A		GR SM	SM		22												SV
N/A	81.5	M GR CL W/ ARS SP	CL		31												SV
								l									

Remarks: _____ "Confidential Information; Privileged & Confidential Work Product"

Fugro Consultants, Inc.

Checked by:______
File Name: 04

Current Date: 9/18/2013

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

Date: 11/22/2013

Plaquemines Parish, LA

CLP

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WE	IGHT (PCF)	ATTE	RBERG L	IMITS		SHEAR	R STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-8A	0.0 - 1.0	Very stiff brown and gray clay with shells, poorly graded gravel, grass,roots, sand seams and pockets (CL4)	28										МС	
IS-8A	1.0 - 1.8	Stiff brown and gray clay with silt and shells (CL6)	32	116.1	88.6	48	19	29	1.3	13	1.86	Multiple Shear	MC,UU- USACE,AL	
IS-8A	2.1 - 3.0	Medium brown and gray clay (CH3)	45	103.0	72.5	66	27	39	0.62	4	3.69	Multiple Shear	MC,UU- USACE,AL	
IS-8A	3.0 - 4.0	Medium brown and gray clay (CL6)	37										MC	
IS-8A	6.0 - 7.0	Soft gray clay (CH2)	41	117.5	83.5	51	22	29	0.3	14	0.36	Bulge	MC,UU- USACE,AL	
IS-8A	7.0 - 8.0	Stiff gray clay (CL6)	32										MC	
IS-8A	9.4 - 10.0	Medium gray clay (CL6)	38	117.6	85.0				0.83	15	2.3	Yield	MC,UU- USACE	
IS-8A	10.0 - 11.0	Medium dense gray silty sand with 3" and 2" clay layer (SM)	31										MC	
IS-8A	11.0 - 12.0	Very soft gray clay (CL6)	41	116.0	82.3	43	21	22	0.28	14	4.18	Bulge	MC,UU- USACE,AL	
IS-8A	13.0 - 14.0	Soft gray clay (CL4)	36										MC	
IS-8A	14.0 - 15.0	Soft gray clay (CL4)	37										MC	
IS-8A	15.0 - 16.0	Loose gray clayey silt (ML)	33	112.6	84.6	26	19	7	0.58	15	4.41	Yield	MC,UU- USACE,AL	
IS-8A	16.6 - 17.0	Loose gray sandy silt with clay (ML)	30										MC	
IS-8A	17.0 - 18.0	Loose gray sandy silt with clay (ML)	35			34	23	11					MC,AL	
IS-8A	18.0 - 19.0	Medium dense gray sandy silt with clay (ML)	33										MC	
IS-8A	19.0 - 20.0	Loose gray sandy silt with clay (ML)	36										MC	
IS-8A	20.5 - 21.0	Medium dense gray sandy silt with clay (ML)	33										MC	
IS-8A	21.0 - 22.0	Medium dense gray sandy silt with clay (ML)	34										MC	
IS-8A	22.0 - 23.0	Loose gray sandy silt with clay (ML)	33										MC	
IS-8A	23.0 - 24.0	Loose gray sandy silt (ML)	34										MC	
IS-8A	26.0 - 27.0	Medium dense gray sandy silt (ML)	28										MC,H	37.6% sand / 55.1% silt / 7.3% clay
IS-8A	27.0 - 28.0	Medium dense gray sandy silt (ML)	31										MC	
IS-8A	29.2 - 30.0	Medium dense gray silty sand (SM)	30										MC	
IS-8A	30.0 - 31.0	Loose gray sandy silt (ML)	32										MC,H	34.8% sand / 59.9% silt / 5.3% clay
IS-8A	31.0 - 32.0	Loose gray silty sand (SM)	33										MC	
IS-8A	33.2 - 34.0	Medium dense gray silty sand (SM)	31										MC	
IS-8A	34.0 - 35.0	Loose gray silty sand (SM)	32										MC	
IS-8A	35.0 - 36.0	Loose gray silty sand (SM)	32										MC	

GeoEngineers, Inc.

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 "Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested. Soil Description: ASTM(D2487) AASHTO(M145) Moisture Content:

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	.IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-8A	38.1 - 39.0	Soft gray clay with sand lenses (CL4)	30	130.4	100.0	30	20	10	0.53	15	2.15	Yield	MC,UU- USACE,AL	
IS-8A	39.0 - 40.0	Soft gray clay (CL4)	34										MC	
IS-8A	40.7 - 41.0	Medium gray clay (CL4)	41										MC	
IS-8A	41.0 - 42.0	Medium gray clay (CL6)	37	117.0	85.0	49	21	28	0.6	11	4.08	Multiple Shear	MC,UU- USACE,AL	
IS-8A	42.0 - 44.0	Gray clay (CH2)	44			50	17	33					MC,AL	
IS-8A	45.2 - 46.0	Medium dense gray silty sand with 4" clay layer (SM)	29										MC	
IS-8A	46.0 - 47.0	Medium dense gray sandy silt (ML)	30										MC,M200	16.6% sand / 83.4% fines
IS-8A	47.0 - 48.0	Loose gray sandy silt (ML)	30										MC	
IS-8A	49.0 - 50.0	Medium gray clay with 3 1/2" silty sand layer, sand seams and sand pockets (CL6)	41	110.4	74.2	47	24	23	0.47	4	6.29	SLS (45°)	MC,UU- USACE,AL	
IS-8A	50.0 - 51.0	Medium gray clay with sand seams and pockets (CL6)	39										MC	
IS-8A	51.0 - 52.0	Loose gray sandy silt (ML)	33										MC,M200	25.1% sand / 74.9% fines
IS-8A	53.0 - 54.0	Medium dense gray silty sand (SM)	32										MC	
IS-8A	54.0 - 55.0	Medium dense gray sandy silty with clay (ML)	32										MC,H	20.4% sand / 71.2% silt / 8.4% clay
IS-8A	55.0 - 56.0	Loose gray sandy silt with clay (ML)	33										MC,M200	27.5% sand / 72.5% fines
IS-8A	57.0 - 58.0	Medium dense gray silty sand (SM)	31										MC	
IS-8A	58.0 - 59.0	Medium dense gray silty sand (SM)	28										MC	
IS-8A	59.0 - 60.0	Loose gray sandy silt with clay (ML)	31										MC,H	18.3% sand / 73.7% silt / 8.0% clay
IS-8A	61.0 - 62.5	Loose gray clayey silty sand (SM)	32										MC	
IS-8A	63.5 - 65.0	Very loose gray sandy silt with clay (ML)	33										MC,H	32.6% sand / 56.9% silt / 10.5% clay
IS-8A	66.0 - 67.5	Loose gray silty sand with clay (SM)	29										MC,M200	41.7% sand / 58.3% fines
IS-8A	68.5 - 70.0	Very loose gray sandy silt with clay (ML)	32										MC,H	13.9% sand / 76.0% silt / 10.1% clay
IS-8A	71.0 - 72.5	Loose gray clayey silty sand with clay (SM)	33										MC	
IS-8A	73.5 - 75.0	Loose gray sandy silt with clay (ML)	32										MC,M200	44.8% sand / 55.2% fines
IS-8A	76.0 - 77.5	Loose gray silty sand with clay (SM)	31										MC	
IS-8A	78.5 - 80.0	Medium dense gray silty sand with clay (SM)											M200	57.9% sand / 42.1% fines
IS-8A	81.0 - 82.5	Loose gray sandy clayey silt (ML)	35										MC,H	15.4% sand / 59.9% silt / 24.7% clay
IS-8A	86.0 - 87.5	Loose gray sandy silt with 3" clay layer (ML)											M200	8.1% sand / 91.9% fines
IS-8A	93.5 - 95.0	Medium gray sandy clay (CL4)	37			42	18	24					MC,AL	

GeoEngineers, Inc.

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 "Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested. Soil Description: ASTM(D2487) AASHTO(M145) Moisture Content:

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	LIMITS		SHEAR	STRENGTH INFORMA	ATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-8A	96.0 - 97.5	Dense gray silty sand (SM)											Dry Sieve	85.6% sand / 14.4% fines
IS-8A	101.0 - 102.5	Medium dense gray sand with silt (SP)											Dry Sieve	88.9% sand / 11.1% fines
IS-8A	106.0 - 107.5	Very stiff brown and gray clay with sand pockets and seams (CH3)	55			59	18	41					MC,AL	
IS-8A	113.5 - 115.0	Very dense gray sand with silt (SP)											Dry Sieve	89.1% sand / 10.9% fines
IS-8A	121.0 - 122.5	Very dense gray silty sand (SM)											Dry Sieve	87.4% sand / 12.6% fines
IS-8A	136.0 - 137.5	Hard light gray clay with 4" clay layer (CL4)	22			34	15	19					MC,AL	
IS-8A	139.8 - 140.5	Very stiff gray clay with sand pockets and seams (CL4)	19										MC	
IS-8A	140.5 - 141.5	Very stiff light gray clay with sand pockets and seams (CL4)	18	131.1	110.7	33	16	17	3.78	15	7.83	Yield	MC,UU- USACE,AL	
IS-8A	141.5 - 142.5	Very stiff light gray clay with sand pockets and seams (CL4)	19				1						MC	
IS-8A	142.5 - 143.5	Very stiff light gray clay with sand streaks (CL4)	21										MC	
IS-8A	143.5 - 144.5	Hard light gray clay with sand streaks (CL4)	22	128.5	105.5				4.35	12	9.78	Multiple Shear	MC,UU- USACE	
IS-8A	145.0 - 146.5	Stiff light gray clay (CL4)	29										MC	
IS-8A	146.5 - 147.5	Medium dense gray clayey sand (SM)	25										MC,M200	75.7% sand / 24.3% fines
IS-8A	147.5 - 149.0	Dense gray silty sand with clay pockets (SM)											Dry Sieve	69% sand / 31.0% fines
IS-8A	150.0 - 151.5	Very dense gray silty sand (SM)											M200	73.9% sand / 26.1% fines

Disclaimer: The results presented relate only to those samples tested.

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

CLI

Title: Lab Manager

	DEPTH (FT)			UNIT WEIG	GHT (PCF)	ATTE	RBERG I	LIMITS		SHEAR	STRENGTH INFORM	ATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-9A	1.1 - 2.0		15										MC	
IS-9A	2.1 - 3.0		27										MC	
IS-9A	3.0 - 4.0		33										MC	
IS-9A	5.0 - 6.0		29										MC	
IS-9A	6.0 - 7.0		28										MC	
IS-9A	7.0 - 8.0		29										MC	
IS-9A	8.5 - 9.0		32										MC	
IS-9A	9.0 - 10.0		33										MC	
IS-9A	10.0 - 11.0		31										MC	
IS-9A	11.0 - 12.0		37										MC	
IS-9A	12.5 - 13.0		52										MC	
IS-9A	13.0 - 14.0		57										MC	
IS-9A	14.0 - 15.0		32										MC	
IS-9A	15.0 - 16.0		35										MC	
IS-9A	17.0 - 18.0		31										MC	
IS-9A	18.0 - 19.0		37										MC	
IS-9A	19.0 - 20.0		35										MC	
IS-9A	21.1 - 22.0		36										MC	
IS-9A	22.0 - 23.0		32										MC	
IS-9A	23.0 - 24.0		37										MC	
IS-9A	25.0 - 26.0		37										MC	
IS-9A	26.0 - 27.0		33										MC	
IS-9A	27.0 - 28.0		34										MC	
IS-9A	28.5 - 29.0		32										MC	
IS-9A	29.0 - 30.0		31										MC	
IS-9A	30.0 - 31.0		33										MC	
IS-9A	31.0 - 32.0		36										MC	
IS-9A	32.5 - 33.0		36										MC	
IS-9A	33.0 - 34.0		36										MC	
IS-9A	34.0 - 35.0		35										MC	
IS-9A	35.0 - 36.0		36										MC	
IS-9A	36.7 - 37.0		32										MC	
IS-9A	37.0 - 38.0		33										MC	
IS-9A	38.0 - 39.0		32										MC	
IS-9A	39.0 - 40.0		33										MC	
IS-9A	40.5 - 41.0												MC	
IS-9A	41.0 - 42.0		34										MC	
IS-9A	42.0 - 43.0		32										MC	
IS-9A	43.0 - 44.0		32										MC	
IS-9A	44.5 - 45.0		31										MC	
IS-9A IS-9A IS-9A IS-9A IS-9A IS-9A IS-9A	36.7 - 37.0 37.0 - 38.0 38.0 - 39.0 39.0 - 40.0 40.5 - 41.0 41.0 - 42.0 42.0 - 43.0 43.0 - 44.0		32 33 32 33 32 34 32 32										MC MC MC MC MC MC MC MC MC	

GeoEngineers, Inc. 11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTI	H INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %		FINING RE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-9A	45.0 - 46.0		30											MC	
IS-9A	46.0 - 47.0		31											MC	
IS-9A	47.0 - 48.0		30											MC	
IS-9A	48.5 - 49.0		31											MC	
IS-9A	49.0 - 50.0		29											MC	
IS-9A	50.0 - 51.0		28											MC	
IS-9A	51.0 - 52.0		33											MC	
IS-9A	52.5 - 53.0		32											MC	
IS-9A	53.0 - 54.0		31											MC	
IS-9A	54.0 - 55.0		29											MC	
IS-9A	55.0 - 56.0		34											MC	
IS-9A	56.5 - 57.0		33											MC	
IS-9A	57.0 - 58.0		34											MC	
IS-9A	58.0 - 59.0		34											MC	
IS-9A	59.0 - 60.0		28											MC	
IS-9A	60.5 - 61.0		31											MC	
IS-9A	61.0 - 62.0		31											MC	
IS-9A	62.0 - 63.0		31						1					MC	
IS-9A	63.0 - 64.0		31											MC	
IS-9A	64.6 - 65.0		30											MC	
IS-9A	65.0 - 66.0		30			,								MC	
IS-9A	66.0 - 67.0		29											MC	
IS-9A	67.0 - 68.0		30											MC	
IS-9A	76.5 - 78.0		31											MC	
IS-9A	79.0 - 80.5		30											MC	
IS-9A	81.5 - 83.0		33											MC	
IS-9A	84.0 - 85.5		29											MC	
IS-9A	86.5 - 88.0		32											MC	
IS-9A	89.0 - 90.5		28											MC	
IS-9A	91.5 - 93.0		31											MC	
IS-9A	94.0 - 95.5		35											MC	
IS-9A	96.5 - 98.0		29											MC	
IS-9A	99.0 - 100.5		29											MC	

		Geografia		•							-							
								A	STM DE	SIGNATIO	N							
			D2216		D4318	}	D2	166	D2166	D2	850		D422,	C136 d	or C11			
				Atte	rberg L	imits			Coł	nesion	psi	(Grain S	ize (%)	ng		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U psf	UU psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
IS-9A	3-4	M, Gr and Br Fat CLAY with Ferrous Nodules and Tr Shells	37.16 29.84 37.57	75	21	54	116.3 116.5 116.4	84.8 89.7 84.6		772.1 1154.5 863.0	1.3 13.3 25.3						(CH3)	
IS-9A	8.5-9	M, T Lean CLAY with Tr O	30.52 29.84 31.32				128.2 126.3 128.6	98.2 97.3 97.9		690.0 920.0 670.0	3.1 15.1 27.1						(CL4)	
IS-9A	10-11	M, Br and Gr Lean CLAY	28.67 28.59 28.17	33	20	13	121.5 130.3 129.1	94.4 101.3 100.7		527.3 633.6	3.8 15.8 27.8						(CL4)	could not test sample 1 of UU
IS-9A	13-14	M, Gr Fat CLAY with Silt Pockets, Jointed and Brittle	33.81 33.82 35.03				118.9 115.6 117.1	88.8 86.3 86.7		914.2 796.6 731.6	4.9 16.9 28.9						(CH3)	
IS-9A	17-18	M, Gr Lean CLAY	32.53 30.41 31.68	36	20	16	121.1 124.1 118.0	91.3 95.1 89.6		842.6 1142.6 972.5	6.4 18.4 30.4						(CL4)	
IS-9A	21-22	Loose, Gr SILT with Tr Clay and Tr Fine Sand	33.26 36.01 34.39	33	26	7	130.5 125.5 127.2	97.9 92.2 94.6		526.5 297.4 409.4	7.9 19.9 31.9						(ML)	
IS-9A	27-28	Loose, Gr SILT with Sand and Tr Clay	30.3													83.1	(ML)	could not test UU, slumped less than mold
IS-9A	29-30	Loose, Gr SILT with Sand and Tr Clay	28.1	V												76.3	(ML)	
IS-9A	30-31	So, Gr Lean CLAY with Tr Fine Sand	33.37 36.30 35.26				122.0 120.0 122.5	91.5 88.0 90.6		480.7 529.1 532.9	11.1 23.1 35.1						(CL6)	
IS-9A	33-34	So, Gr Lean CLAY	33.09 34.49 34.15				124.3 119.7 121.2	92.8 89.0 90.3		432.0 471.5 445.8	12.2 24.2 36.2						(CL4)	
IS-9A	37-38	Loose, Gr SILT with Tr Clay and Fine Sand	30.8								13.7						(ML)	could not test UU, slumped less than mold
IS-9A	41-42	Gr SILT with Sand and Tr Clay	32.4													83.5	(ML)	

Project:	Mid Barataria Diversion	Technical Responsibility:	ZM		Quality	Assurance Office
		Project			Date of	
Client:	GeoEngineers	No.: B13-018	PM:	RM	Issue:	7/18/2013

			•							-		_			-		
								AS	STM DES	IGNATIC	N						
			D2216		D4318	1	D2	166	D2166	D2	850		D422, C	36 or C			
				Atte	rberg L	imits]		Coh	esion	Confining Pressure psi		Grain Siz	e (%)	% Passing #200		
Boring	Depth		w					g _{dry}	U	UU	fining	<u>e</u>	ס		ass 0		
No.	(ft)	Classification	%	LL	PL	PI	g _{wet} pcf	pcf	psf	psf	Con	Gravel	Sand	Silt	% F #20	USCS	Remarks
IS-9A	45-46	So, Gr Lean CLAY with Fine Sand and Gr Silty CLAY with	30.97 29.97	30	22	7	126.8 128.3	96.8 98.7		410.2 463.9	16.6 28.6				79.8	(CL4)	
13-9A	45-40	Tr Fine Sand	32.52	30	23	,	120.3	96.7 96.4		409.4	40.6				79.6	(CL- ML)	
IS-9A	47-48	Gr S SILT with Clay	31.4												79.9	(ML)	
10.04	40.50	Or O Oll Tradit Olse	00.0						_		-				00.0	(0.41.)	
IS-9A	49-50	Gr S SILT with Clay	28.2												68.9	(ML)	
IS-9A	51-52	Gr Lean CLAY with S Silt Layers	33.1												85.7	(CL4)	
IS-9A	53-54	M Dense, Gr SILT with Fine Sand and Clay	28.51 30.16				130.2 126.9	101.2 97.5		650.3	19.5 31.5					(ML)	could not test sample 2
10-97	33-34	Will Delise, Gi GiET Will Fille Salid and Glay	27.27				133.5	104.8		856.4	43.5					(IVIL)	of UU
IS-9A	54-55	Gr SILT with Tr Sand and Clay	32.1	31	23	8										(ML)	
IS-9A	58-59	So to M, Gr Lean CLAY with Tr Fine Sand	34.14 32.62				122.8 121.8	81.5 91.8		477.5 615.1	21.4 33.4					(CL4)	
10-97	30-39	30 to M, GI Lean CLAT with 11 Tille Sand	33.81				121.5	90.8		581.7	45.4					(CL4)	
IS-9A	61-61.5	Gr S SILT with Clay	28.7	V											76.2	(ML)	
IS-9A	65-66	Gr SILT with Clay and Fine Sand	26.7												85.2	(ML)	
IS-9A	74-75.5	Gr S SILT with Clay	27.6												64.1	(ML)	
IS-9A	79-80.5	Gr S SILT with Clay	27.8	26	23	3										(ML)	
IS-9A	89-90.5	Gr SILT with Clay and Sand	28.1												78.4	(ML)	
IS-9A	99-100.5	T Lean CLAY with Sand	26.8												86.1	(CL4)	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

Title:

CLP

Date: 11/22/2013

OLI

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	.IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-12A	0.3 - 1.0		25										MC	
IS-12A	1.0 - 2.0		25										MC	
IS-12A	3.0 - 4.0		33										MC	
IS-12A	5.5 - 6.0		42										MC	
IS-12A	6.0 - 7.0		40										MC	
IS-12A	7.0 - 8.0		34										MC	
IS-12A	9.0 - 10.0		38										MC	
IS-12A	10.0 - 11.0		41										MC	
IS-12A	11.0 - 12.0		42										MC	
IS-12A	12.6 - 13.0		36										MC	
IS-12A	13.0 - 14.0		36										MC	
IS-12A	14.0 - 15.0		36										MC	
IS-12A	15.0 - 16.0		32										MC	
IS-12A	16.3 - 17.0		34										MC	
IS-12A	17.0 - 18.0		35										MC	
IS-12A	18.0 - 19.0		35										MC	
IS-12A	19.0 - 20.0		32										MC	
IS-12A	20.5 - 21.0		37										MC	
IS-12A	21.0 - 22.0		38										MC	
IS-12A	22.0 - 23.0		33										MC	
IS-12A	23.0 - 24.0		32										MC	
IS-12A	24.5 - 25.0		30										MC	
IS-12A	25.0 - 26.0		37										MC	
IS-12A	26.0 - 27.0		35										MC	
IS-12A	27.0 - 28.0		30										MC	
IS-12A	29.0 - 30.0		33										MC	
IS-12A	30.0 - 31.0		33										MC	
IS-12A	31.0 - 32.0		33										MC	
IS-12A	33.0 - 34.0		33	· ·									MC	
IS-12A	34.0 - 35.0		33										MC	
IS-12A	35.0 - 36.0		33										MC	
IS-12A	37.0 - 38.0		33										MC	
IS-12A	38.0 - 39.0		32										MC	
IS-12A	39.0 - 40.0		29										MC	
IS-12A	40.5 - 41.0		31										MC	
IS-12A	41.0 - 42.0		31										MC	
IS-12A	42.0 - 43.0		30										MC	
IS-12A	43.0 - 44.0		31										MC	
IS-12A	44.6 - 45.0		31										MC	
IS-12A	45.0 - 46.0		30										MC	

GeoEngineers, Inc. 11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH	INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFI PRESSUR		TYPE FAILURE	TEST TYPE	COMMENTS
IS-12A	46.0 - 47.0		30											MC	
IS-12A	47.0 - 48.0		29											MC	
IS-12A	48.5 - 49.0		32											MC	
IS-12A	49.0 - 50.0		33											MC	
IS-12A	50.0 - 51.0		31											MC	
IS-12A	51.0 - 52.0		31											MC	
IS-12A	52.6 - 53.0		31											MC	
IS-12A	53.0 - 54.0		31											MC	
IS-12A	54.0 - 55.0		31											MC	
IS-12A	55.0 - 56.0		31											MC	
IS-12A	56.5 - 57.0		31											MC	
IS-12A	57.0 - 58.0		31											MC	
IS-12A	58.0 - 59.0		30											MC	
IS-12A	59.0 - 60.0		31											MC	
IS-12A	60.5 - 61.0		31											MC	
IS-12A	61.0 - 62.0		31											MC	
IS-12A	62.0 - 63.0		30											MC	
IS-12A	63.0 - 64.0		30											MC	
IS-12A	64.5 - 65.0		29											MC	
IS-12A	65.0 - 66.0		101											MC	
IS-12A	66.0 - 67.0		28			,								MC	
IS-12A	67.0 - 68.0		30											MC	
IS-12A	70.5 - 72.0		32											MC	
IS-12A	73.1 - 74.0		30											MC	
IS-12A	74.0 - 75.0		26											MC	
IS-12A	75.0 - 76.0		28											MC	
IS-12A	76.6 - 77.0		32											MC	
IS-12A	77.0 - 78.0		33											MC	
IS-12A	78.0 - 79.0		32											MC	
IS-12A	79.0 - 80.0		32											MC	
IS-12A	80.0 - 81.5		39											MC	
IS-12A	82.5 - 84.0		33											MC	
IS-12A	85.0 - 86.5		30											MC	

SUMMARY OF LABORATORY TEST RESULTS

Project: Mid Barataria Diversion Assigned By: _____

Project Number: 04.55124092

Boring: IS-12A

							_		_		_	_	_			_	
Sample Number	Depth	Visual Classification	USCS	E(f)	W%	Dry Dens (pcf)	Wet Dens (pcf)	Sat %	Shear Test Type	Angle	Cohesion (psf)	Unconf. Comp. Str.	LL	PL	PI	TORVANE (tsf)	Other Tests
N/A	1	ST BR CL6	CL6		25	96	120	89	ŪŪ	0	1717			1 1	'	0.32	
N/A		SO BR CL6	CL6		38	81	112	96	UU	0	407		46	25	21	0.18	
N/A	5.5	SO GR & BR CL6	CL6		38	81	112	95		ľ			!	1 1	'		Kh=
	l '													1 1	'		3.23E-08
	1		1											1 1	'		SV, HYD
N/A		SO BR CL4	CL4		35	87	117	100	UU	0	357			1 1		0.18	
N/A		SO BR CL4	CL4		36	85	116	100	UU	0	278		33	23	10	0.12	
N/A	10	SO GR CL4	CL4		38	80	111	94					!	1 1			Kv=
1	l '									·				1 1	'		7.43E-06
NI/A	12	00 00 014	CL 4		40	04	112	100	υυ	_	324			1 1	'	0.14	SV, HYD
N/A N/A		SO BR CL4 BR & GR ML W/ ARS CH, O	CL4 ML		40	81	113	100	UU	0	324			1 1	'	0.14	-200 SV, HYD
N/A N/A		IGR ML W/ ARS SM	ML		32									1 1	'		-200
N/A N/A		IBR & GR ML W/ ARS SM	ML		32									1 1	'		-200 -200
N/A N/A		BR & GR ML W/ ARS SM BR & GR ML W/ ARS CH, O	ML		32									1 1	'		SV, HYD
N/A N/A		IBR ML	ML		34	88	117	99	υU	0	410		33	26	7	0.15	3v, 1110
N/A N/A		IBR ML	ML		32	88	116	94	UU		560		55	20	'	0.15	
N/A		BR & GR ML W/ ARS SM	ML		31		110			~				1 1	'		-200
N/A		BR & GR ML	ML		31									1 1	'		-200
N/A		BR ML	ML		34	88	117	99	υυ	0	463		31	24	7	0.10	
N/A		BR & GR ML W/ ARS SM	ML		31		'''						•	-	'	55	-200
N/A		BR & GR ML W/ ARS SM	ML		30								!	1 1	'		-200
N/A		BR & GR ML W/ ARS SM	ML		29								!	1 1			-200
N/A	45	BR & GR ML W/ ARS CH & SM, O	ML										!	1 1			SV, HYD
N/A		BR & GR ML W/ ARS CH & SP, O	ML										!	1 1			SV, HYD
N/A		BR & GR ML	ML		32									1 1	'		-200
N/A		BR & GR ML W/ ARS CH & SM, O	ML										!	1 1			SV, HYD
N/A	54	GR ML W/ ARS SP, CH	ML		30	117	90	93					!	1 1			Kv=
l	l '		1										!	1 1			3.70E-06
	l '													1 1	'		SV, HYD
N/A		BR & GR ML W/ ARS SM	ML		32									1 1	'		-200
N/A		BR & GR ML W/ ARS SM	ML		29									1 1	'		-200
N/A		BR & GR ML W/ ARS CH, O	ML											1 1	'		SV, HYD
N/A	64.5	SO GR CL4	CL4		28	95	121	99					!	1 1			Kv=
N/A	70.4													1 1	'		1.27E-06
N/A		BR & GR ML W/ ARS SP, O	ML											1 1	'		SV, HYD
N/A		BR & GR ML W/ ARS SM	ML		32										'		-200
N/A	80	GR ML W/ ARS SM	ML		30										\vdash		-200
ıl I	·		ľ												'		

Remarks: "Confidential Information" Confidential Privileged Confidential Work Work" Product" Fugro Consultants, Inc.

Checked by:_______
File Name: 04

Current Date: 10/30/2013

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

Title:

CLP

Date: 11/22/2013

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG LI	MITS		SHEAR	STRENGTH INFORMA	ATION		
BORING NUMBER	FROM -TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-13A	2.2 - 3.0		21							•			MC	
IS-13A	3.2 - 4.0		29										MC	
IS-13A	5.0 - 6.0		30										MC	
IS-13A	6.0 - 7.0		31										MC	
IS-13A	7.0 - 8.0		31										MC	
IS-13A	8.7 - 9.0		35										MC	
IS-13A	9.0 - 10.0		36										MC	
IS-13A	10.0 - 11.0		39										MC	
IS-13A	11.0 - 12.0		38										MC	
IS-13A	13.0 - 14.0		30										MC	
IS-13A	14.0 - 15.0		39										MC	
IS-13A	15.0 - 16.0		30										MC	
IS-13A	16.5 - 17.0		36										MC	
IS-13A	17.0 - 18.0		36										MC	
IS-13A	18.0 - 19.0		35										MC	
IS-13A	19.0 - 20.0		37										MC	
IS-13A	20.6 - 21.0		34										MC	
IS-13A	21.0 - 22.0		35										MC	
IS-13A	22.0 - 23.0		43										MC	
IS-13A	23.0 - 24.0		35										MC	
IS-13A	24.0 - 25.5		33										MC	
IS-13A	26.5 - 27.4		31										MC	
IS-13A	27.4 - 28.0		38										MC	
IS-13A	29.0 - 30.5		35										MC	
IS-13A	31.5 - 33.0		34										MC	
IS-13A	33.0 - 34.0		33										MC	
IS-13A	34.0 - 35.0		33										MC	
IS-13A	35.0 - 36.0		32										MC	
IS-13A	36.5 - 37.0		41	· ·									MC	
IS-13A	37.0 - 38.0		41										MC	
IS-13A	38.0 - 39.0		33										MC	
IS-13A	39.0 - 40.0		32										MC	
IS-13A	41.1 - 42.0		28										MC	
IS-13A	42.0 - 43.0		33										MC	
IS-13A	43.0 - 44.0		34										MC	
IS-13A	44.5 - 45.0		32										MC	
IS-13A	45.0 - 46.0		32										MC	
IS-13A	46.0 - 47.0		32										MC	
IS-13A	47.0 - 48.0		35										MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORMA	ATION		
BORING NUMBER	FROM -TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-13A	49.0 - 50.0		34										MC	
IS-13A	50.0 - 51.0		33										MC	
IS-13A	51.0 - 52.0		33										MC	
IS-13A	53.0 - 54.0		32										MC	
IS-13A	54.0 - 55.0		32										MC	
IS-13A	55.0 - 56.0		31										MC	
IS-13A	57.0 - 58.0		31										MC	
IS-13A	58.0 - 59.0		55										MC	
IS-13A	59.0 - 60.0		36										MC	
IS-13A	61.0 - 62.0		36										MC	
IS-13A	62.0 - 63.0		34										MC	
IS-13A	63.0 - 64.0		43										MC	
IS-13A	65.0 - 66.0		38										MC	
IS-13A	66.0 - 67.0		30										MC	
IS-13A	67.0 - 68.0		32										MC	
IS-13A	70.5 - 71.0		38										MC	
IS-13A	71.0 - 72.0		38										MC	
IS-13A	73.3 - 74.0		47										MC	
IS-13A	74.0 - 75.0		59										MC	
IS-13A	75.0 - 76.0		34										MC	
IS-13A	77.0 - 78.0		38										MC	
IS-13A	78.0 - 79.0		33										MC	
IS-13A	79.0 - 80.0		30										MC	
IS-13A	81.0 - 82.0		28										MC	
IS-13A	82.0 - 83.0		30										MC	
IS-13A	83.0 - 84.0		28										MC	
IS-13A	85.0 - 86.0		36										MC	
IS-13A	86.0 - 87.0		32										MC	
IS-13A	87.0 - 88.0		31										MC	
IS-13A	88.0 - 89.5		29										MC	
IS-13A	90.5 - 92.0		34										MC	
IS-13A	93.0 - 94.5		34										MC	
IS-13A	95.5 - 97.0		40										MC	
IS-13A	98.0 - 99.5		32										MC	

Project:	Mid Barataria Diversion	Technical Responsibility:	RM		Quality	Assurance Office
		Project			Date of	
Client:	GeoEngineers	No.: B13-018	PM:	RM	Issue:	7/19/2013

Cilerit.		GeoErigineers					140		D13-01				F IVI.		IXIVI			7/19/2013
								Α	STM DES	IGNATIO	N							
			D2216		D4318		D21	166	D2166	D28			D422,	C136	or C117			
				Atte	rberg Li	mits]		Cohe	esion	Confining Pressure psi	(Grain S	Size (%)	% Passing #200		
Davis	Danth		w					_		UU	ininç sure	<u>e</u>				assi		
Boring No.	Depth (ft)	Classification	%	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	Upsf	psf	Conf	Gravel	Sand	Silt	Clay	% P #200	USCS	Remarks
IS-13A	2.2-3	T CLAY with Silt and Shells	18.1	41	21	20	gwei poi	F		F	0.9	O	0)	0)		5 #	(CL4)	Sample fell apart during UU Test
IS-13A	5-6	M, T and Gr Lean CLAY with Ferrous Nodules	27.93 28.21 30.60				118.8 120.0	92.8 93.6		665.9 1181.9	2.0 14.0 26.0						(CL4)	Sample 3 cracked while trimming during UU Test
IS-13A	9-10	M, Gr Lean CLAY with O Pockets	37.4 36.29 37.4				116.8 117.8 122.0	85.0 86.4 89.3		540.5 618.7 605.5	3.5 15.5 27.5						(CL4)	
IS-13A	14-15	St, O Clay with Silt and Sand	41.19 45.63 34.46	44	28	16	114.3 112.5 123.3	80.9 77.2 91.6		1012.2 1157.6 2353.4	5.3 17.3 29.3						(OL)	
IS-13A	15-16	M Dense, Gr SILT with Sand and Tr Clay	27.07 29.69 37.22	28	26	2	119.7 118.5 112.4	94.1 91.4 81.9		1470.5 2966.7 1523.6	5.7 17.7 29.7						(ML)	
IS-13A	17-18	M, Gr Lean CLAY with O Pockets	33.87 33.80 36.07	39	24	15	116.3 114.6 120.7	86.9 85.6 88.6		644.0 620.7 778.8	6.4 18.4 30.4						(CL4)	
IS-13A	18-19	M, Gr Silty CLAY with S Silt	30.02 30.88 31.45	33	22	11	124.3 123.5 127.0	95.5 94.3 96.6		642.0 547.7 1005.1	6.8 18.8 30.8						(CL4)	
IS-13A	22-22.5	Gr Fat CLAY with S SIS	45.0	V													(CH2)	
IS-13A	23.5-24	Gr SILT with Sand and Tr Clay	25.2													71.5	(ML)	
IS-13A	24-25.5	Gr SILT with Sand and Clay	29.8										6.3	77.4	16.3	93.7	(ML)	
IS-13A	29-30.5	Gr Lean CLAY with Tr Fine Sand	28.4	36	24	12											(CL4)	
IS-13A	31.5-33	Gr Lean CLAY with Tr Fine Sand	28.0	32	23	9											(CL4)	
IS-13A	33-34	Gr SILT with Sand and Clay	32.1													89.3	(ML)	
IS-13A	35-36	Gr SILT with Sand and Clay	32.2													89.6	(ML)	
IS-13A	38-39	M, Gr CLAY with Silt and Fine Sand	31.76 31.21 31.03	36	22	14	124.8 123.4 125.5	94.7 94.0 95.8		465.8 592.3 629.6	14.1 26.1 38.1						(CL4)	

Project:	Mid Barataria Diversion	Technical Responsibility:	ZM		Quality	Assurance Office
' <u>-</u>		Project			Date of	
Client:	GeoEngineers	No.: B13-018	PM:	RM	Issue:	7/19/2013

				•							-							
								Α	STM DE	SIGNATIC	N							
			D2216		D4318		D2	166	D2166	D2	850		D422,	C136	or C11	7		
				Atte	rberg L	imits			Col	nesion	psi		Grain S	ize (%	o)	ng	-	
			147								Confining Pressure p	<u> </u>		ì		% Passing #200		
Boring	Depth	01	w %		ы	ы		g _{dry}	U	UU	onfii	Gravel	Sand	Silt	Clay	. Pa		5 .
No.	(ft)	Classification	31.71	LL	PL	PI	g _{wet} pcf 121.5	pcf 92.2	psf	psf 419.4	15.9	G	ιχ	S	Ö	% #	USCS	Remarks
IS-13A	43-44	Loose, Gr CLAY with Silt and Fine Sand	31.39	34	24	10	120.5	91.7		427.0	27.5						(CL4)	
		·	31.23				119.1	90.7		440.4	39.9						` '	
IS-13A	46-47	M, Gr Lean CLAY with Tr Fine Sand	31.65 31.47	38	19	19	124.1 121.7	94.2 92.5		634.5 637.2	17.0 29.0						(CL4)	
10 10/1	10 11	M, Of Ecan CEAT With 11 1 life Cand	31.86	00	10	10	123.0	93.4		711.3	41.0						(021)	
10.404	54.50	M. Callaga CLAV with Ta Fina Cond	32.15	07	00	4.5	121.1	91.6		478.0	18.8						(01.4)	
IS-13A	51-52	M, Gr Lean CLAY with Tr Fine Sand	31.39 32.75	37	22	15	120.8 121.2	91.9 91.2		563.8 522.7	30.8 42.8						(CL4)	
_							12112	V.12		OZZ.,	12.0							
IS-13A	55-56	Gr SILT with Clay and Fine Sand Pockets	24.2	32	25	7											(ML)	
			32.48				120.2	90.7		628.3	21.7							-
IS-13A	59-59.7	M, Gr SILT with Clay and Fine Sand	32.33				124.3	93.9		1076.7	33.7						(ML)	
			33.00				123.7	93.0		1018.1	45.7							
IS-13A	60.8-61	No Sample																
			35.98			1	115.5	84.9		850.5	22.8							
IS-13A	62-62.8	M, Gr Lean CLAY with Silt Pockets	35.48	43	2 3	20	116.8	86.2		896.7	34.8						(CL6)	
		·	3 5.32		/		116.4	86.0		827.0	46.8						, ,	
IS-13A	65.3-66	Gr Lean CLAY with S Silty Pockets	30.7													98.2	(CL4)	
	00.0 00	G. Zour GZ. I. IIII. G G.II, I GGIGG															()	
IS-13A	66-67	Gr SILT with Tr Fine Sand and Clay Pockets	31.4													92.0	(ML)	
10-10A	00-07	Of OIL1 with 111 life Sand and Olay 1 ockets	31.4													32.0	(IVIL)	
10.404	74.75	M. Ca Fat Cl. AV with C. ClC	60.4	000	20	 7											(0114)	
IS-13A	74-75	M, Gr Fat CLAY with S SIS	63.4	86	29	57											(CH4)	
			29.00				123.1	95.4		1473.2	27.6							
IS-13A	75-76	St, Gr Lean CLAY with Fine Sand	29.02 29.39				122.4 126.7	94.8 97.9		1310.1 1990.0	39.6 51.6						(CL4)	
-			49.42				107.7	72.1		559.9	29.0							
IS-13A	79-80	M, Gr Fat CLAY with Silty SS	45.99				107.6	73.7		612.9	41.0						(CH3)	
			46.69 30.53				107.0 122.9	72.9 94.1		553.2 1264.9	53.0 31.2							
IS-13A	85-86	St, Gr Laminating Fat CLAY with S Silt and Silty Clay	31.55				124.3	94.4		1520.1	43.2						(CH2)	
			31.15				121.7	92.8		1678.7	55.2							
IS-13A	88-89.5	Gr SILT with Clay and Fine Sand	27.1										12.6	69.6	17.8	87.4	(ML)	
		<u> </u>															` '	
IS-13A	93-94.5	Gr S SILT with Clay and Fine Sand	24.3										34.0	48.7	17.3	66.0	(ML)	
.5 10/1	30 0 1.0	3. 5 SIET Mar Slay and I mo Salid	21.0										00	.0.7		55.5	(/	
IC 12A	100.5-102	Cr Silty SAND with Tr Clay	70.5													26.4	(MA)	
IS-13A	100.5-102	Gr Silty SAND with Tr Clay	70.5													36.4	(SM)	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG	LIMITS		SHEAR	STRENGTH INFORM	ATION		
BORING NUMBER	FROM -TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-16A	1.0 - 2.0		25										MC	
IS-16A	2.0 - 2.3		26										MC	
IS-16A	3.3 - 4.0		24										MC	
IS-16A	5.3 - 6.0		26										MC	
IS-16A	6.0 - 7.0		29										MC	
IS-16A	7.0 - 8.0		27										MC	
IS-16A	9.0 - 10.0		29										MC	
IS-16A	10.0 - 11.0		35										MC	
IS-16A	11.0 - 12.0		38										MC	
IS-16A	13.2 - 14.0		37										MC	
IS-16A	14.0 - 15.0		35										MC	
IS-16A	15.0 - 16.0		33										MC	
IS-16A	16.6 - 17.0		35										MC	
IS-16A	17.0 - 18.0		34										MC	
IS-16A	18.0 - 19.0		33										MC	
IS-16A	19.0 - 20.0		35										MC	
IS-16A	20.5 - 21.0		35										MC	
IS-16A	21.0 - 22.0		35						1				MC	
IS-16A	22.0 - 23.0		34										MC	
IS-16A	23.0 - 24.0		36										MC	
IS-16A	24.5 - 25.0		35										MC	
IS-16A	25.0 - 26.0		34										MC	
IS-16A	26.0 - 27.0		35										MC	
IS-16A	27.0 - 27.4		37										MC	
IS-16A	27.4 - 28.0		32										MC	
IS-16A	29.0 - 30.0		31			1							MC	
IS-16A	30.0 - 31.0		27										MC	
IS-16A	31.0 - 32.0		34										MC	
IS-16A	32.6 - 33.0		42										MC	
IS-16A	33.0 - 34.0		45										MC	
IS-16A	34.0 - 35.0		42										MC	
IS-16A	35.0 - 36.0		34										MC	
IS-16A	36.7 - 37.0		39										MC	
IS-16A	37.0 - 38.0		39										MC	
IS-16A	38.0 - 39.0		55										MC	
IS-16A	39.0 - 40.0		47										MC	
IS-16A	43.5 - 45.0		43										MC	
IS-16A	45.5 - 46.0		41										MC	
IS-16A	46.0 - 47.0		24										MC	
IS-16A	47.0 - 48.0		24										MC	

GeoEngineers, Inc. 11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
IS-16A	49.0 - 50.5		41										MC	
IS-16A	59.0 - 60.5		44										MC	
IS-16A	67.3 - 68.0		42										MC	
IS-16A	69.0 - 70.5		41										MC	
IS-16A	71.5 - 72.3		49										MC	
IS-16A	81.5 - 83.0		34										MC	
IS-16A	84.0 - 85.5		32										MC	
IS-16A	86.5 - 88.0		28										MC	
IS-16A	89.0 - 90.5		53										MC	
IS-16A	91.5 - 93.0		41										MC	
IS-16A	94.0 - 95.5		37										MC	
IS-16A	96.5 - 98.0		31										MC	

Project:	Mid Barataria Diversion	Technical Responsibility:	RM		Quality	Assurance Office
		Project			Date of	
Client:	GeoEngineers	No.:B13-018	PM:	RM	Issue:	7/29/2013

Cilerit.		GeoEngineers							D13-01				F IVI		IXIVI		·	1/29/2013
								Α	STM DES	IGNATIO	N							
			D2216		D4318		D2	166	D2166	D28			D422, C	:136 c	or C11	7		
				Atte	rberg L	imits			Cohe	esion	Confining Pressure psi		Grain Si	ze (%)	% Passing #200		
			w								ning	<u>o</u>	_			assi		
Boring	Depth (ft)	Classification	%	LL	PL	PI	a not	9 _{dry}	U psf	UU psf	confi	Gravel	Sand	Silt	Clay	% Pg	USCS	Remarks
No.	(11)	Ciassilication	24.1	LL	FL	Г	g _{wet} pcf 125.1	pcf 100.8	psi	1880.5	1.3	U	S	Ŋ	0	# %	0303	Remarks
IS-16A	3.3-4	St to vSt, Br and Gr Lean CLAY	21.6 24.3				124.6 123.9	102.5 99.7		2670.8 3070.8	13.3 25.3						(CL6)	
IS-16A	5.3-6	Gr Clayey SILT	25.1													93.4	(ML)	
IS-16A	6-7	St. Gr Lean CLAY with Sand and O	26.6 26.3	41	24	17	122.3 122.3	96.5 96.8		1076.0	2.4 14.4						(CL4)	Sample 3 fell apart; no
10 10/1	0 1	ot, or courred trimin ound and o	27.1	• • •			120.2	94.6		1754.5	26.4						(02.)	UU test
IS-16A	10-11	M, Gr Fat CLAY with O and Sand	32.9 32.9				119.9 117.6	90.1		584.8 633.7	3.8 15.8						(CH2)	
10-107	10-11	IVI, OF FALCEAT WILL O and Gallo	35.5				119.3	88.0		596.0	27.8						(0112)	
10.404	44.45	M Danca Cli T with Cand and Clay	28.4	20	0.4		121.1	94.3		1677.2	5.3						(8.41.)	
IS-16A	14-15	M Dense, SILT with Sand and Clay	29.1 28.8	32	24	8	124.7 126.3	96.6 98.0		2298.0 2752.3	17.3 29.3						(ML)	
IS-16A	17-18	Gr SILT with Clay and Sand	31.2	31	27	4							16.4	72.0	11.6	83.6	(ML)	
			24.9				132.3	105.9		3886.0	7.1							
IS-16A	19-20	Dense, Gr S SILT with Tr O and Clay	25.1 25.0	28	26	2	130.4 127.7	104.2 102.2		5078.7 5160.1	19.1 31.1						(ML)	
_			34.3				123.7	92.1		515.7	7.9							Sample 3 was too soft to
IS-16A	21-22	M, Gr Fat CLAY with Silt Layers	34.6 33.6				122.6 122.7	91.1 91.8		517.5	19.9 31.9						(CH2)	fit in membrane; no UU
			39.3				116.8	83.8		487.8	8.6							test
IS-16A	23-24	So, Gr Fat CLAY with S Pockets	40.8				119.5	84.8		444.9	20.6						(CH2)	
			40.8				117.9	83.7		449.5	32.6							
IS-16A	27.5-28	Gr SILT with Sand and Tr Clay	28.7													92.0	(ML)	
IS-16A	30-31	Gr SILT with Sand and Tr Clay	27.3													78.1	(ML)	
			44.8				114.5	79.1		482.9	12.6							
IS-16A	34-34.5	M, Gr Fat CLAY with S SIS and Pockets	41.8 42.1	68	24	44	114.3 117.7	80.5 82.8		550.8 525.5	24.6 36.6						(CH3)	
IS-16A	35-36	Gr S SILT	25.1													64.1	(ML)	
		M, Gr Fat CLAY with S SIS and Pockets, Laminated	42.9				111.3	77.8		587.3	14.1							
IS-16A	38-39	Layers	88.9 42.7	66	22	44	112.3	78.4 80.6		590.5 637.4	26.1 38.1						(CH3)	
		, , , , , , , , , , , , , , , , , , ,	40.2				115.1 115.1	82.1		552.7	14.4							
IS-16A	39-40	So, Gr Lean Clay with S SIS and Pockets	43.9	47	22	25	111.5	77.5		456.2	26.4						(CL4)	
			39.9				110.7	79.1	ļ	469.9	38.4					1		ļ

Project:	Mid Barataria Diversion	Technical Responsibility:	ZM		Quality	Assurance Officer
•		Project			Date of	
Client:	GeoEngineers	No.: B13-018	PM:	RM	Issue:	7/29/2013

Ciletit.		GeoErigineers		ı					D13-010				F IVI.		IZIVI		-	1/23/2013
								A	STM DESIGNA	TION								
			D2216		D4318		D21	166		D2850)		D422, C			7		
				Atte	rberg L	imits	ļ I	,	Cohesion		ig e psi	(Grain Si	ize (%)	sing		
Boring	Depth		w					9 _{dry}	U UU	J :	Confining Pressure psi	Gravel	ь	ļ	>	% Passing #200		
No.	(ft)	Classification	%	LL	PL	PI	g _{wet} pcf	pcf	psf psf	f ,	Co Pre	Gra	Sand	Silt	Clay	%	USCS	Remarks
IS-16A	41-42.5	Gr Fine SAND with Silt	26.5													19.2	(SM)	
IS-16A	45.5-46	Loose Gr SILT with Clay Pockets	36.8 36.2 37.0				1183 114.2 117.5	86.5 83.8 85.8	245. 248. 299.	.9	16.6 28.6 40.6						(ML)	
IS-16A	46-47	Gr Silty SAND with Tr Clay	25.5													20.1	(SM)	
IS-16A	49-50.5	Gr Lean CLAY	37.2	39	19	20		V									(CL4)	
IS-16A	51.5-53	Gr Silty SAND with Tr Clay	24.6			5										49.1	(SM)	
IS-16A	54-55.5	Gr Silty SAND with Tr Clay	28.7			1										30.2	(SM)	
IS-16A	56.5-58	Gr Fine Silty SAND with Tr Clay	27.4													14.8	(SM)	
IS-16A	59-60.5	Gr Lean CLAY with Silt and Sand	28.6	48	21	27										63.2	(CL6)	
IS-16A	61.5-63	Gr Fine Silty SAND	26.7													17.4	(SM)	
IS-16A	64-65.5	Gr Silty SAND with Tr Clay	26.1													49.9	(SM)	
IS-16A	69-70.5	Gr Fat CLAY with Silt and Sand	34.0	55	22	33											(CH2)	
IS-16A	72.3-73	Gr Silty SAND with Clay	25.4													44.3	(SM)	
IS-16A	74-75.5	Gr Silty SAND with Tr Clay	25.7													39.4	(SM)	
IS-16A	76.5-78	Gr Fine Silty SAND with Clay	25.1													19.1	(SM)	
IS-16A	81.5-83	Gr Lean CLAY with Tr Fine Sand	33.4	37	22	15											(CL4)	

Project:		Mid Barataria Diversion				Те	chnical Resp	onsibility:	:		Z	m				Quali	ty Assurance Office
Client:		GeoEngineers			•		Project No.:	B13-0	18			PM:		RM		Date of Issue:	7/29/2013
								ASTM DES	SIGNATIO	N							
			D2216		D4318		D2166	D2166	D28	50		D422,	C136	or C117	7		
					berg L				esion	psi		Grain S)	ng		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf pcf	U psf	UU psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
IS-16A	89.5-90	Gr Fat CLAY with S SIS and Pockets	47.2	96	26	70										(CH4)	
IS-16A	94-95.5	Gr Silty SAND with Tr Clay	28.1												29.8	(SM)	
IS-16A	96.5-98	Gr Sandy SILT with Clay	29.4									32.3	55.6	12.1	67.7	(ML)	
IS-16A	99-100.5	Gr Sandy SILT with Tr Clay	25.9			4									59.0	(ML)	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG L	IMITS		SHEAR	STRENGTH	H INFORMA	TION		
BORING	, ,	SOIL	MOISTURE		` '				С	STRAIN	CONF	INING	TYPE	TEST	
NUMBER	FROM - TO	DESCRIPTION	%	WET	DRY	LL	PL	PI	(KSF		PRESSU	RE (KSF)	FAILURE	TYPE	COMMENTS
IS-17A	1.5 - 2.0		22											MC	
IS-17A	3.0 - 4.0		25											MC	
IS-17A	5.3 - 6.0		32											MC	
IS-17A	6.0 - 7.0		33											MC	
IS-17A	7.0 - 8.0		33											MC	
IS-17A	9.5 - 10.0		34											MC	
IS-17A	10.0 - 11.0		34											MC	
IS-17A	11.0 - 12.0		32											MC	
IS-17A	13.3 - 14.0		33											MC	
IS-17A	14.0 - 15.0		31											MC	
IS-17A	15.0 - 16.0		33											MC	
IS-17A	17.0 - 18.0		33											MC	
IS-17A	18.0 - 19.0		33											MC	
IS-17A	19.0 - 20.0		35											MC	
IS-17A	21.1 - 22.0		33											MC	
IS-17A	22.0 - 23.0		35											MC	
IS-17A	23.0 - 24.0		46											MC	
IS-17A	25.0 - 26.0		34											MC	
IS-17A	26.0 - 27.0		35											MC	
IS-17A	27.0 - 28.0		42											MC	
IS-17A	28.6 - 29.0		33											MC	
IS-17A	29.0 - 30.0		31											MC	
IS-17A	30.0 - 31.0		40											MC	
IS-17A	31.0 - 32.0		52											MC	
IS-17A	33.0 - 34.5		39											MC	
IS-17A	35.5 - 37.0		38											MC	
IS-17A	38.0 - 39.5		36											MC	
IS-17A	50.5 - 52.0		42											MC	
IS-17A	58.0 - 59.5		46											MC	
IS-17A	60.5 - 62.0		42											MC	
IS-17A	78.0 - 78.8		33											MC	
IS-17A	80.5 - 82.0		41											MC	
IS-17A	83.0 - 83.8		52											MC	
IS-17A	88.0 - 89.5		33											MC	
IS-17A	93.0 - 94.5		32											MC	
IS-17A	98.0 - 99.5		31											MC	
IS-17A	100.5 - 102.0		30											MC	

SUMMARY OF LABORATORY TEST RESULTS

Project:	Mid Barataria	Diversion	Assigned By:

Project Number: 04.55124092 Boring: IS-17A

Current Date: 9/12/2013

								_		_							
Sample Number	Depth	Visual Classification	USCS	E(f)	W%	Dry Dens (pcf)	Wet Dens (pcf)	Sat %	Shear Test Type	Angle	Cohesion (psf)	Unconf. Comp. Str.	LL	PL	PI	TORVANE (tsf)	Other Tests
N/A	3	BR ML	ML		26	97	122	96	UU	0	1510		26	22	4	0.20	l i
N/A		M BR CL	CL		31	91	119	98	υu	0	772		31	22	9	0.20	l i
N/A	9.5	SO DGR CH3 W/ O, ARS ML, WD	СНЗ		51	68	103	94	UU	1 0	452					0.30	
N/A	13.3	GR ML	ML		31	91	119	99	ŲÜ	0	740	ļ	34	26	8	0.25	1
N/A	15	GR ML W/ ARS CH	ML		27	97	124	100	UU	0	1282			1		0.30	
N/A	18	DGR ML	ML	1	33	89	119	100	UÜ	0	483		29	24	5	0.10	
N/A	22	DGR ML	ML		37	85	116	100	บบ	0	509					0.15	1
N/A	23	M DGR CL6	CL6		41	80	113	100	UU	0	571	ļ	47	19	28	0.15	
N/A		M DGR CL6	CL6		35	86	116	99	ŪŲ	0	606					0.15	
N/A	29	DGR CL	CL	1		·			ľ				27	23	4		1
N/A	30	SO GR CL6	CL6		39	83	116	100	υU	0	483		42	19	23	0.15	CON
N/A	38	M GR CL6	CL6		32							1		1	1		-200
N/A	43	BR SM	SM	1	26												-200
N/A	46.5	GR ML W/ O	ML	1						ŀ	,						SV, HYD
N/A	48	BR & GR ML W/ O	ML	ŀ								ļ					SV, HYD
N/A	50.5	BR & GR CL4 W/ O, ARS SP	CL4			M .											SV, HYD
N/A	53	BR SM	SM		22												SV
N/A	55.5	BR SM	SM		24					ļ							SV
N/A	58	BR & GR CL6 W/ O	CL6					1	1				45	23	22		SV, HYD
N/A	60.5	BR & GR CL6 W/ O	CL6			ĺ											SV, HYD
N/A	63	BR & GR SM W/ ARS CH, O	SM		25			l	ľ				Ì				-200
N/A	68	BR & GR SM W/ ARS CH, O	SM		27			·				ĺ				,	-200
N/A	75.5	BR & GR SM W/ ARS CH, O	√ SM		24												-200
N/A	78.8	BR & GR ML W/ LNS SP	ML		25					1				•			-200
N/A	80.5	BR & GR ML W/ ARS CH, O	ML					1				İ					SV, HYD
N/A	85.5	BR & GR SM W/ ARS CH, O	SM		25												-200
N/A	93	M BR CL4	CL4		28					ľ			1				-200
N/A	98	ST BR CH3 W/ ARS SP	CH3	T	32		ļ						64		37		-200
N/A	100.5	BR CL	CL		<u> </u>	L				<u> </u>			28	15	13		
										1							
]				1									
				1			1						1				
			1			1							l		1		
		·											1	1]	
			1										1			l	
	<u> </u>		_l				l		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		

Remarks:		Checked by:
Fugro Consultants, Inc.	"Confidential Information; Privileged & Confidential Work Product"	File Name: 04

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

Title:

CLP

Lab Manager

Date: 11/22/2013

P Date: 11/22/20

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG	LIMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
NL-3A	1.3 - 2.0		88										MC	
NL-3A	2.0 - 3.0		115										MC	
NL-3A	3.0 - 4.0		138										MC	
NL-3A	5.0 - 6.0		172										MC	
NL-3A	6.0 - 7.0		47										MC	
NL-3A	7.0 - 8.0		54										MC	
NL-3A	8.0 - 9.5		72										MC	
NL-3A	9.5 - 10.0		64										MC	
NL-3A	10.0 - 11.0		78										MC	
NL-3A	11.0 - 12.0		98										MC	
NL-3A	14.0 - 15.0		89										MC	
NL-3A	15.0 - 16.0		103										MC	
NL-3A	16.4 - 17.0		93										MC	
NL-3A	17.0 - 18.0		91										MC	
NL-3A	18.0 - 19.0		37										MC	
NL-3A	19.0 - 20.0		50										MC	
NL-3A	21.0 - 22.0		72										MC	
NL-3A	22.0 - 23.0		77										MC	
NL-3A	23.0 - 24.0		75										MC	
NL-3A	24.4 - 25.0		85										MC	
NL-3A	25.0 - 26.0		84										MC	
NL-3A	26.0 - 27.0		70										MC	
NL-3A	27.0 - 28.0		66										MC	
NL-3A	28.3 - 29.0		64										MC	
NL-3A	29.0 - 30.0		65										MC	
NL-3A	30.0 - 31.0		61										MC	
NL-3A	31.0 - 32.0		51										MC	
NL-3A	32.3 - 33.0		42	`									MC	
NL-3A	33.0 - 34.0		37										MC	
NL-3A	34.0 - 35.0		80										MC	
NL-3A	35.0 - 36.0		76										MC	
NL-3A	36.3 - 36.7		81										MC	
NL-3A	37.0 - 38.0		82										MC	
NL-3A	38.0 - 39.0		61										MC	
NL-3A	39.0 - 40.0		71										MC	
NL-3A	40.5 - 41.0		47										MC	
NL-3A	41.0 - 42.0		72										MC	

GeoEngineers, Inc.

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

Title:

CLP

Lab Manager

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	.IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
NL-3A	42.0 - 43.0		70										MC	
NL-3A	43.0 - 44.0		67										MC	
NL-3A	44.3 - 45.0		75										MC	
NL-3A	45.0 - 46.0		73										MC	
NL-3A	46.0 - 47.0		72										MC	
NL-3A	47.0 - 48.0		74										MC	
NL-3A	48.3 - 49.0		70										MC	
NL-3A	49.0 - 50.0		71										MC	
NL-3A	50.0 - 51.0		63										MC	
NL-3A	51.0 - 52.0													
NL-3A	53.3 - 54.0		54										MC	
NL-3A	54.0 - 55.0		55										MC	
NL-3A	55.0 - 56.0		61										MC	
NL-3A	56.3 - 57.0		68										MC	
NL-3A	57.0 - 58.0		68										MC	
NL-3A	58.0 - 59.0		68										MC	
NL-3A	59.0 - 60.0		52										MC	
NL-3A	61.3 - 62.0		55										MC	
NL-3A	62.0 - 63.0		56										MC	
NL-3A	63.0 - 64.0		57										MC	
NL-3A	65.6 - 66.0		58										MC	
NL-3A	66.0 - 67.0		57										MC	
NL-3A	67.0 - 68.0		64										MC	
NL-3A	70.0 - 71.0		64										MC	
NL-3A	71.0 - 72.0		52										MC	
NL-3A	72.4 - 73.0		60										MC	
NL-3A	73.0 - 74.0		60										MC	
NL-3A	74.0 - 75.0		56										MC	
NL-3A	75.0 - 76.0		57										MC	
NL-3A	76.4 - 77.0		64										MC	
NL-3A	77.0 - 78.0		63										MC	
NL-3A	78.0 - 79.0		56										MC	
NL-3A	79.0 - 80.0		66										MC	
NL-3A	81.0 - 82.0		53										MC	
NL-3A	82.0 - 83.0		66										MC	
NL-3A	83.0 - 84.0		65										MC	
NL-3A	85.0 - 86.0		53										MC	

GeoEngineers, Inc.

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

Title:

CLP

Lab Manager

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	LIMITS		SHEAR	R STRENG	TH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (KSF)	STRAIN %		NFINING URE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
NL-3A	86.0 - 87.0		50											MC	
NL-3A	87.0 - 88.0		57											MC	
NL-3A	88.5 - 89.0		54											MC	
NL-3A	89.0 - 90.0		55											MC	
NL-3A	90.0 - 91.0		60											MC	
NL-3A	91.0 - 92.0		59											MC	
NL-3A	94.0 - 95.0		59											MC	
NL-3A	95.0 - 96.0		50											MC	
NL-3A	96.3 - 97.0		59											MC	
NL-3A	97.0 - 98.0		60											MC	
NL-3A	98.0 - 99.0		56											MC	
NL-3A	99.0 - 100.0		52											MC	
NL-3A	100.6 - 101.0		54											MC	
NL-3A	101.0 - 102.0		52											MC	
NL-3A	102.0 - 103.0		54											MC	
NL-3A	103.0 - 104.0		54											MC	
NL-3A	105.0 - 106.0		62											MC	
NL-3A	106.0 - 107.0		30											MC	
NL-3A	108.6 - 109.0		57											MC	
NL-3A	109.0 - 110.0		56											MC	
NL-3A	110.0 - 111.0		52											MC	
NL-3A	111.0 - 112.0		53											MC	
NL-3A	112.7 - 113.0		35											MC	
NL-3A	114.0 - 115.5		25											MC	
NL-3A	116.0 - 117.5		58											MC	
NL-3A	120.4 - 121.0		63											MC	
NL-3A	121.0 - 122.0		63											MC	
NL-3A	122.0 - 123.0		62											MC	
NL-3A	123.0 - 124.0		62											MC	
NL-3A	124.4 - 125.0		65											MC	
NL-3A	125.0 - 126.0		64											MC	
NL-3A	126.0 - 127.0		64											MC	
NL-3A	127.0 - 128.0		64											MC	
NL-3A	129.1 - 130.0		63											MC	
NL-3A	130.0 - 131.0		62											MC	
NL-3A	131.0 - 132.0		60											MC	

SUMMARY OF LABORATORY TEST RESULTS

Project: Mid Barrataria Diversion Assigned By:

Project Number: 04.55124092

Boring: NL-3A

Current Date: 6/21/2013

Sample	Depth	Visual Classification	USCS	E(f)	W%	Dry Dens	Wet Dens	Sat	Shear Test	Angle	Cohesion	Unconf.	LL	PL	PI	TORVANE	Other
Number	_		-			(pcf)	(pcf)	8	Type		(psf)	Str.				(tsf)	Tests
NA	2.0	VSO DGR CHOA	CHOA		101	44	88	98	UU	0	187		141	40	101	0.20	
NA	3.0	VSO DGR CHOB	СНОВ		131	37	85	100	υυ	0	198		160	45	115	0.20	
NA	5.0	VSO GR CH3	CH3		56	67	103	97	UU	0	155		61	22	39	0.10	OC=5.5%
NA	7	VSO GR CH2 W/ LNS ML	CH2		53	69	106	100	UU	0	130		51	22	29	0.09	CON
NA	10	VSO GR CH3	CH3		67	61	101	100	UU	0	115		60	21	39	0.09	
NA	15	VSO GR CH4	CH4		95	47	92	100	UU	0	140		94	28	66	0.10	OC=5.5%
NA	17	 VSO GR CH2 W/ LNS ML	CH2		49	72	107	99	υU	0	206		54	19	35	0.13	CON
NA	19	SO GR CL4 W/ LNS ML	CL4		39	82	114	100	บบ		379		41	23	18	0.13	
NA NA	21	GR CH4	CH4		00	02	117	100	00	l Ŭ	3/3		74	24	50	0.00	
NA NA	22	VSO GR CH4	CH4		83	52	95	100	l uu	0	160		′⁺		50	0.10	
NA	23	GR CH4	CH4													0.10	OC=3.9%
																	SV, GSH
NA	25	GR CH4 W/ SIF	CH4		87	90	48	94					99	31	68		CON
NA	31	VSO GR CH4 W/ O	CH4		77	54	96	99	UU	0	194		88	27	61	0.12	1
NA	34	GR CH4	CH4										83	24	59		
NA	36	VSO GR CH4	CH4		78	54	97	100	UU	0	139					0.09	
NA		GR CH4	CH4										101	28	73		SV, GSH
NA		SO GR CH4	CH4		58	67	105	100	UU	0	269		72	22	50	0.15	
NA		SO GR CH4	CH4		68	59	99	99	UU	0	345		74	23	51	0.13	
NA		SO GR CH4	CH4		62	63	102	99	UU	0	370		79	24	55	0.20	
NA		M GR CH4	CH4		56	67	104	98	UU	0	541		77	28	49	0.30	CON
NA NA		M GR CH4	CH4		60	65	103	100	UU	0	636					0.30	1
NA NA		M GR CH4	CH4		64	62	101	99	UU	0	555		94	29	65	0.40	
NA		M GR CH4	CH4		66	61	101	100	UU	0	578		95	31	64	0.35	
NA		GR CH4	CH4										85	29	56		
NA NA		GR CH4 GR CH4	CH4 CH4									:	86	29	57		
NA NA		M GR CH4	CH4 CH4			66	102	98	1111	۱ ٫	754		90	28	62	0.40	
NA NA		GR CH4	CH4		57	66	103	90	UU	0	751		ا ہے ا	27	E0.	0.40	
NA NA		M GR CH3 W/ LYS ML	CH4		48	72	107	98	UU	0	733		85 72	27	58 47	0.35	
NA NA	100	GR CH3 W/ L13 ML	CH3		40	12	107	70	00	ľ	133		72 72	25 30	47 42	0.35	
NA NA		GR CH3 W/ SHELLS	CH3										12	الاد	42	! !	NTESTABL
NA		GR SC W/ SHELLS	SC		24											U	-200
NA		GR CH4 W/ SIF	CH4		58												-200
NA	1	ST GR CH4	CH4		66	61	101	100	υυ	0	1497		105	31	74	0.65	CON
NA		ST GR CH W/ SIF	CH		62	61	99	95	UU	Ö	1140		104	28	76	0.60	""
																	1

Remarks: "Confidential Information: Privileged & Confidential Work Product"

Fugro Consultants, Inc.

"Confidential Information; Privileged & Confidential Work Product"

Checked by: 04

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEIGHT (PCI) ATT	ERBERG LIMITS	SHEAR STRENGTH INFORMATION		
BORING	()	SOIL	MOISTURE				C STRAIN CONFINING TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%	WET DRY	LL	PL PI	(KSF) % PRESSURE (KSF) FAILURE	TYPE	COMMENTS
NL-6A	0.0 - 1.0		29					MC	
NL-6A	1.0 - 2.0		31					MC	
NL-6A	4.0 - 5.0		58					MC	
NL-6A	5.0 - 6.0		43					MC	
NL-6A	6.0 - 7.0		39				^	MC	
NL-6A	7.0 - 7.8		43					MC	
NL-6A	8.6 - 9.0		53					MC	
NL-6A	9.0 - 10.0		35					MC	
NL-6A	10.0 - 11.0		49					MC	
NL-6A	11.0 - 12.0		39					MC	
NL-6A	12.4 - 13.0		31					MC	
NL-6A	13.0 - 14.0		29					MC	
NL-6A	14.0 - 15.0		29					MC	
NL-6A	15.0 - 16.0		62					MC	
NL-6A	17.0 - 18.0		31					MC	
NL-6A	18.0 - 19.0		34					MC	
NL-6A	19.0 - 20.0		29					MC	
NL-6A	20.0 - 21.5		31					MC	
NL-6A	25.0 - 26.0		26					MC	
NL-6A	26.0 - 27.0		26					MC	
NL-6A	27.0 - 28.0		25					MC	
NL-6A	30.0 - 31.0		36			Y		MC	
NL-6A	31.0 - 32.0		42	`				MC	
NL-6A	32.4 - 33.0		43					MC	
NL-6A	33.0 - 34.0		36					MC	
NL-6A	34.0 - 35.0		39					MC	
NL-6A	35.0 - 36.0		32					MC	
NL-6A	37.0 - 38.0		56					MC	
NL-6A	38.0 - 39.0		31					MC	
NL-6A	39.0 - 40.0		42					MC	
NL-6A	42.0 - 43.0		55					MC	
NL-6A	43.0 - 44.5		28					MC	
NL-6A	48.4 - 49.0		58					MC	
NL-6A	49.0 - 50.0		52					MC	
NL-6A	50.0 - 51.0		48					MC	
NL-6A	51.0 - 52.0		54					MC	
NL-6A	53.0 - 54.0		52					MC	
NL-6A	54.0 - 55.0		41					MC	
NL-6A	55.0 - 56.0		42					MC	
NL-6A	56.6 - 57.0		39					MC	

"Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested.

GeoEngineers, Inc.

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WE	IGHT (PCF)	ATTER	RBERG L	IMITS		SHEAR S	STRENGTH INFORMA	TION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI		STRAIN	CONFINING	TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%	***	DICT		' -		(KSF)	%	PRESSURE (KSF)	FAILURE	TYPE	COMMETTE
NL-6A	57.0 - 58.0		39										MC	
NL-6A	58.0 - 59.0		47										MC	
NL-6A	60.7 - 61.0		56										MC	
NL-6A	61.0 - 62.0		55										MC	
NL-6A	62.0 - 63.0		57								<u> </u>		MC	
NL-6A	63.0 - 64.0		55										MC	
NL-6A	64.7 - 65.0		49										MC	
NL-6A	65.0 - 66.0		50										MC	
NL-6A	66.0 - 67.0		60										MC	
NL-6A	67.0 - 68.0		54										MC	
NL-6A	68.5 - 69.0		48										MC	
NL-6A	69.0 - 70.0		44										MC	
NL-6A	70.0 - 71.0		46										MC	
NL-6A	71.0 - 72.0		42										MC	
NL-6A	73.1 - 74.0		54										MC	
NL-6A	74.0 - 75.0		52										MC	
NL-6A	75.0 - 76.0		52										MC	
NL-6A	77.0 - 78.0		40										MC	
NL-6A	78.0 - 79.0		46										MC	
NL-6A	79.0 - 80.0		48										MC	
NL-6A	81.0 - 82.0		58										MC	
NL-6A	82.0 - 83.0		52										MC	
NL-6A	83.0 - 84.0		54										MC	
NL-6A	84.6 - 85.0		69										MC	
NL-6A	88.3 - 89.0		58										MC	
NL-6A	89.0 - 90.0		57										MC	
NL-6A	90.0 - 91.0		50			1							MC	
NL-6A	91.0 - 91.8		40										MC	
NL-6A	92.4 - 93.0		54										MC	
NL-6A	93.0 - 94.0		55										MC	
NL-6A	94.0 - 95.0		61										MC	
NL-6A	95.0 - 96.0		52										MC	
NL-6A	97.0 - 98.0		56										MC	
NL-6A	98.0 - 99.0		56										MC	
NL-6A	99.0 - 100.0		52										MC	
NL-6A	100.7 - 101.0	Medium gray clay (CH4)	56			90	30	60	0.64	6	8.78	Silt Streak	UU- USACE,AL	
NL-6A	101.0 - 102.0		54										MC	
NL-6A	102.0 - 103.0		55										MC	
NL-6A	103.0 - 104.0		54										MC	
NL-6A	104.5 - 105.0		58										MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEIG	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORM	ATION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	C	STRAIN		TYPE	TEST	COMMENTS
NUMBER NL-6A	FROM - TO 105.0 - 106.0	DESCRIPTION	% 58						(KSF)	%	PRESSURE (KSF)	FAILURE	TYPE MC	
NL-6A	106.0 - 107.0		52										MC	
NL-6A	107.0 - 108.0		58										MC	
NL-6A	108.4 - 109.0		47										MC	
NL-6A	109.0 - 110.0		26										MC	
NL-6A	112.4 - 113.0		58										MC	
NL-6A	113.0 - 114.0		55										MC	
NL-6A	114.0 - 115.0		55										MC	
NL-6A	115.0 - 116.0		59										MC	
NL-6A	116.3 - 117.0		53										MC	
NL-6A	117.0 - 118.0		32										MC	
NL-6A	118.0 - 119.0		33										MC	
NL-6A	119.0 - 120.0		32										MC	
NL-6A	120.7 - 121.0		37										MC	
NL-6A	121.0 - 122.0		31										MC	
NL-6A	122.0 - 123.0		26										MC	
NL-6A	123.0 - 124.0		33										MC	
NL-6A	125.3 - 126.0		36										MC	
NL-6A	126.0 - 127.0		70										MC	
NL-6A	129.0 - 130.0		40										MC	
NL-6A	130.0 - 131.0		38										MC	
NL-6A	131.0 - 132.0		37										MC	

"Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested.

GeoEngineers, Inc.

Project:	Mid Barataria Diversion	Technical Responsibility:	Z M		Quality	Assurance Office
Client:	GeoEngineers	Project No.: B13-018	PM:	RM	Date of Issue:	6/20/2013

Client:		GeoEngineers		-			No.:		B13-018	-	PM: RM				Issue:	6/20/2013
				ASTM DESIGNATION D2216 D4318 D2166 D2166 D2850												
			D2216		D4318		D2	166	D2166 D2			D422, C1:		17		
				Atte	rberg L	imits			Cohesion	g psi	(Grain Size	(%)	ing		
Boring	Depth		w					g _{dry}	U UU	fining	<u> </u>	g		Pass 0		
No.	(ft)	Classification	%	LL	PL	PI	g _{wet} pcf	pcf	psf psf	Confining Pressure psi	Gravel	Sand	Clay	% Passing #200	USCS	Remarks
NL-6A	0-1	St, Gr Fat CLAY with silt pockets	27.9 27.7	61	21	40	112.6 117.7	88.0 92.1	811.6 1249.9	0.2 11.7					(CH2)	
INL-OA	0-1	St, Gi i at GLAT with silt pockets	30.3	01	21	40	117.6	90.3	1392.1	23.1					(0112)	
NL-6A	1-2	St, Gr and Br Fat CLAY with tr of silt	36.9 35.8	82	26	56	115.5 113.3	84.3 83.4	1126.7 1354.0	0.5 12.0					(CH3)	
142 0/1		ot, or and or hat object which the original	36.1				113.6	83.5	1550.2	23.4					(00)	
NL-6A	4.4-5	M, Gr and Br Fat CLAY with silt pockets	39.7 41.6	52	24	28	114.2 111.3	81.7 78.5	578.8 711.5	1.5 13.0					(CH2)	
		,	33.1				117.8	88.5	1068.6	24.4					(21.1)	
NL-6A	6-7	So, Gr Fat CLAY with silt pockets	30.9 37.9	47	21	26	115.3 111.0	88.1 80.5	617.9 345.8	2.2 13.7					(CL4) (CH2)	3 Soil Types in Sample
			44.0				105.3	73.1	250.0	25.1					(CL4)	
			47.9				106.7	72.1	235.1	2.8						
NL-6A	8.6-9	So, Gr and Br Lean CLAY with clay pockets	46.2 41.8	36	23	13	106.5 109.9	72.9 77.5	274.5 395.4	14.3 25.7					(CL4)	
NL-6A	9.6-10.3	Alternating Layers Gr CLAY, SILT, and Silty SAND	29.3											92.4	(ML)	only 7.6 > #200
			58.7				103.2	65.2	356.4	3.5						
NL-6A	10.3-11	So, Gr CLAY with silt pockets and lenses with roots	57.5 57.4	65	27	38	103.7 104.3	65.8 66.2	357.7 378.7	15.0 26.4					(CH3)	
NII OA	40.4.40	On Oll Turith and and mate					101.0	00.2	070.7	20.1				74.0	(8.41.)	
NL-6A	12.4-13	Gr SILT with sand and roots	28.1											74.0	(ML)	
NL-6A	13-14	Gr Silty SAND	26.0	NP	NP	NP						57.2 38	3.8 4.0	42.8	(SM)	
NL-6A	14-15	Gr Silty SAND	25.5											26.0	(SM)	
NL-6A	15-15.6	So, Gr Fat CLAY with silt pockets and lenses	55.2 56.4	73	26	47	106.1 104.8	68.3 67.0	423.0 470.8	5.1 16.6					(CH4)	
		·	55.6				106.2	68.3	430.0	28.0						
NL-6A	16.8-17	Gr Silty SAND	20.6											44.5	(SM)	
NL-6A	17-17.3	Gr Silty SAND	25.2											32.0	(SM)	
NL-6A	17.3-17.8	vSo, Gr CLAY with sand pockets and SIS	55.3 60.2				106.5 107.9	68.5 67.3	251.5 207.5	5.8 17.3					(CH4)	Could not trim 3rd Point
NL-6A	18-19	Gr Sandy SILT	28.9											53.2	(ML)	

Project:	Mid Barataria Diversion	Technical Responsibility:	RM		C	Quality Assurance Officer
•		Project			Date of	
Client:	GeoEngineers	No.: B13-018	PM:	RM	Issue:	6/20/2013

Client:		GeoEngineers	No:: <u>B13-018</u> PM: <u>RM</u>										Issue:	6/20/2013				
								Α	STM DES	SIGNATIO	N							
			D2216		D4318	3	D2	166	D2166	D2	850		D422, 0	136 or				
				Atte	rberg L	imits			Coh	esion	g psi		Grain Si	ze (%)		ng		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry}	U psf	UU psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
NL-6A	19.3-20	Gr Silty SAND	19.2				gwet poi	po.	Por	per	0 11		O)	0)		30.6	(SM)	Romano
NL-6A	20-21.5	Gr SILT with sand and clay	33.1													71.9	(ML)	
NL-6A	25-26	M, Gr Fat CLAY with S SIS	46.5 41.6	79	26	53	115.5 111.0	78.8 78.4		614.5 511.3	8.4 19.9						(CH4)	
NL-6A	27-28	Gr Silty SAND	<u>41.4</u> 25.1				113.2	80.0		526.7	31.3					22.8	(SM)	
NL-6A	30-30.5	So, Gr Fat CLAY with SIS	50.8 51.2 50.7	69	26	43	107.9 108.3 108.1	71.6 71.6 71.7		439.5 495.4 455.6	10.1 21.6 33.0						(CH4)	
NL-6A	30.5-31	Gr SILT with sand	25.2				130.1	1.1.1		.30.0	50.0					74.4	(CH3)	
NL-6A	31-31.3	So, Alternating layers and lenses Gr CLAY, Silty CLAY, Sandy SILT, Silty SAND	36.8 35.9 35.3				119.7 118.0 120.5	87.5 86.8 89.0		395.2 317.1 444.7	10.4 21.9 33.3						(CL4)	Slumping Under Own Weight
NL-6A	31.7-32	Gr Silty SAND	26.1	V												71.2	(SM)	
NL-6A	33-33.6	So, Alternating layers and lenses of Silty CLAY, Sandy SILT, Silty SAND	33.1 43.2 42.9	43	25	18	122.0 112.7 117.7	91.7 78.6 82.4		323.7 300.6 300.2	11.1 22.6 34.0					90.1	(CL6)	Slumping Under Own Weight
NL-6A	37-38	Gr Silty SAND with O pockets and tr clay	27.4	NP	NP	NP										63.1	(SM)	NP Could Not Trim UU
NL-6A	38-39	So, Alternating layers CLAY, Silty CLAY, Clayey SILT with O pockets	40.3 38.9 38.9				117.2 118.7 115.2	83.5 85.4 82.9		499.1 585.5 377.3	12.9 24.4 35.8						(CL4)	
NL-6A	39-40	So, Gr Lean CLAY	45.2 38.0 44.1	48	23	25	112.7 112.4 114.9	77.6 81.4 79.7		360.5 486.1 428.6	13.2 24.7 35.8						(CL6)	
NL-6A	42-42.3	Gr Silty SAND with clay pockets	25.3 25.0 24.7				128.2 127.4 133.4	102.3 101.8 106.9		4393.3 6788.8 9953.1	14.3 25.8 37.2						(SM)	Slumping Under Own Weight Point #1 Maxed out 100lb. Ring
NL-6A	43-44	Gr Silty SAND with tr O		NP	NP	NP											(SM)	
NL-6A	48.4-49	M, Gr Fat CLAY	49.5 45.6 52.1	71	25	46	108.5 110.5 107.0	72.6 75.8 70.3		738.3 750.4 649.1	16.5 28.0 39.4						(CH4)	

Project:	Mid Barataria Diversion	Technical Responsibility:	Z M		Quality	Assurance Office
Client:	GeoEngineers	Project No.: B13-018	PM:	RM	Date of Issue:	6/20/2013

Client:		GeoEngineers		-			NO.:		D 13-010	_		PIVI:		RIVI		13340.	6/20/2013
								Α	STM DESIGNATIO	N							
			D2216		D4318		D2	166	D2166 D2	850		D422,	C136	or C11			
				Atte	rberg L	imits			Cohesion	g psi		Grain S	ize (%	5)	ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U UU psf psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
NL-6A	51-51.7	M, Gr Lean CLAY with silt pockets and lenses	41.7 42.5 41.7	46	22	24	114.6 114.1 111.3	80.6 80.0 78.5	686.5 645.2 630.7	17.6 29.1 40.5						(CL6)	Void in 3rd point
NL-6A	53-54	M, Gr Fat CLAY with SIS	46.3 46.6 45.3	61	23	38	111.0 113.1 110.2	75.8 77.1 75.8	586.0 844.0 844.6	18.3 29.8 41.2						(CH3)	
NL-6A	57-58	M, Gr Fat CLAY	52.5 48.3	50	23	27	107.3 108.8 104.9	70.3 73.4	856.8 765.4 744.1	19.8 31.3						(CH4)	
NL-6A	59-60	M, Gr Fat CLAY	52.8 44.4 44.0 43.7				111.9 110.6	68.6 77.5 76.8	812.9 895.0 828.8	42.7 20.5 32.0 434						(CH4)	
NL-6A	63-63.6	M, Gr Fat CLAY	51.8 52.2 52.5	86	25	61	110.7 106.4 106.5 106.4	77.0 70.1 69.9 69.8	828.8 882.9 842.2 872.9	22.0 33.5 44.9						(CH4)	
NL-6A	66-67	M, Gr Fat CLAY	55.9 54.6 52.5				103.8 103.8 104.2	66.6 67.1 68.3	942.7 882.5 766.35	23.1 34.6 46.0						(CH4)	
NL-6A	70-71	St, Gr Fat CLAY	53.4 55.3 52.4	87	30	57	106.4 106.4 106.3	69.4 68.5 69.7	1177.0 1088.4 1186.7	24.5 36.0 47.4						(CH4)	
NL-6A	73.1-74	St, Gr Fat CLAY	50.5 50.5 49.2	V			107.6 107.7 107.8	71.5 71.6 72.2	1383.4 1369.6 1287.3	25.6 37.1 48.5						(CH4)	
NL-6A	75-76	St, Gr Fat CLAY	50.7 50.6 48.2	84	22	62	107.5 107.7 107.0	71.3 71.3 72.1	1430.6 973.8 1100.0	26.4 37.9 49.3						(CH4)	
NL-6A	78-79	St, Gr Fat CLAY	47.6 46.7 48.4	92	23	69	109.1 109.3 108.9	73.9 74.7 73.1	1385.2 1506.0 1341.5	27.5 39.0 50.4						(CH4)	
NL-6A	81-82	St, Gray Fat CLAY with SIS	55.2 57.1 53.0				107.5 106.1 106.3	69.3 67.5 69.5	1327.0 1293.0 1308.2	28.6 40.1 51.5						(CH4)	
NL-6A	83.5-84	M, Gr Fat CLAY with SIS	56.6 54.7 56.3	79	21	58	103.9 104.1 103.5	66.3 67.3 66.2	917.2 809.0 863.0	29.3 40.8 52.2						(CH4)	
NL-6A	84-84.6	Missing Sample							222.0								
NL-6A	88-89	St, Gr Fat CLAY with SIS	59.8 50.8 59.9				104.9 104.2 104.6	65.6 69.1 65.4	1408.5 1598.0 1565.3	31.1 42.6 54.0						(CH4)	Void at Bottom / More Silt in B Specimen tha A & C
NL-6A	89-90	St, Gr Fat CLAY with SIS		83	30	53										(CH4)	
NL-6A	93-94	St, Gr Fat CLAY with SIS	57.2 55.6 56.6	76	22	54	106.0 107.6 105.6	67.4 69.2 67.45	1584.9 1578.9 1498.1	32.9 44.1 55.5						(CH4)	

Project:	Mid Barataria Diversion	Technical Responsibility:	Z M		Quality	Assurance Office
Client:	GeoEngineers	Project No.: B13-018	PM:	RM	Date of Issue:	6/20/2013

Ciletit.		GeoLiigiileeis		•					<u> </u>	-		ı ıvı.		IXIVI		•	0/20/2013
								A	STM DESIGNATIO	N							
			D2216		D4318		D2	166	D2166 D2	850		D422,	C136	or C11			
				Atte	rberg L	imits			Cohesion	psi		Grain S	Size (%	6)	ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U UU psf psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
NL-6A	98-99	M, Gr Fat CLAY with SIS	54.7 54.7 53.8				103.7 103.6 103.8	67.1 67.0 67.5	923.9 920.9 1002.4	34.8 46.3 57.7						(CH4)	
NL-6A	100.7-101	Missing Sample															
NL-6A	103-104	St, Gr Fat CLAY with SIS	53.3 52.2 52.5				107.0 107.2 106.6	69.8 70.4 69.9	1442.3 1431.5 1483.9	36.6 48.1 59.5						(CH4)	
NL-6A	106-107	St, Gr Fat CLAY with SIS	51.4 51.1 52.9				105.7 106.4 106.2	69.8 70.4 69.5	1629.1 1735.9 1624.8	59.5 37.7 49.2 60.6						(CH4)	Flat Face on Specimen
NL-6A	109-109.3	St, Gr Fat CLAY with sand pockets and shells	74.3 58.1 54.3	70	21	49	102.0 104.0 105.4	58.5 65.8 68.2	1227.9 1175.0 1168.5	38.8 50.3 61.7						(CH3)	Some voids due to Shel Pockets / No samples left, more Sand pockets
NL-6A	113-114	St, Gr Fat CLAY	54.0 53.5 53.4				104.9 104.7 104.3	68.1 68.2 68.0	1164.7 1352.7 1190.9	40.2 21.7 63.1						(CH4)	
NL-6A	116.3-117	St, Gr Fat CLAY with SIS and tr shells	56.1 56.1 56.1	97	25	72	104.6 104.2 104.2	67.0 66.7 66.7	1896.9 1746.8 1829.1	41.3 52.8 64.2						(CH4)	
NL-6A	119-120	vSt, Gr Lean CLAY with SIS and layers	30.4 30.4 30.7				122.1 102.9	93.7 92.7	3085.5 2545.2	42.4 53.9 65.3						(CL6)	Brittle, less than 2:1 Ratio / 2 specimens only
NL-6A	121-122	Alternating Layers and Lenses of vSt to St gnGr and IGr Fat to Lean CLAY with silty clay and S Silt	32.9	53	18	35				43.2						(CH2)	Unable to trim any specimen, too brittle with Sandy Silt Layers / Mixed sample for Atterberg
NL-6A	126-127	vSt, Brittle, gnGr and IGr Fat CLAY with jointed S SIS	36.2 36.1 36.3				114.1 117.5 119.0	83.8 86.3 87.3	2945.9 3284.6 3672.1	44.9 56.5 67.9						(CH3)	Brittle - Jointed / Erratic Perimeter
NL-6A	129-130	Very Firm, Brittle,gnGr and IGr Fat CLAY with jointed SIS and layers	35.2 34.1				118.0 116.8	87.3 87.1	2905.3 2369.2	46.1 57.6 69.0						(CH3)	Brittle - Jointed / with calcs / could not trim 3rd sample
NL-6A	131-132	Alternating Layers of vSt, Brittle, gnGr and IGr Fat CLAY with jointed silty SS and pockets	35.9 36.0 35.5	72	18	54	118.3 118.4 118.7	87.1 87.1 87.6	3029.7 2132.6 3180.6	46.8 58.3 69.7						(CH3)	Brittle - Jointed

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG LI	IMITS		SHEAR S	STRENGTH INFORM	ATION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	С	STRAIN	CONFINING	TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%		DITT	LL		• •	(KSF)	%	PRESSURE (KSF)	FAILURE	TYPE	00 <u>-</u> 1110
NL-8A	1.0 - 2.0		33										MC	
NL-8A	5.3 - 6.0		40										MC	
NL-8A	6.0 - 7.0		42										MC	
NL-8A	7.0 - 8.0		37										MC	
NL-8A	10.0 - 11.0		36										MC	
NL-8A	11.0 - 12.0		39										MC	
NL-8A	13.3 - 14.0		35										MC	
NL-8A	14.0 - 15.0		44										MC	
NL-8A	15.0 - 16.0		35										MC	
NL-8A	17.2 - 18.0		47										MC	
NL-8A	18.0 - 19.0		35										MC	
NL-8A	19.0 - 20.0		34										MC	
NL-8A	21.0 - 22.0		33										MC	
NL-8A	22.0 - 23.0		33										MC	
NL-8A	23.0 - 24.0		32										MC	
NL-8A	24.5 - 25.0		42										MC	
NL-8A	25.0 - 26.0		37										MC	
NL-8A	26.0 - 27.0		40										MC	
NL-8A	27.0 - 28.0		46										MC	
NL-8A	28.5 - 29.0		37										MC	
NL-8A	29.0 - 30.0		39										MC	
NL-8A	30.0 - 31.0		33										MC	
NL-8A	31.0 - 32.0		63										MC	
NL-8A	33.0 - 34.0		66										MC	
NL-8A	34.0 - 35.0		72										MC	
NL-8A	35.0 - 36.0		49										MC	
NL-8A	37.0 - 38.0		48										MC	
NL-8A	38.0 - 39.0		53										MC	
NL-8A	39.0 - 40.0		37										MC	
NL-8A	40.5 - 41.0		66										MC	
NL-8A	41.0 - 42.0		58										MC	
NL-8A	42.0 - 43.0		57										MC	
NL-8A	43.0 - 44.0		39										MC	
NL-8A	44.7 - 45.0		52										MC	
NL-8A	45.0 - 46.0		51										MC	
NL-8A	46.0 - 47.0		36										MC	
NL-8A	47.0 - 48.0		39										MC	
NL-8A	48.6 - 49.0		36										MC	
NL-8A	49.0 - 50.0		36										MC	

GeoEngineers, Inc.

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 "Confidential Information; Privileged & Confidential Work Product"

Disclaimer: The results presented relate only to those samples tested. Soil Description

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Lab Manager Title:

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR ST	TRENGTH INFORMA	TION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	C	STRAIN	CONFINING	TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%		2				(KSF)	%	PRESSURE (KSF)	FAILURE	TYPE	
NL-8A	50.0 - 51.0		34 39										MC	
NL-8A	51.0 - 52.0												MC	
NL-8A	53.0 - 54.0		55										MC	
NL-8A	54.0 - 55.0		50										MC	
NL-8A	55.0 - 56.0		60										MC	
NL-8A	57.0 - 58.0		38										MC	
NL-8A	58.0 - 59.0		66										MC	
NL-8A	59.0 - 60.0		46										MC	
NL-8A	60.0 - 61.0		46										MC	
NL-8A	61.0 - 62.0		53										MC	
NL-8A	62.5 - 64.0		51										MC	
NL-8A	64.4 - 65.0		49										MC	
NL-8A	65.0 - 66.0		49										MC	
NL-8A	66.0 - 67.0		53										MC	
NL-8A	67.0 - 68.0		61										MC	
NL-8A	68.4 - 69.0		58										MC	
NL-8A	69.0 - 70.0		59										MC	
NL-8A	70.0 - 71.0		55										MC	
NL-8A	71.0 - 72.0		53										MC	
NL-8A	73.0 - 74.0		55										MC	
NL-8A	74.0 - 75.0		52										MC	
NL-8A	75.0 - 76.0		51										MC	
NL-8A	76.6 - 77.0		53										MC	
NL-8A	77.0 - 78.0		53										MC	
NL-8A	78.0 - 79.0		53										MC	
NL-8A	79.0 - 80.0		53										MC	
NL-8A	80.4 - 81.0		55										MC	
NL-8A	81.0 - 82.0		55										MC	
NL-8A	82.0 - 83.0		54										MC	
NL-8A	83.0 - 84.0	Stiff gray clay (CH3)	56	105.8	68.5	95	35	60	1.22	7	6.12	SLS (60°)	MC,UU- USACE,AL	
NL-8A	84.4 - 85.0		58										MC	
NL-8A	85.0 - 86.0		58										MC	
NL-8A	86.0 - 87.0		56										MC	
NL-8A	87.0 - 88.0		51										MC	
NL-8A	88.5 - 89.0		36										MC	
NL-8A	89.0 - 90.0		27										MC	
NL-8A	90.0 - 91.0		47										MC	
NL-8A	91.0 - 92.0		42										MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Lab Manager Title:

	DEPTH (FT)			UNIT WEIGHT (PCF)	ATTERBERG	LIMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET DRY	LL PL	PI	C STRAIN CONFINING TYPE (KSF) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
NL-8A	93.0 - 94.0		53					MC	
NL-8A	94.0 - 95.0		51					MC	
NL-8A	95.0 - 96.0		52					MC	
NL-8A	96.5 - 97.0		49					MC	
NL-8A	97.0 - 98.0		51					MC	
NL-8A	98.0 - 99.0		52					MC	
NL-8A	99.0 - 100.0		52					MC	
NL-8A	100.6 - 101.0		49					MC	
NL-8A	101.0 - 102.0		48					MC	
NL-8A	102.0 - 103.0		53					MC	
NL-8A	103.0 - 104.0		53					MC	
NL-8A	105.2 - 106.0		31					MC	
NL-8A	106.0 - 107.0		51					MC	
NL-8A	107.0 - 108.0		51					MC	
NL-8A	109.1 - 110.0		52					MC	
NL-8A	110.0 - 111.0		55					MC	
NL-8A	111.0 - 112.0		49					MC	
NL-8A	112.3 - 113.0		51					MC	
NL-8A	113.0 - 114.0		51					MC	
NL-8A	118.2 - 119.0		45					MC	
NL-8A	120.0 - 121.5		45					MC	
NL-8A	122.5 - 124.0		51					MC	
NL-8A	125.1 - 126.0		53					MC	
NL-8A	126.0 - 127.0		56					MC	
NL-8A	127.0 - 128.0		62					MC	
NL-8A	128.4 - 129.0		61					MC	
NL-8A	129.0 - 130.0		63					MC	
NL-8A	130.0 - 131.0		61					MC	
NL-8A	131.0 - 132.0		63					MC	

Disclaimer: The results presented relate only to those samples tested.

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

SUMMARY OF LABORATORY TEST RESULTS

Project: M	Mid Barataria	Diversion		Assigned	By:	
------------	---------------	-----------	--	----------	-----	--

Project Number: 04.55124092 Boring: NL-8A

Current Date: 7/18/2013

Sample Number	Depth	Visual Classification	uscs	E (f)	w*	Dry Dens (pcf)	Wet Dens (pcf)	Sat %	Shear Test Type	Angle	Cohesion (psf)	Unconf. Comp. Str.	LL	PL	PI	TORVANE (tsf)	Other Tests
NA	1	GR CH3	СНЗ				_						64	25	39		OC=7.2%
NA		SO BR & GR CH2 W/ ARS SP	CH2		38	83	113	97	UU	0	309		51	21	30	0.40	ł i
NA		SO BR & GR CL4 W/ O	CL4		41	81	115	100	UU	0	335		42	22	20	0.45	1 !
NA		GR CH2	CH2		44												-200
NA		VSO GR CH2 W/ LYS ML	CH2		51	71	107	100	UU	0	181					0.03	f 1
NA .	24.5	GR CH2	CH2		31												-200
NA	26	SO GR CH3 W/ LNS ML	CH3		50	71	107	100	UU	0	467		62	19	43	0.25	CON
NA	32.8	GR CL4	CL4		28												-200
NA	34	SO BR & GR CH4 W/ LYS ML	CH4		59	66	104	100	UU	0	359		73	20	53	0.30	1
NA	41	M BR CL6 W/ LNS & ARS SP	CL6		35	88	119	100	ŬÜ	0	587		43	17	26	0.35	CON
NA		M GR CH3 W/ LNS ML	CH3		55	68	105	100	UU	0	536					0.30	
NA	53	M GR CH3 W/ LYS ML	CH3		50	72	108	100	UU	0	727		64	23	41	0.30	1 1
NA		M GR CH4	CH4		59	65	103	99	UU	0	908	ļ	89	31	58	0.55	1 1
NA	73	M GR CH4	CH4		54	69	106	100	UU	0	993		85	31	54	0.55	1 1
NA		M GR CH4 W/ SHELLS	CH4		60	63	101	97	UU	0	516		-	1		0.30	CON
NA		ST GR CH4 W/ LYS ML	CH4		52	70	107	100	UU	0	1191					0.60	1 1
NA		ST GR CH4 W/ LNS ML	CH4		54	68	105	99	UU	0	1238	ŀ	84	30	54	0.60	1 1
NA	110	ST GR CH4 W/ LNS ML	CH4		56	68	105	100	UU	0	1539		1			0.60	1 1
NA		GR SM	SM		27												-200
NA		GR CH3	CH3									1	70	19	51		
NA NA		GR CH4	CH4					'	-				82	24	58		! !
NA	129	ST GR CH4 W/ LNS ML	CH4		69	60	101	100	UU	0	1494					0.70	

Remarks: "Confidential Information: Privileged & Confidential Work Product"
Fugro Consultants, Inc. "Confidential Information; Privileged & Confidential Work Product"

Checked by: 04

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEIG	GHT (PCF)	ATTE	RBERG	LIMITS		SHEAR	R STRE	NGTH IN	IFORMAT	ION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	С	STRAIN		CONFINI		TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%	***	DICI		1 -		(ksf)	%	PRE	ESSURE	(KSF)	FAILURE	TYPE	COMMENTO
NL-9A	0.0 - 0.8		23												MC	
NL-9A	6.3 - 7.0		33												MC	
NL-9A	7.0 - 8.0		33												MC	
NL-9A	9.3 - 10.0		37												MC	
NL-9A	10.0 - 11.0		37												MC	
NL-9A	11.0 - 12.0		37												MC	
NL-9A	13.0 - 14.0		39												MC	
NL-9A	14.0 - 15.0		38												MC	
NL-9A	15.0 - 16.0		35												MC	
NL-9A	16.6 - 17.0		43												MC	
NL-9A	17.0 - 18.0		43												MC	
NL-9A	18.0 - 19.0		33												MC	
NL-9A	19.0 - 20.0		37												MC	
NL-9A	20.0 - 21.5		39												MC	
NL-9A	22.5 - 24.0	Very soft gray clay (CL4)	34			38	24	14							MC,AL	
NL-9A	25.0 - 26.5		34												MC	
NL-9A	27.5 - 29.0		33												MC	
NL-9A	30.0 - 31.5	Very soft gray clay (CL4)	35			36	23	13							MC,AL	
NL-9A	32.6 - 33.0		39												MC	
NL-9A	33.0 - 34.0		32												MC	
NL-9A	34.0 - 35.0		36												MC	
NL-9A	35.0 - 36.0		30												MC	
NL-9A	36.0 - 37.5		27												MC	
NL-9A	37.5 - 39.0		30												MC	
NL-9A	39.0 - 40.0		34												MC	
NL-9A	41.0 - 42.5														M200	65.0% sand / 35.0% fines
NL-9A	43.5 - 45.0														M200	70.8% sand / 29.2% fines
NL-9A	46.0 - 47.5		32												MC,H	21.0% sand / 65.2% silt / 13.8% clay
NL-9A	48.5 - 50.0		34												MC	
NL-9A	51.0 - 52.5	Soft gray clay with sand (CL4)	30			30	19	11							MC,AL,M200	56.0% sand / 44.0% fines
NL-9A	53.5 - 55.0		28												MC,M200	55.9% sand / 44.1% fines
NL-9A	56.0 - 57.5		32												MC,H	35.8% sand / 55.6% silt / 8.6% clay
NL-9A	58.5 - 60.0		30												MC	
NL-9A	63.5 - 65.0														M200	39.4% sand / 60.6% fines
NL-9A	66.0 - 67.5		39												MC	
NL-9A	68.5 - 70.0														M200	62.0% sand / 38.0% fines
NL-9A	73.5 - 75.0														M200	68.1% sand / 31.9% fines
NL-9A	81.0 - 82.5		36												MC	
NL-9A	83.5 - 85.0		43			37	22	15							MC,AL	
NL-9A	86.0 - 87.5		37												MC,M200	44.2% sand / 55.8% fines

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG	LIMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (ksf)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
NL-9A	93.5 - 95.0		35										MC,H	35.3% sand / 55.1% silt / 9.6% clay
NL-9A	98.5 - 100.0												M200	70.1% sand / 29.9% fines
NL-9A	106.0 - 107.5												M200	47.1% sand / 52.9% fines
NL-9A	108.5 - 110.0		37										MC	
NL-9A	111.0 - 112.5		60			89	28	61					MC,AL	
NL-9A	113.5 - 115.0		48										MC	
NL-9A	118.0 - 119.0		33										MC	
NL-9A	119.0 - 120.0		29										MC	
NL-9A	121.0 - 122.5		42										MC	
NL-9A	123.5 - 125.0		46										MC	
NL-9A	126.0 - 127.5		47			86	34	52					MC,AL	
NL-9A	128.5 - 130.0		55										MC	

"Confidential Information; Privileged & Confidential Work Product"

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEIG	GHT (PCF)	ATTE	RBERG	LIMITS		SHEAR	R STRE	NGTH IN	IFORMAT	ION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	С	STRAIN		CONFINI		TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%	***	DICI		1 -		(ksf)	%	PRE	ESSURE	(KSF)	FAILURE	TYPE	COMMENTO
NL-9A	0.0 - 0.8		23												MC	
NL-9A	6.3 - 7.0		33												MC	
NL-9A	7.0 - 8.0		33												MC	
NL-9A	9.3 - 10.0		37												MC	
NL-9A	10.0 - 11.0		37												MC	
NL-9A	11.0 - 12.0		37												MC	
NL-9A	13.0 - 14.0		39												MC	
NL-9A	14.0 - 15.0		38												MC	
NL-9A	15.0 - 16.0		35												MC	
NL-9A	16.6 - 17.0		43												MC	
NL-9A	17.0 - 18.0		43												MC	
NL-9A	18.0 - 19.0		33												MC	
NL-9A	19.0 - 20.0		37												MC	
NL-9A	20.0 - 21.5		39												MC	
NL-9A	22.5 - 24.0	Very soft gray clay (CL4)	34			38	24	14							MC,AL	
NL-9A	25.0 - 26.5		34												MC	
NL-9A	27.5 - 29.0		33												MC	
NL-9A	30.0 - 31.5	Very soft gray clay (CL4)	35			36	23	13							MC,AL	
NL-9A	32.6 - 33.0		39												MC	
NL-9A	33.0 - 34.0		32												MC	
NL-9A	34.0 - 35.0		36												MC	
NL-9A	35.0 - 36.0		30												MC	
NL-9A	36.0 - 37.5		27												MC	
NL-9A	37.5 - 39.0		30												MC	
NL-9A	39.0 - 40.0		34												MC	
NL-9A	41.0 - 42.5														M200	65.0% sand / 35.0% fines
NL-9A	43.5 - 45.0														M200	70.8% sand / 29.2% fines
NL-9A	46.0 - 47.5		32												MC,H	21.0% sand / 65.2% silt / 13.8% clay
NL-9A	48.5 - 50.0		34												MC	
NL-9A	51.0 - 52.5	Soft gray clay with sand (CL4)	30			30	19	11							MC,AL,M200	56.0% sand / 44.0% fines
NL-9A	53.5 - 55.0		28												MC,M200	55.9% sand / 44.1% fines
NL-9A	56.0 - 57.5		32												MC,H	35.8% sand / 55.6% silt / 8.6% clay
NL-9A	58.5 - 60.0		30												MC	
NL-9A	63.5 - 65.0														M200	39.4% sand / 60.6% fines
NL-9A	66.0 - 67.5		39												MC	
NL-9A	68.5 - 70.0														M200	62.0% sand / 38.0% fines
NL-9A	73.5 - 75.0														M200	68.1% sand / 31.9% fines
NL-9A	81.0 - 82.5		36												MC	
NL-9A	83.5 - 85.0		43			37	22	15							MC,AL	
NL-9A	86.0 - 87.5		37												MC,M200	44.2% sand / 55.8% fines

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG	LIMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (ksf)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
NL-9A	93.5 - 95.0		35										MC,H	35.3% sand / 55.1% silt / 9.6% clay
NL-9A	98.5 - 100.0												M200	70.1% sand / 29.9% fines
NL-9A	106.0 - 107.5												M200	47.1% sand / 52.9% fines
NL-9A	108.5 - 110.0		37										MC	
NL-9A	111.0 - 112.5		60			89	28	61					MC,AL	
NL-9A	113.5 - 115.0		48										MC	
NL-9A	118.0 - 119.0		33										MC	
NL-9A	119.0 - 120.0		29										MC	
NL-9A	121.0 - 122.5		42										MC	
NL-9A	123.5 - 125.0		46										MC	
NL-9A	126.0 - 127.5		47			86	34	52					MC,AL	
NL-9A	128.5 - 130.0		55										MC	

"Confidential Information; Privileged & Confidential Work Product"

Southern Earth Sciences, Inc.

Laboratory Test Results

Project:	Mid Barataria Diversion	Technical Responsibility:	Z M			Quality Assurance Officer
Client:	GeoEngineers	Project No.: B13-018	PM:	RM	Date of Issue:	7/26/2013

								A	STM DESIGNATIO	N							
			D2216		D4318	1	D2	166	D2166 D28			D422, C	136 or				
				Atte	rberg L	imits			Cohesion	g e psi		Grain Siz	e (%)		ing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U UU psf psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
NL-9A	0-0.8	M, Gr Lean CLAY with Silt Pockets and Small Roots	26.0 26.3				108.7 116.6	86.2 92.2	739.2 1420.5	0.2 11.4						(CL6)	Sample 3 had roots & could not be trimmed for UU % Organic = 3.6
NL-9A	7-8	So, Gr Lean CLAY with Silt Pockets and Streaks	43.4 44.8 43.0	49	23	26	113.5 114.2 113.3	79.2 78.8 78.8	366.5 350.9 406.2	2.4 13.6 24.9						(CL4)	% Organic = 2.8
NL-9A	9.3-10	So, Gr Lean CLAY with Silt Pockets and Lenses	35.4 35.7 38.0				123.1 118.3 119.4	90.8 87.1 86.5	762.2 499.4 483.1	3.0 14.3 25.5						(CL6)	
NL-9A	11-11.8	So, Gr Lean CLAY with S Silt Layers	35.2 34.0 34.6			7	123.0 125.1 124.8	90.9 93.3 92.7	437.6 466.5 391.3	3.6 14.9 26.1						(CL4)	
NL-9A	14-15	So, Gr Lean CLAY with Silt Layers	34.1 34.8 35.3	35	23	12	122.3 122.4	91.1 90.4	365.0 408.8	4.6 27.1						(CL4)	
NL-9A	16-17	So, Gr Lean CLAY with Silt Layers	36.5 37.0 37.0		1		118.6 118.6 117.4	86.9 86.6 85.7	313.0 343.2 258.8	5.2 16.5 23.7						(CL4)	
NL-9A	17-18	So, Gr Lean CLAY with S Silt	35.8 37.0 38.5	36	24	12	118.0 116.5 120.0	86.9 85.0 86.6	334.5 309.4 255.3	5.5 16.8 28.0						(CL4)	
NL-9A	19-19.9	No Sample															
NL-9A	35.2-35.8	M, Gr Lean CLAY with Fine Sand and Silt	34.0	45	24	21										(CL6)	
NL-9A	38-39	Gr SILT with Clay and Fine Sand	31.5												77.1	(ML)	
NL-9A	39-39.8	Gr SILT with Fine Sand and Clay	28.7	32	26	6										(ML)	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Lab Manager Title:

	DEPTH (FT)			UNIT WEIGHT (PCF)	ATTERBERG LIMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET DRY	LL PL PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PT-1	10.0 - 12.0	Medium dense gray clayey silt (ML)	84				MC,H	5.1% sand / 54.5% silt / 40.4% clay
PT-1	12.0 - 14.0	Soft gray clay with sand (CL6)	82				MC,H	2.9% sand / 35.0% silt / 62.1% clay
PT-1	14.0 - 16.0	Soft gray clay (CL6)	90				MC,H	0.2% sand / 24.6% silt / 75.2% clay
PT-1	20.0 - 22.0	Medium gray clay with trace organic matter (CH4)	87				MC	
PT-1	22.0 - 24.0	Medium gray clay (CL6)	33				MC	
PT-1	24.0 - 26.0	Loose gray clayey silt with 1.5" sand layer (ML)	40				MC,H	5.0% sand / 86.4% silt / 8.6% clay
PT-1	28.0 - 30.0	Dense gray clayey silt with sand pockets (ML)	32				MC,H	4.4% sand / 85.5% silt / 10.1% clay
PT-1	32.0 - 34.0	Medium dense gray clayey silt with sand (ML)	40				MC,H	2.8% sand / 60.9% silt / 36.3% clay
PT-1 SA	18.0 - 20.0	Dense gray clayey silt with sand (ML)	25				MC,H	1.8% sand / 77.5% silt / 20.7% clay
PT-1 S6B	14.0 - 16.0	Medium dense gray clayey sand (SC)	100				MC,Dry Sieve	83.3% sand / 16.7% fines
PT-1 SB	18.0 - 20.0	Medium dense gray sandy silt with clay (ML)	83				MC,H	46.4% sand / 49.5% silt / 4.1% clay

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Project ID: 18274-001-00

Technical Responsibility: CLP

Title: Lab Manager

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG I	IMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PT-2	3.0 - 5.0	Medium gray clay with silt pockets (CL4)	32			36	23	13		MC,AL	
PT-2	8.0 - 10.0	Very loose gray clayey silt (ML)	33							MC,H	4.0% sand / 82.1% silt / 13.9% clay
PT-2	13.0 - 15.0	Firm gray clayey silt (ML)	50							MC,H	1.6% sand / 67.6% silt / 30.8% clay
PT-2	18.0 - 20.0	Very loose brown and gray clayey silt with trace shells (ML)	48							MC,H	4.6% sand / 52.6% silt / 42.8% clay
PT-2	23.0 - 25.0	Very loose gray sandy silt with clay (ML)	33							MC,H	21.7% sand / 66.9% silt / 11.4% clay
PT-2	28.0 - 30.0	Very loose brown and gray sandy silt (ML)	25							MC,H	42.4% sand / 50.3% silt / 7.3% clay
PT-2	32.0 - 34.0	Firm brown and gray sandy silt (ML)	28							MC,H	32.3% sand / 62.3% silt / 5.4% clay
PT-2	36.0 - 38.0	Very loose brown and gray sandy silt with clay (ML)	29							MC,H	30.1% sand / 56.9% silt / 13.0% clay
PT-2	40.0 - 42.0	Very loose gray silty sand with clay and 1" sand layer (SM)	26							MC,H	47.1% sand / 42.1% silt / 10.8% clay
PT-2	44.0 - 46.0	Firm gray sandy silt with clay (ML)	28							MC,H	42.2% sand / 46.5% silt / 11.3% clay
PT-2	48.0 - 50.0	Loose gray sandy silt with clay and 1.5" sand layer (ML)	29							MC,H	38.8% sand / 51.8% silt / 9.4% clay
PT-2	52.0 - 54.0	Loose gray clayey silt with sand (ML)	32							MC,H	18.9% sand / 55.2% silt / 25.9% clay
PT-2	56.0 - 58.0	Firm gray sandy silt with clay (ML)	27							MC,H	40.3% sand / 48.7% silt / 11.0% clay
PT-2	62.0 - 64.0	Stiff gray clay with silt pockets (CL6)	51							MC,H	0.2% sand / 35.0% silt / 64.8% clay
PT-2	66.0 - 68.0	Firm gray sandy silt with clay (ML)	27							MC,H	36.5% sand / 49.0% silt / 14.5% clay
PT-2	70.0 - 72.0	Medium gray clay (CL4)	63							MC,H	0.4% sand / 23.3% silt / 76.3% clay
PT-2	74.0 - 76.0	Firm gray sandy silt with clay (ML)	27							MC,H	36.4% sand / 50.5% silt / 13.1% clay

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

Date: 11/22/2013

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG LI	IMITS	SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN (ksf) %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-1	13.0 - 15.0	Medium dense gray silty sand (SM)	42									MC,H	76.2% sand / 23.4% silt / 0.4% clay
PZ-1	18.0 - 20.0	Soft gray clay (CL4)	53									MC,H	0.6% sand / 44.4% silt / 55.0% clay
PZ-1	23.0 - 25.0	Soft gray clay with peat and trace sand (CL6)	87									MC,H	1.7% sand / 24.4% silt / 73.9% clay
PZ-1	28.0 - 30.0	Dense gray silty sand (SM)	28									MC,DH	
PZ-1	33.0 - 35.0	Medium dark gray clay with silt lenses (CL4)	40									MC,H	0.8% sand / 45.2% silt / 54.0% clay
PZ-1-S4A	13.0 - 15.0	Very soft gray clay (CL4)	79									MC,H	2.0% sand / 40.9% silt / 57.1% clay

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS	SHEAR STRENGTH INFORMATION		
BORING		SOIL	MOISTURE	WET	DRY	LL	PL	PI	C STRAIN CONFINING TYPE	TEST	COMMENTS
NUMBER	FROM - TO	DESCRIPTION	%						(ksf) % PRESSURE (KSF) FAILURE	TYPE	
PZ-2	13.0 - 15.0	Soft brown clay (CH2)	66							MC	
PZ-2	18.0 - 20.0	Very soft gray clay with trace organic matter (CL4)	55							MC	
PZ-2	23.0 - 25.0	Stiff gray clay (CH4)	81							MC	
PZ-2	28.0 - 30.0	Medium gray clay (CL4)	31							MC	
PZ-2	33.0 - 35.0	Very stiff gray clay (CL4)	68							MC,DH	
PZ-2-S6B	23.0 - 25.0	Very stiff gray clay (CL4)	87							MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

CLP

Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00

Title:

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	BERG LIMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PZ-3	13.0 - 15.0	Medium dense gray silty sand (SM)	53						MC	
PZ-3	18.0 - 20.0	Medium dense brown clay with sand seams (CL6)	51						MC	
PZ-3	23.0 - 25.0	Medium dense gray silty sand with clay (SM)	35						MC	
PZ-3	28.0 - 30.0	Medium dense brown silty sand (SM)	26						MC	
PZ-3	33.0 - 35.0	Medium dense gray sandy silt with clay pockets (ML)	51						MC	
PZ-3-S4A	13.0 - 15.0	Soft gray clay (CH4)	74						MC	
PZ-3-S6A	23.0 - 25.0	Medium dense light gray clay with wood (CH4)	70						MC	

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS	SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN (ksf) %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-4	8.0 - 10.0	Soft gray clay (CL4)	62									MC,DH	
PZ-4	13.0 - 15.0	Loose gray silty sand (SM)	27									MC	
PZ-4	18.0 - 20.0	Dense gray sand (SP)	27									MC	
PZ-4	23.0 - 25.0	Dense gray sandy silt (ML)	25							<u> </u>		MC	
PZ-4	28.0 - 30.0	Soft gray clay (CL4)	31									MC	
PZ-4	33.0 - 35.0	Medium gray clay with sand pockets (CL4)	30									MC	
PZ-4-S5A	18.0 - 20.0	Soft gray clay with silt (CL4)	34									MC	
PZ-4-S7B	28.0 - 30.0	Dense gray sand with 2" clay layer (SP)	40									MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEIG	GHT (PCF)	ATTER	RBERG LIMIT	ΓS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL P	PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PZ-5	13.0 - 15.0	Very soft gray clay with trace organic matter (CH4)	70							MC	
PZ-5	18.0 - 20.0	Very soft gray clay (CL4)	34							MC	
PZ-5	23.0 - 25.0	Soft gray clay with trace organic matter (CH2)	43							MC	
PZ-5	28.0 - 30.0	Dense gray sand with clay (SM)	43							MC	
PZ-5	33.0 - 35.0	Dense gray silty sand with clay pockets (SM)	58							MC	
PZ-5- S5A	18.0 - 20.0	Very soft gray clay (CH4)	82							MC,DH	
PZ-5-S7B	28.0 - 30.0	Dense gray silty sand (SM)	29							MC	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153), Technical Responsibility: CLP Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00 Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (ksf)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-6	13.0 - 15.0	Soft gray clay (CH4)	59			92	28	64					MC,AL	
PZ-6	18.0 - 20.0	Very soft gray clay (CL4)	84										MC,H	0.6% sand / 37.3% silt / 62.1% clay
PZ-6	23.0 - 25.0	Medium gray clay with ferrous nodules (CH4)	90										MC,DH	
PZ-6	28.0 - 30.0	Medium dense gray clayey silt with sand (ML)	51										MC,H	10.0% sand / 78.0% silt / 12.0% clay
PZ-6	33.0 - 35.0	Medium dense gray sandy silt with clay (ML)	31										MC,H	13.2% sand / 80.6% silt / 6.2% clay
PZ-6-S7C	28.0 - 30.0	Medium dense gray clayey silt with sand pockets (ML)	32										MC,H	1.0% sand / 68.7% silt / 30.3% clay

Disclaimer: The results presented relate only to those samples tested. Soil Description: ASTM(D2487) AASHTO(M145) Moisture Content:

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

CLP

Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG L	IMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PZ-7	0.0 - 2.0	Medium brown clay with organic matter (CL6)	32			44	20	24		MC,AL	
PZ-7	3.0 - 5.0	Medium brown clay with organic matter and silt (CL4)	31			41	19	22		MC,AL	
PZ-7	8.0 - 10.0	Soft gray clay with organic matter and sand (CL4)	33			37	19	18		MC,AL	
PZ-7	18.0 - 20.0	Very soft gray clay (CL4)	30			33	23	10		MC,AL	
PZ-7	23.0 - 25.0	Medium gray clay with 1" firm sandy silt (CH3)	55			55	22	33		MC,AL	
PZ-7a	13.0 - 15.0	Soft gray clay (CL4)	35			36	19	17		MC,AL	
PZ-7b	13.0 - 15.0	Firm gray clayey silt with silt (ML)	31			27	21	6		MC,AL	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

U_.

Title: Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG I	LIMITS	SHEAR	R STRENGTH INFORM	ATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN (ksf) %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-8	0.0 - 2.0	Stiff brown clay with sand (CH2)	27			52	22	30				MC,AL	
PZ-8	3.0 - 5.0	Brown and gray clay (CL4)	34			39	22	17				MC,AL	
PZ-8	13.0 - 15.0	Brown and gray clayey silt (ML)	37			32	22	10				MC,AL,H	3.6% sand / 86.1% silt / 10.3% clay
PZ-8	18.0 - 20.0	Loose brown and gray sandy silt with clay (ML)	28			44	20	24				MC,AL,H	28.9% sand / 66.0% silt / 5.1% clay
PZ-8	23.0 - 25.0	Loose brown and gray sandy silt with clay (ML)	34			32	21	11				MC,AL,H	18.5% sand / 67.0% silt / 14.5% clay
PZ-8	33.0 - 35.0	Loose, gray sandy silt with clay (ML)	30									MC,H	30.7% sand / 58.7% silt / 10.6% clay
PZ-8	38.0 - 40.0	Loose gray sandy silt with clay (ML)	28									MC,H	23.5% sand / 67.0% silt / 9.5% clay
PZ-8	48.0 - 50.0	Dense gray clayey sandy silt (ML)	28									MC,H	37.3% sand / 49.7% silt / 13.0% clay
PZ-8 SA	8.0 - 10.0	Brown and gray clay (CL4)	38			36	19	17				MC,AL	
PZ-8 SA	28.0 - 30.0	Firm gray clayey sandy silt (ML)	31									MC,H	27.5% sand / 61.7% silt / 10.8% clay
PZ-8 SA	53.0 - 55.0	Dense gray sandy silt (ML)	25									MC,H	45.9% sand / 47.2% silt / 6.9% clay
PZ-8 SB	8.0 - 10.0	Brown and gray clayey silt (ML)	41			41	22	19				MC,AL,H	2.0% sand / 79.3% silt / 18.7% clay
PZ-8 SB	28.0 - 30.0	Loose gray clayey sandy silt (ML)	25									MC,H	14.7% sand / 74.8% silt / 10.5% clay
PZ-8 SB	43.0 - 45.0	Firm gray sandy silt with clay (ML)	31									MC,H	45.6% sand / 45.9% silt / 8.5% clay

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00

Title: Lab Manager

CLP

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG L	IMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PZ-9	0.0 - 2.0	Stiff brown and gray clay with trace of fine sand (CH3)	35			63	21	42		MC,AL	
PZ-9	3.0 - 5.0	Stiff brown and gray clay (CH2)	30			56	20	36		MC,AL	
PZ-9	8.0 - 10.0	Firm brown and gray clay (CL4)	39			39	21	18		MC,AL	
PZ-9	18.0 - 20.0	Firm gray sandy clayey silt (ML)	28			29	26	3		MC,AL	
PZ-9 SA	23.0 - 25.0	Medium gray clay (CL4)	27			28	18	10		MC,AL	
PZ-9 SB	13.0 - 15.0	Firm gray clayey silt (ML)	29			27	21	6		MC,AL	

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00

CLP

Lab Manager Title:

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	LIMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PZ-10	0.0 - 2.0	Stiff tan and brown clay (CH2)	28			57	24	33		MC,AL	
PZ-10	3.0 - 5.0	Stiff tan and brown gray clay with sand (CL4)	30			36	22	14		MC,AL	
PZ-10	8.0 - 10.0	Gray and brown clay (CL4)	36			39	22	17	A	MC,AL	
PZ-10	13.0 - 15.0	Gray and brown clayey silt (ML)	38			39	21	18		MC,AL,H	1.4% sand / 72.5% silt / 26.1% clay
PZ-10	18.0 - 20.0	Very loose brown and gray clayey sandy silt (ML)	33			34	21	13		MC,AL,H	14.6% sand / 71.6% silt / 13.8% clay
PZ-10	23.0 - 25.0	Loose brown and gray sandy clayey silt (ML)	34			32	18	14		MC,AL,H	16.1% sand / 67.7% silt / 16.2% clay
PZ-10	28.0 - 30.0	Dense brown and gray sandy silt (ML)	28							MC,H	39.0% sand / 52.4% silt / 8.6% clay
PZ-10	33.0 - 35.0	Dense tan and gray sandy silt (ML)	26							MC,H	41.1% sand / 52.7% silt / 6.2% clay
PZ-10	38.0 - 40.0	Firm brown and gray clayey silt (ML)	111							MC,H	10.9% sand / 74.5% silt / 14.6% clay
PZ-10	43.0 - 45.0	Dense brown and gray sandy silt with clay (ML)	27							MC,H	13.0% sand / 78.9% silt / 8.1% clay
PZ-10	48.0 - 50.0	Firm brown and gray clayey silt (ML)	38							MC,H	4.0% sand / 75.8% silt / 20.2% clay
PZ-10B	23.0 - 25.0	Dense brown and gray silty sand (SP)	28							MC,H	56.1% sand / 43.9% silt / 0% clay
PZ-10B	38.0 - 40.0	Firm brown and gray sandy silt (ML)	25							MC,H	6.4% sand / 89.0% silt / 4.6% clay
PZ-10B	48.0 - 50.0	Firm brown and gray clayey sandy silt (ML)	26							MC,H	41.6% sand / 47.2% silt / 11.2% clay

Disclaimer: The results presented relate only to those samples tested.

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

Plaquemines Parish, LA

CLP

Date: 11/22/2013

Project ID: 18274-001-00

Lab Manager Title:

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTE	RBERG L	IMITS	SHEAR STRENGTH INFORMATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN CONFINING TYPE (ksf) % PRESSURE (KSF) FAILURE	TEST TYPE	COMMENTS
PZ-11	0.0 - 2.0	Dense brown clayey silt (ML)	27			28	21	7		MC,AL	
PZ-11	3.0 - 5.0	Medium brown and gray clay with sand seams and organic matter (CH2)	45			51	21	30		MC,AL	
PZ-11	8.0 - 10.0	Medium brown and gray clay with silt and sand seams (CL6)	47			42	22	20		MC,AL,H	0.8% sand / 78.3% silt / 20.9% clay
PZ-11	13.0 - 15.0	Firm brown and gray sandy silt with clay (ML)	30			27	19	8		MC,AL,H	14.5% sand / 76.5% silt / 9.0% clay
PZ-11	18.0 - 20.0	Firm brown and gray sandy silt with clay (ML)	30			31	19	12		MC,AL,H	14.0% sand / 74.3% silt / 11.7% clay
PZ-11	23.0 - 25.0	Firm brown and gray sandy silt with clay (ML)	34			28	19	9		MC,AL,H	23.6% sand / 66.7% silt / 9.7% clay
PZ-11	28.0 - 30.0	Firm brown and gray sandy silt (ML)	28							MC,H	22.4% sand / 71.6% silt / 6.0% clay
PZ-11	33.0 - 35.0	Firm gray clayey silt with sand (ML)	26							MC,H	11.2% sand / 75.3% silt / 13.5% clay
PZ-11	38.0 - 40.0	Firm gray sandy silt (ML)	29							MC,H	43.3% sand / 50.0% silt / 6.7% clay
PZ-11	43.0 - 45.0	Firm gray sandy silt with clay (ML)	28							MC,H	10.3% sand / 82.5% silt / 7.2% clay
PZ-11B	28.0 - 30.0	Firm brown and gray clayey silt with sand (ML)	36							MC,H	9.5% sand / 57.0% silt / 33.5% clay
PZ-11B	43.0 - 45.0	Firm gray clayey silt (ML)	36							MC,H	3.0% sand / 70.7% silt / 26.3% clay

Disclaimer: The results presented relate only to those samples tested.

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:**

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG I	LIMITS	SHEAR S	STRENGTH INFORMA	TION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C STRAIN (ksf) %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-12	0.0 - 2.0	Brown clay (CL6)	25			40	19	21				MC,AL	
PZ-12	3.0 - 5.0	Tan and gray clay (CL6)	29			44	21	23				MC,AL	
PZ-12	13.0 - 15.0	Medium brown and gray clay (CL6)	42			44	21	23				MC,AL	
PZ-12	18.0 - 20.0	Medium brown and gray clay (CL6)	38			48	20	28				MC,AL	
PZ-12	23.0 - 25.0	Medium brown and gray clay (CL4)	38			39	21	18				MC,AL	
PZ-12 S3A	8.0 - 10.0	Medium brown clay with organic material (CL4)	31			39	18	21				MC,AL	
PZ-12 S3B	8.0 - 10.0	Gray clay (CL4)	29			35	20	15				MC,AL	

"Confidential Information; Privileged & Confidential Work Product"

Southern Earth Sciences, Inc.

Laboratory Test Results

Project:		Mid Barataria Diversion			_	Tec	hnical	Respo	nsibility:			2	m				1	ty Assurance Officer
Client:		GeoEngineers		_			Project No.:		B13-01	18	•		PM:		RM		Date of Issue:	7/29/2013
								Α	STM DES	IGNATIO	N							
			D2216	_	D4318		D2	166	D2166	D28	350			C136 o		7		
				Atte	rberg L	imits			Cohe	esion	ng re ps		Grain S	Size (%)	sing		
Boring No.	Depth (ft)	Classification	w %	LL	PL	PI	g _{wet} pcf	g _{dry} pcf	U psf	UU psf	Confining Pressure psi	Gravel	Sand	Silt	Clay	% Passing #200	USCS	Remarks
PZ-13	3-5	Gr Clayey SILT	158.1	85	42	43	101.0	39.1									(MH)	
PZ-13	8.5-10	Intermixed Silt and CLAY	51.0	43	20	23											(CL6)	
PZ-13	13-15	St, Gr Fat CLAY with Tr O	144.6	195	46	149											(CHOC)	
PZ-13	18-20	So, Gr Fat CLAY with Peat Pockets	91.8	83	27	56										99.4	(CH4)	
PZ-13	23-25	Gr S SILT with Clay Pockets	43.7	NP	NP	NP										90.5	(ML)	
PZ-13	33-35	So, Gr Fat CLAY with SIS	56.7	88	24	64	104.5	66.6									(CH4)	
PZ-13	38-40	M, Gr Fat CLAY with Silt Pockets	56.2	74	21	53	106.7	60.3									(CH4)	
PZ-13	43-45	M, Gr Fat CLAY	66.7	92	32	60	101.2	60.7									(CH4)	
PZ-13	53-55	M, Gr Fat CLAY	63.8	86	31	56	100.7	61.5									(CH4)	
PZ-13	58-60	M, Gr Fat CLAY	52.8	73	28	45	104.8	68.6									(CH4)	
			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Technical Responsibility:

CLP

Date: 11/22/2013

Plaquemines Parish, LA

Project ID: 18274-001-00

Lab Manager Title:

	DEPTH (FT)			UNIT WEI	GHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORM	ATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (ksf)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-14	0.0 - 2.0	Soft brown clay (CH4)	85	93.4	50.5	99	37	62	0.27	7	0.06	Multiple Shear	UU,AL	
PZ-14	3.0 - 5.0	Very soft gray clay (CH3)	47	107.2	72.9	71	21	50	0.03	9	0.23	Bulge	UU,AL	
PZ-14	8.0 - 10.0	Very soft gray clay (CL6)	43	117.7	82.4	48	25	23	0.09	11	0.52	Bulge	UU,AL	
PZ-14	13.0 - 15.0	Very soft gray clay (CH3)	52	96.6	63.6	68	21	47	0.04	7	0.81	Bulge	UU,AL	
PZ-14	18.0 - 20.0	Very soft gray and black clay with shells (CH4)	71	101.3	59.2				0.05	5	0.92	Bulge	UU	
PZ-14	23.0 - 25.0	Very soft gray clay (CH4)	73	100.3	58.0	89	31	58	0.17	9	1.38	Multiple Shear	UU,AL	
PZ-14	30.0 - 31.5	Very soft gray clay with silt lenses (CH4)	54			77	28	49					MC,AL	
PZ-14	33.0 - 35.0	Very soft gray clay (CH3)	85	96.6	52.3	74	30	44	0.02	7	1.96	Bulge	UU,AL	
PZ-14	38.0 - 40.0	Very soft gray clay (CH3)	57	109.6	69.8				0.24	11	2.25	Multiple Shear	UU	
PZ-14	43.0 - 45.0	Soft gray clay (CH3)	49										MC	
PZ-14	48.0 - 50.0	Soft gray clay (CH3)	53	104.5	68.1	75	31	44	0.39	6	2.82	Multiple Shear	UU,AL	
PZ-14	53.0 - 55.0	Soft gray clay (CH3)	56										MC	
PZ-14	58.0 - 60.0	Soft gray clay (CH3)	52	103.8	68.4	65	26	39	0.34	13	3.4	Bulge	UU,AL	

Soil Description: ASTM(D2487) AASHTO(M145) **Moisture Content:** Disclaimer: The results presented relate only to those samples tested.

Project Name: LA CPRA - Mid-Barataria Diversion (BA-153),

Plaquemines Parish, LA

Project ID: 18274-001-00

Technical Responsibility:

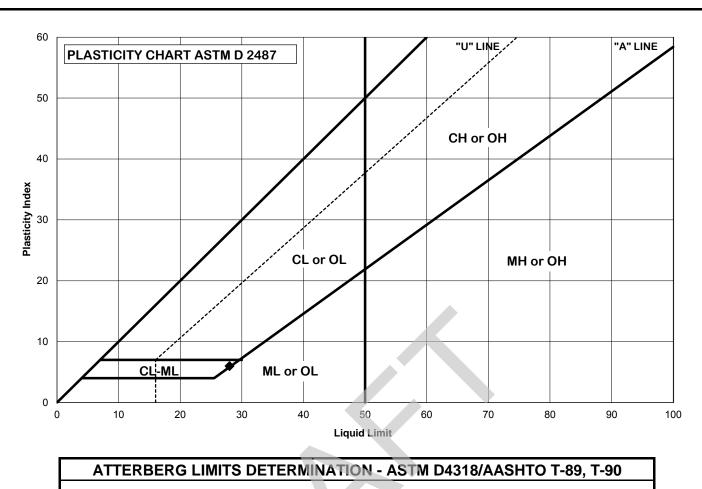
CLP

Date: 11/22/2013

Title:

Lab Manager

	DEPTH (FT)			UNIT WEIG	SHT (PCF)	ATTER	RBERG L	IMITS		SHEAR	STRENGTH INFORM	ATION		
BORING NUMBER	FROM - TO	SOIL DESCRIPTION	MOISTURE %	WET	DRY	LL	PL	PI	C (ksf)	STRAIN %	CONFINING PRESSURE (KSF)	TYPE FAILURE	TEST TYPE	COMMENTS
PZ-15	0.0 - 2.0	Stiff brown and gray clay with roots (CH3)	35	105.0	77.9	77	27	50	1.56	7	0.06	Multiple Shear	UU,AL	
PZ-15	3.0 - 5.0	Medium brown clay with silt lenses (CH4)	49										MC	
PZ-15	8.0 - 10.0	Soft brown and gray clay (CH4)	50	103.4	68.8	83	26	57	0.27	13	0.52	Multiple Shear	UU,AL	
PZ-15	13.9 - 14.4	Very soft brown and gray clay (CL6)	39	105.4	75.9	49	19	30	0.03	7	0.81	Bulge	UU,AL	
PZ-15	14.4 - 15.0	Very soft brown clay (CH2)	51										MC	
PZ-15	18.0 - 20.0	Very soft brown and gray clay (CH2)	55	117.7	76.0	60	25	35	0.08	15	1.09	Yield	UU,AL	
PZ-15	23.0 - 23.5	Very soft tan and gray clay (CH2)	107	105.3	51.0	60	28	32	0.03	5	1.32	Bulge	UU,AL	
PZ-15	23.5 - 24.4	Very soft brown, tan, and gray clay (CH4)	41	99.1	70.2	136	35	101	0.06	11	1.35	Bulge	UU,AL	
PZ-15	24.4 - 25.0	Very soft tan and gray clay (CH4)	57										MC	
PZ-15	28.0 - 28.6	Very soft gray clay (CH4)	69										MC	
PZ-15	28.6 - 29.2	Soft brown and gray organic clay (CHOA)	117										MC	
PZ-15	29.2 - 30.0	Very soft tan and gray clay (CH3)	29	103.3	79.8	64	31	33	0.17	15	1.7	Yield	UU,AL	
PZ-15	33.0 - 35.0	Dense brown and tan sandy silt with clay (ML)	27	98.5	77.3				3.22	8	1.96	Bulge	UU,M200	20.0% sand / 80.0% fines
PZ-15	40.0 - 41.5	Medium dense gray sandy silt with clay (ML)	32										MC,H	25.9% sand / 65.8% silt / 8.3% clay
PZ-15	43.5 - 45.0	Medium dense gray sandy silt with clay (ML)	32										MC,H	25.1% sand / 68.4% silt / 6.5% clay
PZ-15	48.5 - 50.0	Soft gray and tan clay (CH3)	57			62	25	37					MC,AL	
PZ-15	53.0 - 55.0	Soft gray clay (CL4)	42										MC	
PZ-15	58.0 - 60.0	Medium gray clay (CH4)	59	107.5	67.7	83	30	53	0.73	12	3.4	Multiple Shear	UU,AL	


"Confidential Information; Privileged & Confidential Work Product"

Southern Earth Sciences, Inc.

Laboratory Test Results

Project:	Mid Barataria Diversion	Technical Res	sponsibility:		RM	Quality	Assurance Officer
						Date of	
Client:	GeoEngineers	Project No.:	B13-018	PM:	RM	lssue:	9/11/2013

	Georgineers					GULINU		D 10-0		-	r IVI.		KIVI			- ISSUE	9/11/2013
								ASTM D	ESIGNA	TION							
		D2216				D2	D2166								D2434	s	
		ω	Atte	rberg L	imits			Coh	esion	-		ize (%	Passin	g)	Fxd. Wall	nsc	D5084
ole Depth . (in) Classification		%	LL	PL	Pl	Ywet PI pcf	Y _{dry} pcf	U psf	UU psf	Grave	Sand	Sii	Clay	#200	Perm.		Method E cm/sec
38-39	Alternate Layers of Lean CLAY and Silty SAND, Sandy SILT	41.2				111.1	28.7									(CL4)	1.42E-06
55-55.5	Gray Lean CLAY with alternate layers of Clay and Silty SAND	46.9				108.6	73.9									(CL6)	3.37E-07
29-30	Gray Fat CLAY with Silt	38.6				113.1	81.6									(CH2)	1.64E-07
35-36	Alternate Layers of Gray Silty SAND with Trace Clay and Gray CLAY	40.9				109.3	77.6									(SM) (CH2)	3.17E-07
46-47	Gray Sandy SILT with thin Clay Layers at Bottom	30.8				122.8	93.9									(ML)	2.08E-06
50-51	Gray Sandy SILT with Clay	32.5				128.1	96.7				14.4	71.9	13.7	}		(ML)	1.58E-06
55-56	Gray Sandy SILT with Clay	32.2				121.7	92.0									(ML)	2.83E-06
34-35	Gray Sandy SILT with Clay	29.7				116.5	89.8				14.3	72.2	13.5			(ML)	1.97E-06
45-46	Gray Lean CLAY	33.5				118.2	88.6									(CL6)	1.94E-07
54-55	Gray Clayey Silty with Trace Fine Sand	31.1				118.5	90.4									(ML)	3.14E-07
47-48	Gray Fine SAND with Silt	25.0				122.7	98.2				80.6	17.1	2.3			(SM)	5.14E-04
	(in) 38-39 55-55.5 29-30 35-36 46-47 50-51 55-56 34-35 45-46 54-55	(in) Classification 38-39 Alternate Layers of Lean CLAY and Silty SAND, Sandy SILT 55-55.5 Gray Lean CLAY with alternate layers of Clay and Silty SAND 29-30 Gray Fat CLAY with Silt 35-36 Alternate Layers of Gray Silty SAND with Trace Clay and Gray CLAY 46-47 Gray Sandy SILT with thin Clay Layers at Bottom 50-51 Gray Sandy SILT with Clay 55-56 Gray Sandy SILT with Clay 34-35 Gray Sandy SILT with Clay 45-46 Gray Lean CLAY 54-55 Gray Clayey Silty with Trace Fine Sand	Depth (in) Classification 38-39 Alternate Layers of Lean CLAY and Silty SAND, Sandy SILT 55-55.5 Gray Lean CLAY with alternate layers of Clay and Silty SAND 29-30 Gray Fat CLAY with Silt 35-36 Alternate Layers of Gray Silty SAND with Trace Clay and Gray CLAY 46-47 Gray Sandy SILT with thin Clay Layers at Bottom 50-51 Gray Sandy SILT with Clay 32.5 55-56 Gray Sandy SILT with Clay 32.7 45-46 Gray Sandy SILT with Clay 33.5 54-55 Gray Clayey Silty with Trace Fine Sand 31.1	Depth (in) Classification % LL 38-39 Alternate Layers of Lean CLAY and Silty SAND, Sandy SILT 41.2 55-55.5 Gray Lean CLAY with alternate layers of Clay and Silty SAND 46.9 29-30 Gray Fat CLAY with Silt 38.6 35-36 Alternate Layers of Gray Silty SAND with Trace Clay and Gray CLAY 40.9 46-47 Gray Sandy SILT with thin Clay Layers at Bottom 30.8 50-51 Gray Sandy SILT with Clay 32.5 55-56 Gray Sandy SILT with Clay 32.2 34-35 Gray Sandy SILT with Clay 29.7 45-46 Gray Lean CLAY 33.5 54-55 Gray Clayey Silty with Trace Fine Sand 31.1	Depth (in) Classification % LL PL 38-39 Alternate Layers of Lean CLAY and Silty SAND, Sandy SILT 41.2 55-55.5 Gray Lean CLAY with alternate layers of Clay and Silty SAND 29-30 Gray Fat CLAY with Silt 38.6 35-36 Alternate Layers of Gray Silty SAND with Trace Clay and Gray CLAY 46-47 Gray Sandy SILT with thin Clay Layers at Bottom 30.8 50-51 Gray Sandy SILT with Clay 32.5 55-56 Gray Sandy SILT with Clay 32.2 34-35 Gray Sandy SILT with Clay 29.7 45-46 Gray Lean CLAY 33.5 54-55 Gray Clayey Silty with Trace Fine Sand 31.1	Depth (in) Classification W LL PL Pl	Depth (in) Classification Atterberg Limits where per per per per per per per per per	Depth (in) Classification Atterberg Limits West of the period of	Depth (in) Classification Atterberg Limits Cohe Cohe	Depth (in) Classification Atterberg Limits Octobesion Octobe	Depth (in) Classification Conesion C	Depth (in) Classification Atterberg Limits Ozene Oze	Depth Classification Depth Classification Classification Depth Depth	Depth Depth Classification Discrete Discrete	Depth Depth Classification D216 D4318 D2166 D2166 D2850 D422, C136 or C117 Atterberg Limits Owner Owne	Depth Depth Classification D2216 D4318 D2166 D2850 D422, C136 or C117 D2434	Depth Classification D2216 D4318 D2166 D2850 D2850 D422, C136 or C117 D2434 D2466 D2850 D2850 D2850 D422, C136 or C117 D2434 D2466 D2850 D2850 D2850 D3422, C136 or C117 D2434 D2850 D432, C136 or C117 D2434 D2850 D422, C136 or C117 D2434 D2850 D422, C136 or C117 D2434 D2850 D2850

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	18274-001	18274-001-00							
Boring No.	B-1A				Natural WC:	#DIV/0!			
Depth, ft.	1 - 2				Preparation:	Wet (as-received)			
Cup No.	1028				No. Points:				
Percent Retained on N	0		Estimated or	Tested	0.0				
Original sample descri	ption:	Medium dense tan and gray clayey silt with sand, shell fragments, and roots (ML)							

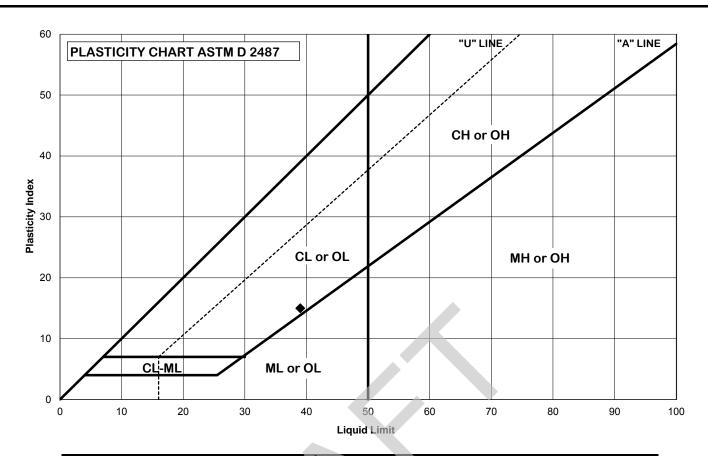
Classification	L
(fraction passing No. 40 sieve)	PI
CL-ML	Plast

Liquid Limit =	28
Plastic Limit =	22
Plasticity Index =	6

Date:	9/24/2013
Tested By:	lc
Checked By:	slc

N	n	T	F	S	•

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	B-1A	B-1A				#DIV/0!			
Depth, ft.	3 - 4				Preparation:	Wet (as-received)			
Cup No.	1355				No. Points:				
Percent Retained	0		Estimated or Tested		0.0				
Original sample d	escription:	Stiff tan and	Stiff tan and gray clay with roots, sand lenses, sand pockets, and sand seams (CL4)						

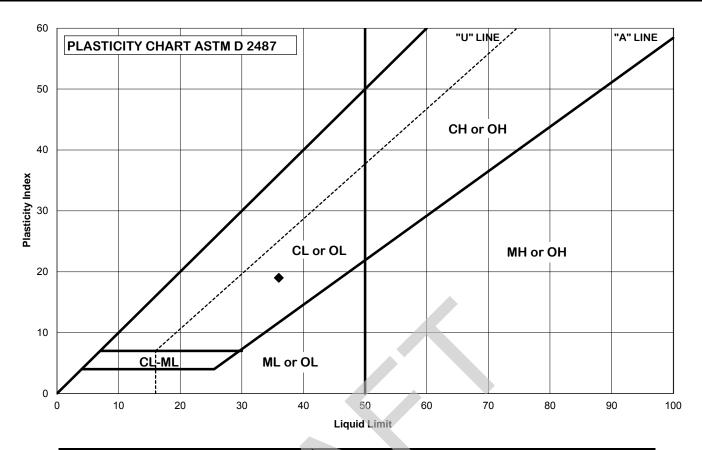
ľ	Classification						
ı	(fraction passing No. 40						
	sieve)						
ľ	CL						

Liquid Limit = 39
Plastic Limit = 24
Plasticity Index = 15

Date:	9/24/2013
Tested By:	bh
Checked By:	slc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	B-1A	B-1A			Natural WC:	#DIV/0!		
Depth, ft.	5 - 6	5 - 6				Wet (as-received)		
Cup No.	1355	1355						
Percent Retained	0		Estimated of	or Tested	0.0			
Original sample description:		Medium br	Medium brown clay (CL4)					

Classification	Liquid Limit =	36	
(fraction passing No. 40 sieve)	Plastic Limit =	17	Test
CL	Plasticity Index =	19	Check

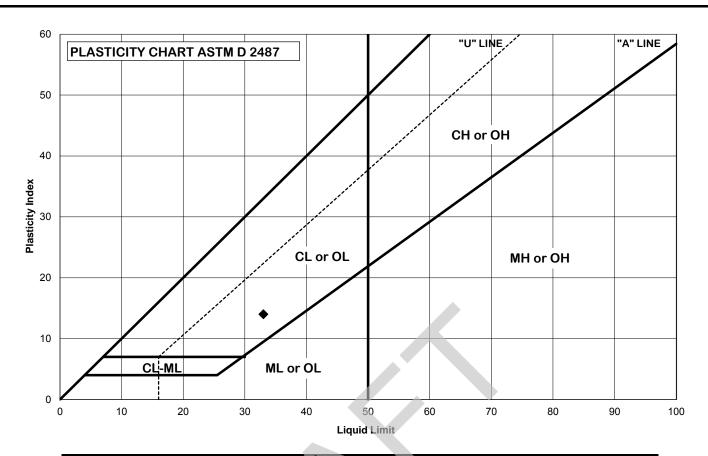
 Date:
 9/24/2013

 Tested By:
 bh

 Checked By:
 slc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	B-1A				Natural WC:	#DIV/0!		
Depth, ft.	8 - 9	8 - 9				Wet (as-received)		
Cup No.	1355	1355						
Percent Retained	0		Estimated or	Tested	0.0			
Original sample description:		Medium gra	Medium gray clay with 5" silty sand layer (CL4)					

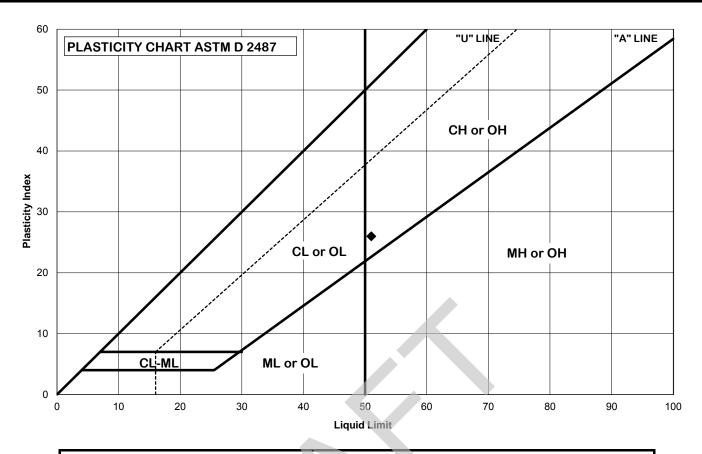
Classification (fraction passing No. 40 sieve)
CL

Liquid Limit =	33
Plastic Limit =	19
Plasticity Index =	14

Date:	9/25/2013		
Tested By:	ВН		
Checked By:	SLC		

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

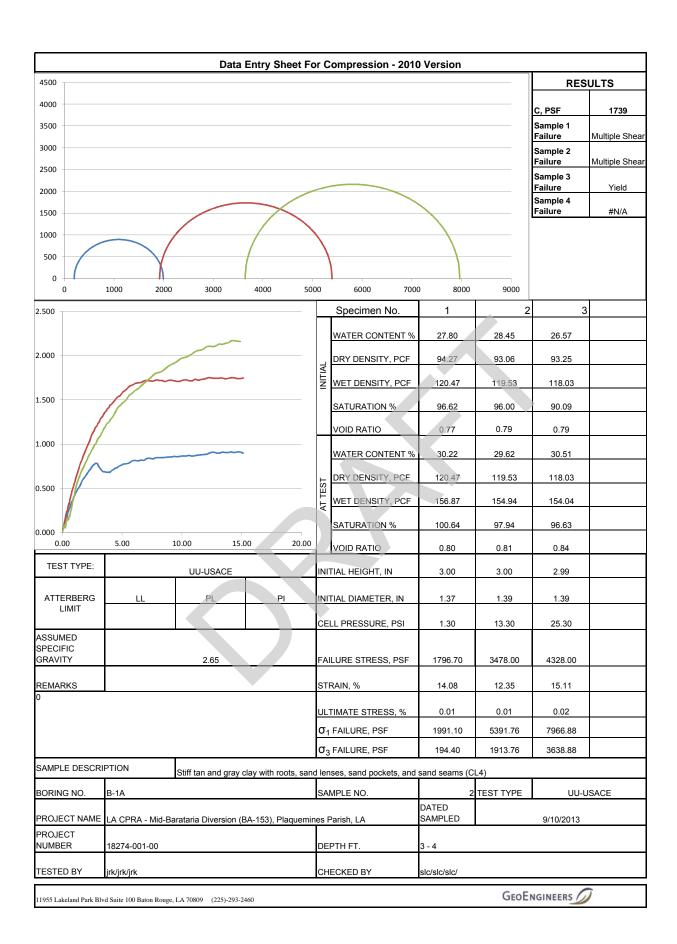
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

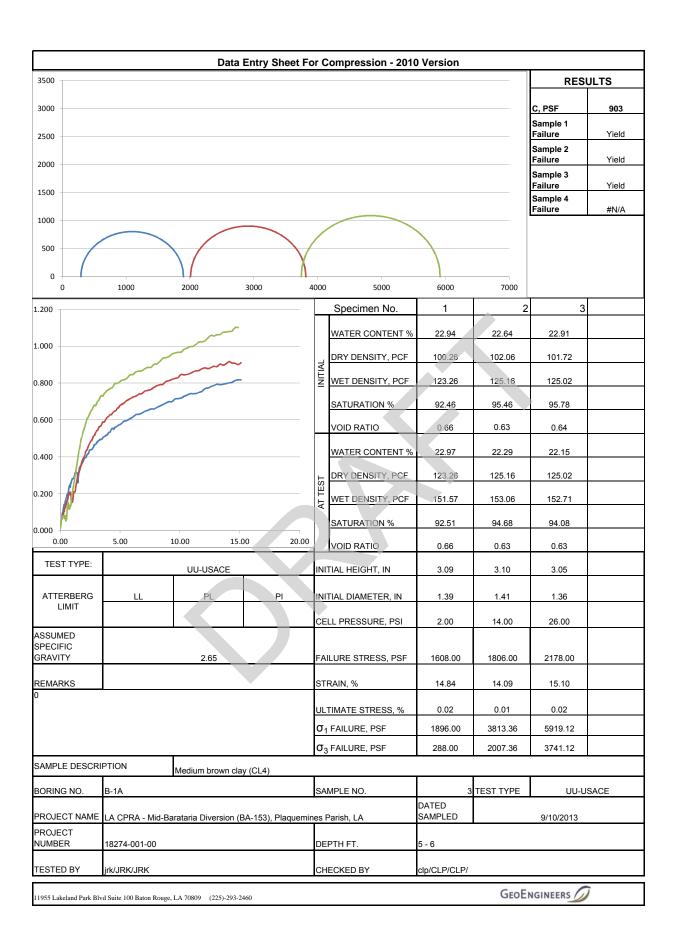
ATTERI	BERG LIMITS	S DETER	MINATI	ON - AST	M D4318/AA	SHTO T-89, T-90		
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	B-1A	B-1A			Natural WC:	#DIV/0!		
Depth, ft.	10 - 11	10 - 11				Wet (as-received)		
Cup No.	1355				No. Points:			
Percent Retained on No. 40		0		Estimated or	Tested	0.0		
Original sample description:		Soft gray clay (CL2)						

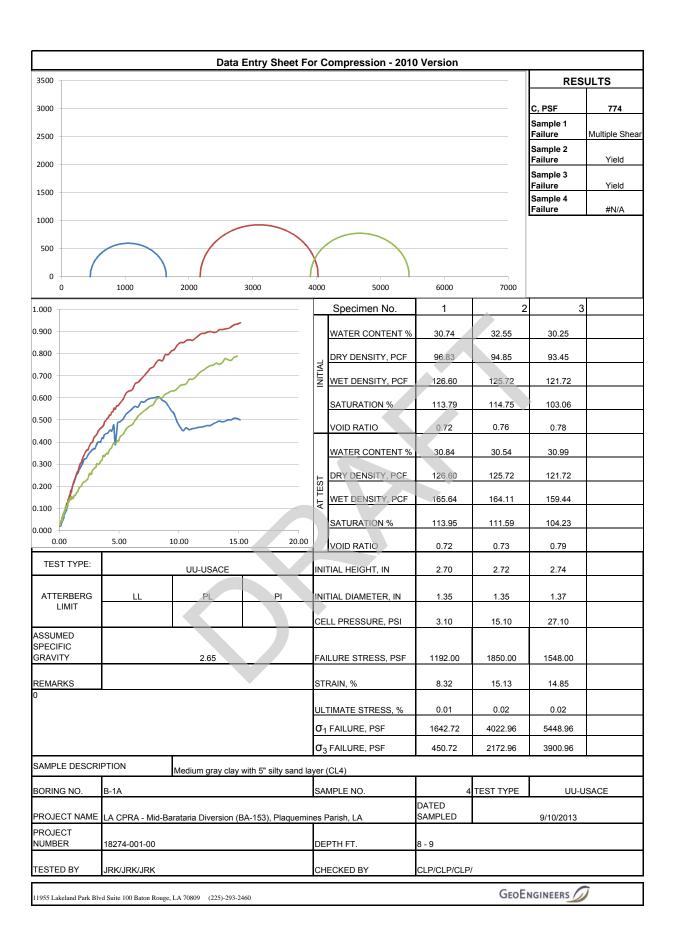
I	Classification	Liquid Limit =	51	Date:	9/25/2013
	(fraction passing No. 40 sieve)	Plastic Limit =	25	Tested By:	ВН
	СН	Plasticity Index =	26	Checked By:	SLC
		•			

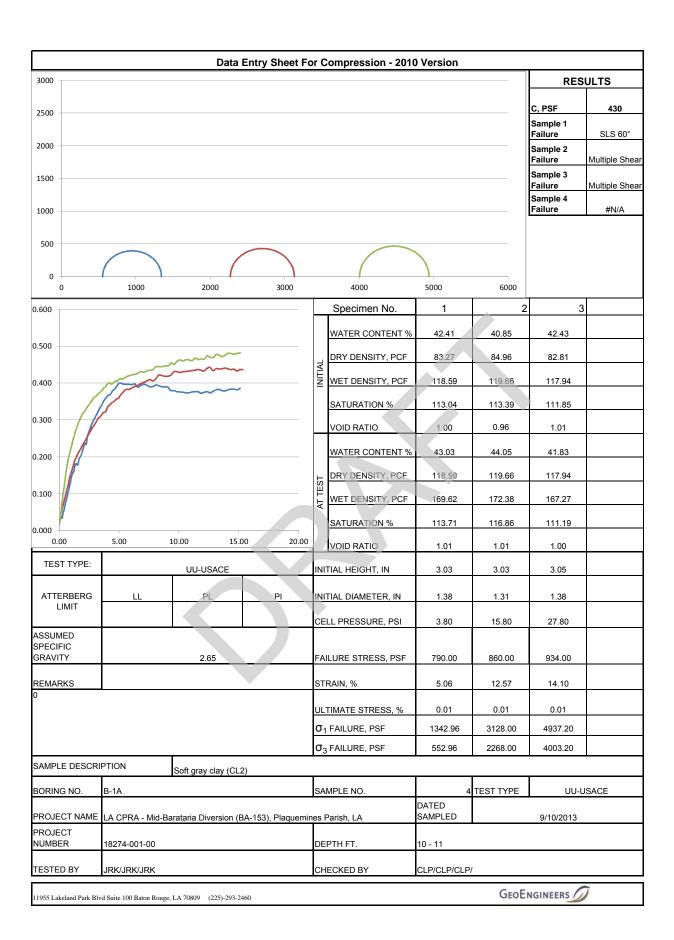
NOTES:

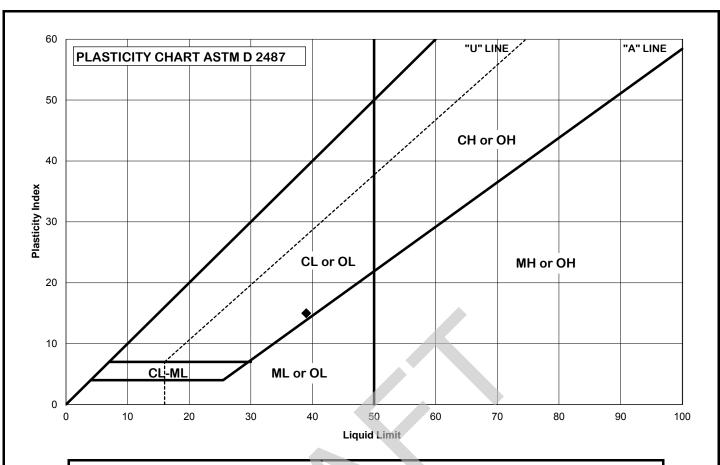
NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section




ATTERBERG LIMITS - ASTM D4318


LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA


11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274</mark> -001	18274-001-00						
Boring No.	B-1Aa				Natural WC:	#DIV/0!		
Depth, ft.	12 - 13				Preparation:	Wet (as-received)		
Cup No.	<mark>1355</mark>	1355						
Percent Retained	Estimated or Tested 0.0			0.0				
Original sample description: Soft gray clay with 2" clayey silt layer at bottom (CL6)								

Classification (fraction passing No. 40 sieve) Liquid Limit = 39
Plastic Limit = 24
Plasticity Index = 15

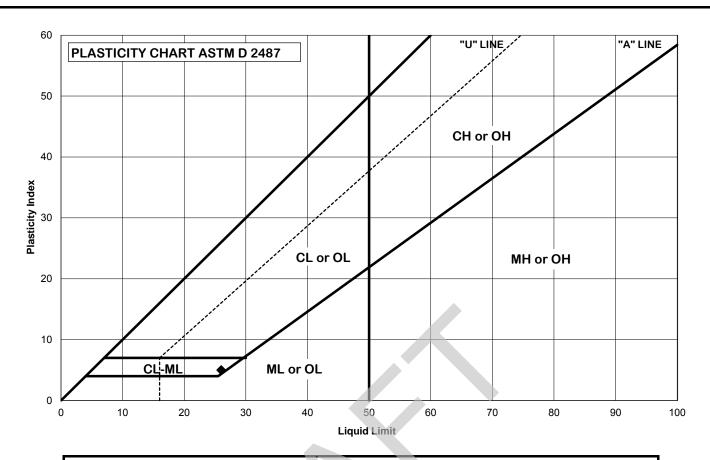
 Date:
 9/25/2013

 Tested By:
 BH

 Checked By:
 SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 01	18274-001-00						
Boring No.	B-1Aa				Natural WC:	#DIV/0!		
Depth, ft.	14 - 15	14 - 15				Wet (as-received)		
Cup No.	1355	1355						
Percent Retained o	Estimated or Tested 0.0			0.0				
Original sample description: Very soft gray clayey silt with 3" silty sand layer at bottom, silt and sand pockets (MI					n, silt and sand pockets (ML)			

Classification
(fraction passing No. 40 sieve)

CL-ML

Liquid Limit = 26
Plastic Limit = 21
Plasticity Index = 5

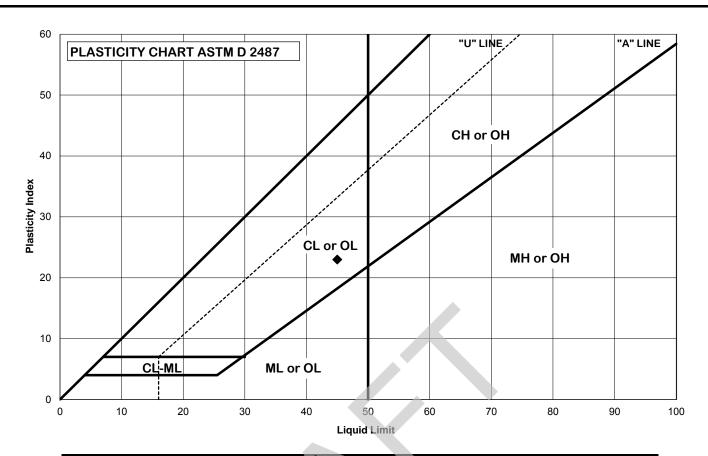
 Date:
 9/25/2013

 Tested By:
 BH

 Checked By:
 SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

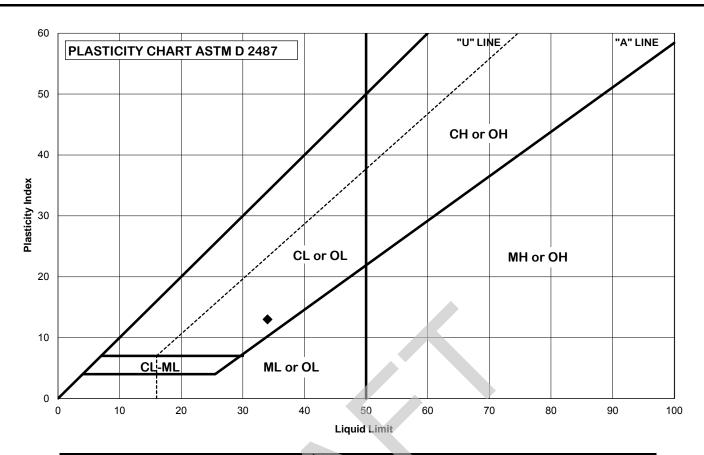
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	B-1Aa				Natural WC:	#DIV/0!			
Depth, ft.	<mark>16 - 17</mark>				Preparation:	Wet (as-received)			
Cup No.	1355	1355 No. P							
Percent Retained	on No. 40	0	Estimated or Tested 0.0			0.0			
Original sample d	lescription:	Soft gray cla	Soft gray clay with silt and sand pockets (CL6)						

Classification	Liquid Limit =	45	Date:
(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:
CL	Plasticity Index =	23	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

9/26/2013 BH SLC

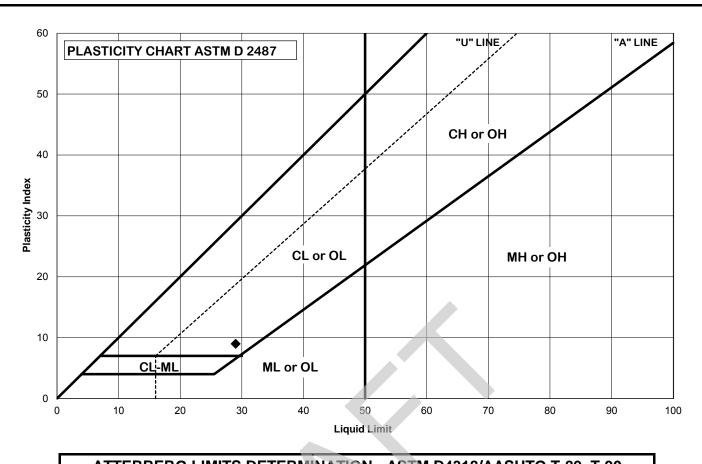
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	B-1Aa				Natural WC:	#DIV/0!			
Depth, ft.	18 - 19				Preparation:	Wet (as-received)			
Cup No.	1355	1355 No. Points:							
Percent Retained	0	Estimated or Tested 0.0			0.0				
Original sample description: Very soft gray clay with 4" loose clayey silt layer (CL4)									

-	-		_	
Classification (fraction passing No. 40	Liquid Limit =	34	Date:	9/26/201
sieve)	Plastic Limit =	21	Tested By:	ВН
CL	Plasticity Index =	13	Checked By:	SLC
	-			

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	18274-00 ⁻	18274-001-00								
Boring No.	B-1Aa				Natural WC:	#DIV/0!				
Depth, ft.	21 - 22				Preparation:	Wet (as-received)				
Cup No.	1355				No. Points:					
Percent Retained on No. 40				Estimated or Tested 0.0						
Original sample d	Original sample description: Medium gray clay with 5" silty sand layer at top (CL4)									

Classification
(fraction passing No. 40 sieve)

Liquid Limit = 29
Plastic Limit = 20
Plasticity Index = 9

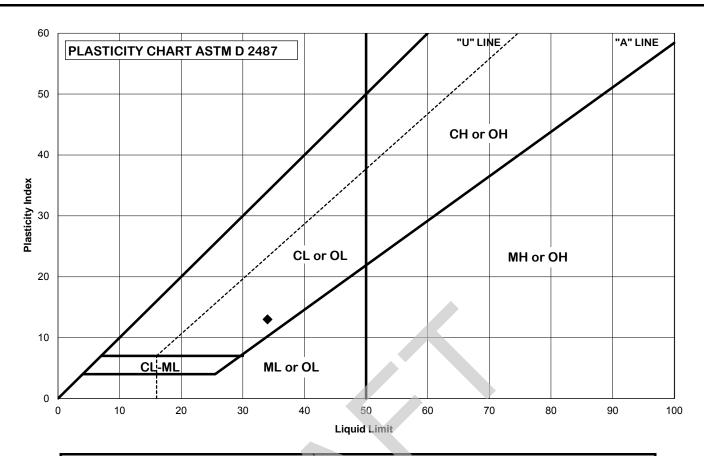
Date: 9/26/2013

Tested By: BH

Checked By: SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

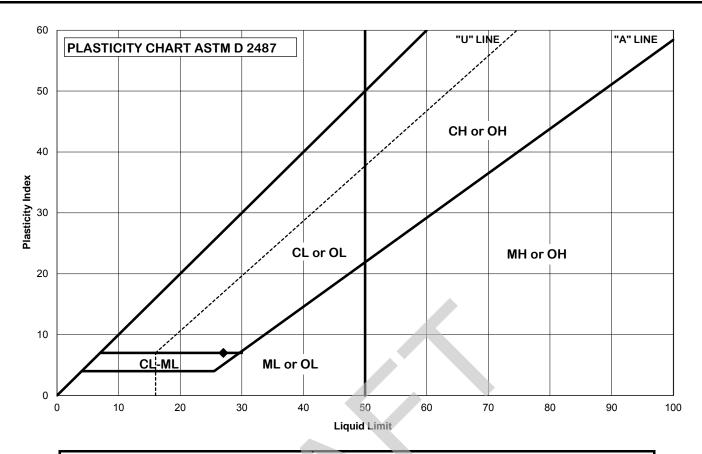
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	1-00						
Boring No.	B-1Aa				Natural WC:	#DIV/0!		
Depth, ft.	26 - 27				Preparation:	Wet (as-received)		
Cup No.	1355	1355 No. Points:						
Percent Retained	0		Estimated or Tested 0.0					
Original sample description: Soft gray clay with sand lenses and pockets (CL4)								

Classification	Liquid Limit =	34	Date:	10/1/2013
(fraction passing No. 40 sieve)	Plastic Limit =	21	Tested By:	ВН
CL	Plasticity Index =	13	Checked By:	SLC
	•		_	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

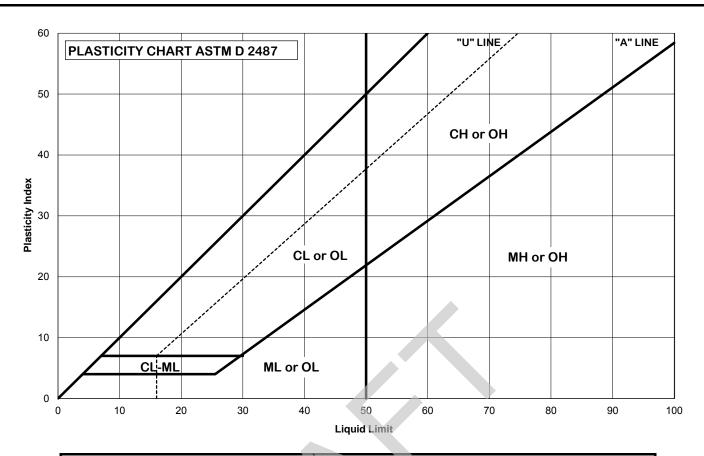
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 01	18274-001-00							
Boring No.	B-1Aa				Natural WC:	#DIV/0!			
Depth, ft.	32 - 33.5				Preparation:	Wet (as-received)			
Cup No.	<mark>1355</mark>	1355 No. Points:							
Percent Retained of		Estimated or	Tested	0.0					
Original sample de	Original sample description: Very loose gray sandy silt (ML)								

Classification (fraction passing No. 40	Liquid Limit =	27	Date:
sieve)	Plastic Limit =	20	Tested By:
CL-ML	Plasticity Index =	7	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/1/2013 BH SLC

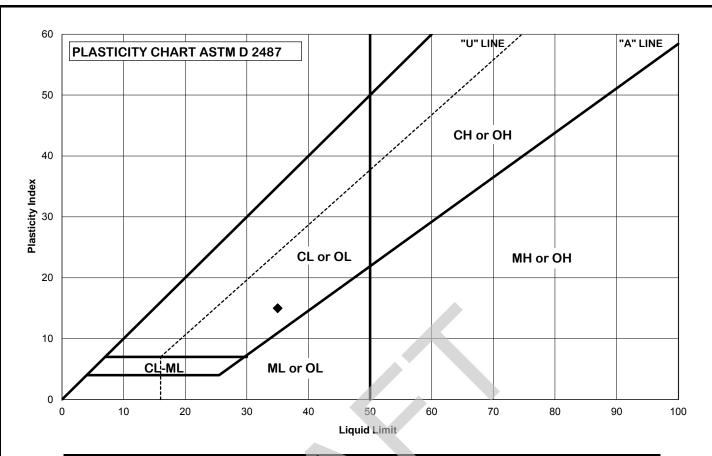
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	B-1Aa				Natural WC:	#DIV/0!		
Depth, ft.	37 - 38.5				Preparation:	Wet (as-received)		
Cup No.	1355	1355 No. Points:						
Percent Retained	on No. 40	0		Estimated or Tested 0.0				
Original sample description: Very loose gray clay silt with 8" clay layer(ML)								

			_	_
Classification (fraction passing No. 40	Liquid Limit =	45	Date:	9/26/2013
sieve)	Plastic Limit =	21	Tested By:	ВН
CL	Plasticity Index =	24	Checked By:	SLC
	•			

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	B-1Aa				Natural WC:	#DIV/0!			
Depth, ft.	43 - 44				Preparation:	Wet (as-received)			
Cup No.	<mark>1355</mark>	1355 No. Point							
Percent Retained	0	Estimated or Tested 0.0			0.0				
Original sample d	Medium gra	Medium gray clay with sand lenses (CL4)							

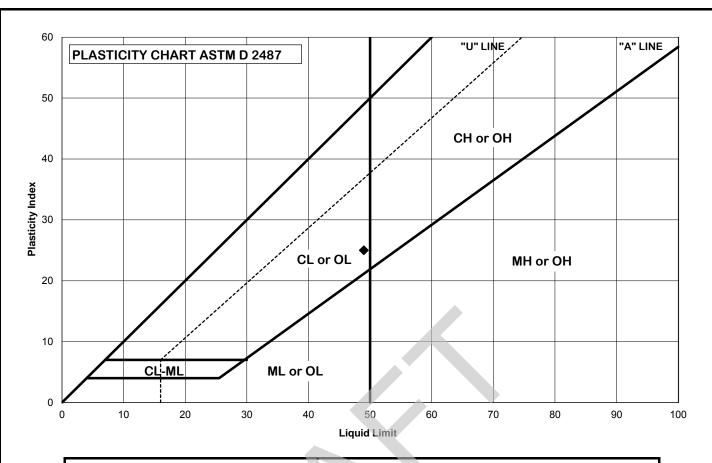
Classification	Liquid
(fraction passing No. 40 sieve)	Plastic
CL	Plasticity

Liquid Limit =	35
Plastic Limit =	20
Plasticity Index =	15

Date:	10/1/2013
Tested By:	ВН
Checked By:	SLC

N	n	T	F	S	•

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	18274-00°	1-00				
Boring No.	B-1Aa				Natural WC:	#DIV/0!
Depth, ft.	67.5 - 69				Preparation:	Wet (as-received)
Cup No.	<mark>1355</mark>	1355			No. Points:	
Percent Retained on No. 40 DEstimated on			Estimated or	Tested	0.0	
Original sample d	Original sample description: Medium gray clay (CL6)					

Classification
(fraction passing No. 40
sieve)

CL

Liquid Limit = 49
Plastic Limit = 24
Tested By:

CL

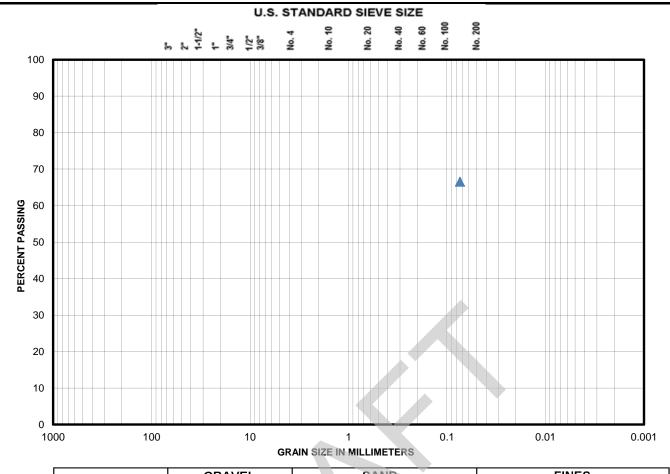
Plasticity Index = 25
Checked By:

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318


9/26/2013

BH

SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

CORRIES	GRAVEL GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

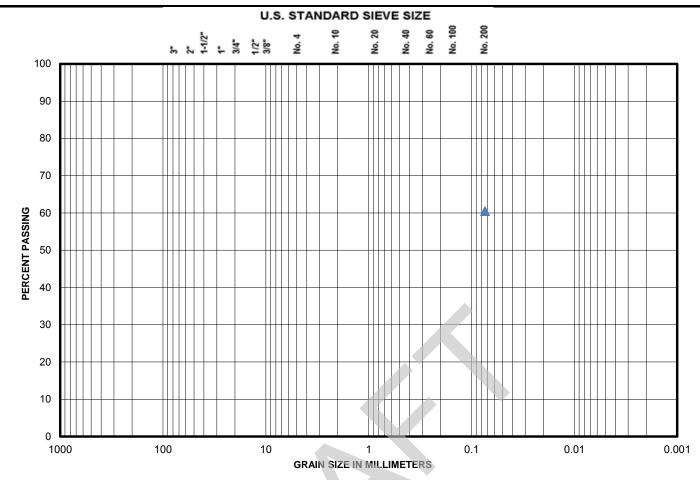
Sand %	Fines (Silt & Clay) %			66.6			
USC Classification		(ML)		Cu	na	C _c	na
Description (D 2488)	Loose	Loose gray sandy silt (ML)					

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	#N/A			
1 1/2"	#N/A	No. 20	#N/A			
1"	#N/A	No. 40	#N/A			
3/4"	#N/A	No. 60	#N/A			
1/2"	#N/A	No. 100	#N/A			
3/8"	#N/A	No. 200	66.6			

Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), F	<mark>la</mark> Date Tested	9/27/2013
Project No.	18274-001-00		Tested By	SB
Boring No.	B-1Aa		Checked By	SLC
Source/Dept	h (feet)	22 - 23	Sieve Type	200 Wash

Method B was used for the 200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.



ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

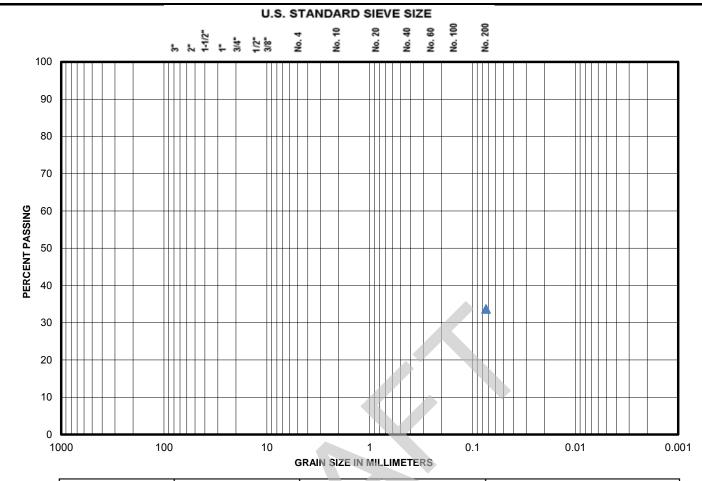
CORRIES	GRA	VEL	SAND		FINES		
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %		39.5	Fines (Silt & C	lay) %	60.5	
USC Classification		ML	Cu	na	C _c	na
Description (D 2488)	V	Very loose gray clav silt with 8" clay layer (ML)				

	Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A				
2"	#N/A	No. 10	#N/A				
1 1/2"	#N/A	No. 20	#N/A				
1"	#N/A	No. 40	#N/A				
3/4"	#N/A	No. 60	#N/A				
1/2"	#N/A	No. 100	#N/A				
3/8"	#N/A	No. 200	60.5				

Project	LA CPRA - M	Iid-Barataria Diversion (BA-1	<mark>53), Plaquem</mark> Date To	ested	9/27/2013
Project No.	18274-001-00			Ву	SB
Boring No.	B-1Aa		Check	ed By	SLC
Source/Dept	th (feet)	37 - 38.5	Sieve 1	Гуре	200 Wash

Method B was used for the 200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge. La 70809 Confidential Information; Privileged & Confidential W**1827/4-001-00**

COBBLES	GRA	VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %		66.3	Fines (Silt & C	lay) %		33.7
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)		Silty sand				

I	Individual Sieve Data - % Passing				
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	#N/A		
1"	#N/A	No. 40	#N/A		
3/4"	#N/A	No. 60	#N/A		
1/2"	#N/A	No. 100	#N/A		
3/8"	#N/A	No. 200	33.7		

Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	9/27/2013
Project No.	18274-001-00	Tested By	SB
Boring No.	B-1Aa	Checked By	SLC
Source/Dept	h (feet) 45 - 46	Sieve Type	200 Wash

Method B was used for the 200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge. La 70809 Confidential Information; Privileged & Confidential W**1827/4-001-00**

U.S. STANDARD SIEVE SIZE No. 200 9 9 ŝ ું 100 90 80 70 PERCENT PASSING 60 50 40 30 20 10 0 1000 100 10 0.1 0.01 0.001 **GRAIN SIZE IN MILLIMETERS**

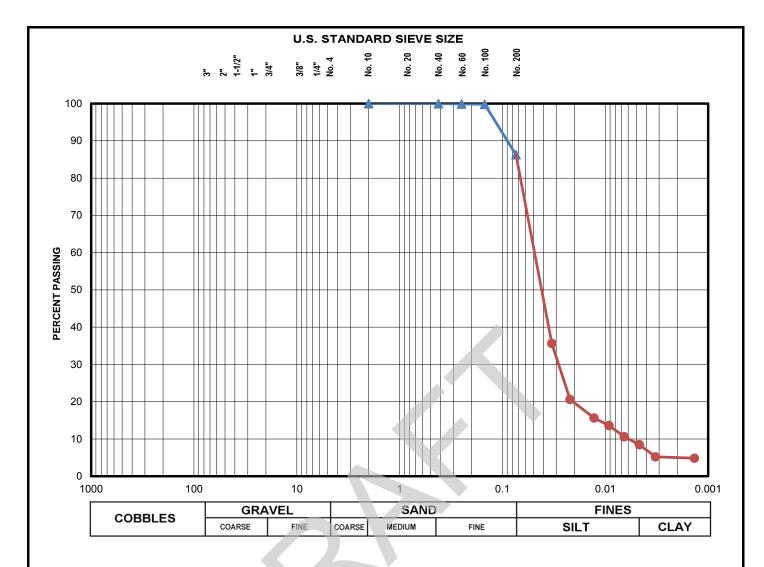
COBBLES	GRA	VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %		90.5	Fines (Silt & Clay) %		9.5	
USC Classification		SP	Cυ	na	C _c	na
Description (D 2488)		Sand with silt (SP)		_		

	Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	#N/A			
1 1/2"	#N/A	No. 20	#N/A			
1"	#N/A	No. 40	#N/A			
3/4"	#N/A	No. 60	#N/A			
1/2"	#N/A	No. 100	#N/A			
3/8"	#N/A	No. 200	9.5			

Project	LA CPRA - Mid-Barataria Diversion	1 (BA-153), Plaquen Date Tested	9/27/2013
Project No.	18274-001-00	Tested By	SB
Boring No.	B-1Aa	Checked By	SLC
Source/Dept	n (feet) 57.5 - 59	Sieve Type	200 Wash

Method B was used for the 200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

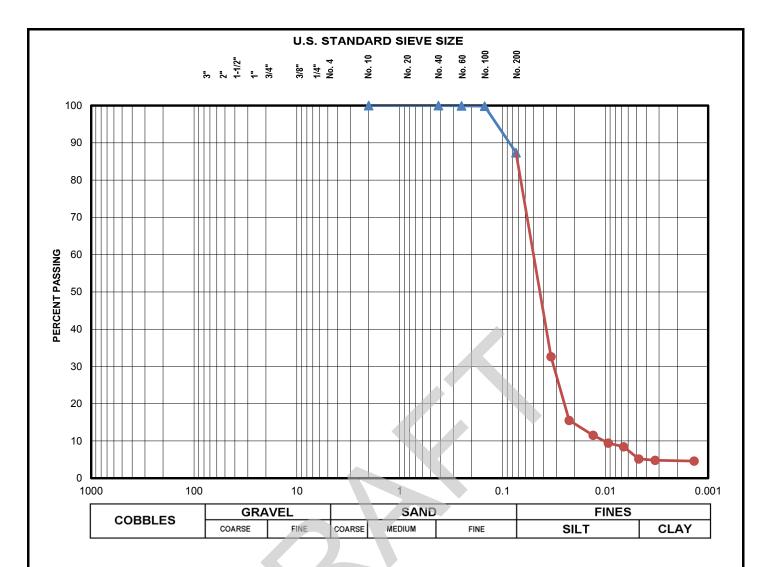
ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge. La 70809 Confidential Information; Privileged & Confidential W**1827/4-001-00**

Description (D 2488)	dium dense gray sa	ndy silt (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	99.9	
3/8"	100.0	No. 100	99.8	
1/4"	100.0	No. 200	86.3	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1158

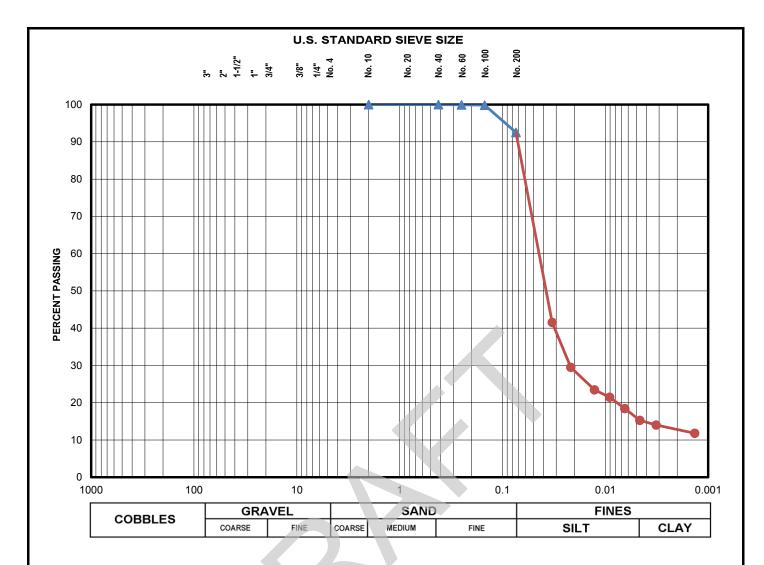
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/7/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SLC
Source/Depth (feet)	20 - 21		<u> </u>

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Loose gray sandy	y silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	87.4


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1156

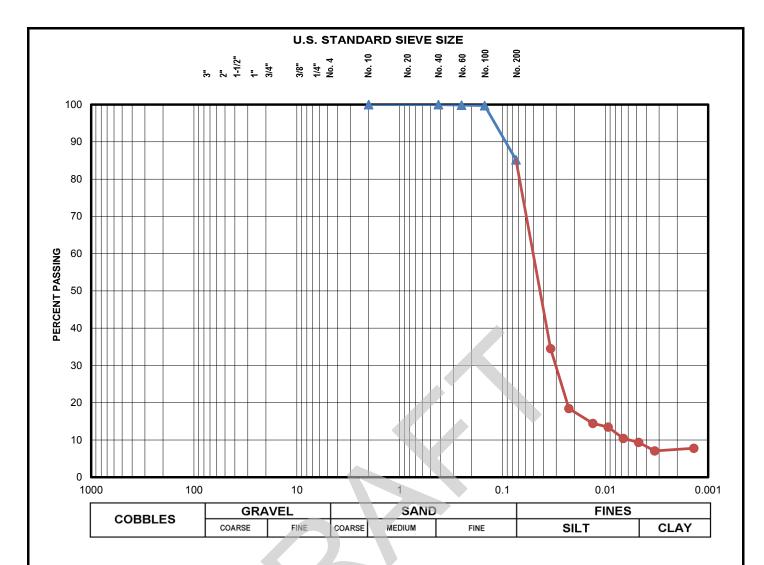
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/7/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SLC
Source/Depth (feet)	23.6 - 24		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	ery loose gray clayey	silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	92.5


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1150

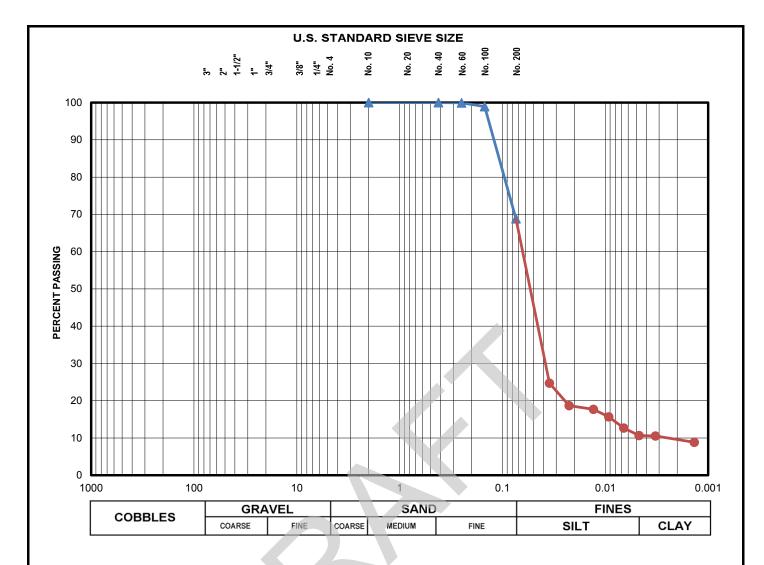
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-153), P	Date Tested	10/7/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SLC
Source/Depth (feet)	27 - 28.5		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Very loose gray sa	ndy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.7
1/4"	100.0	No. 200	85.2


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1154

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/7/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SLC
Source/Depth (feet)	32 - 33.5		

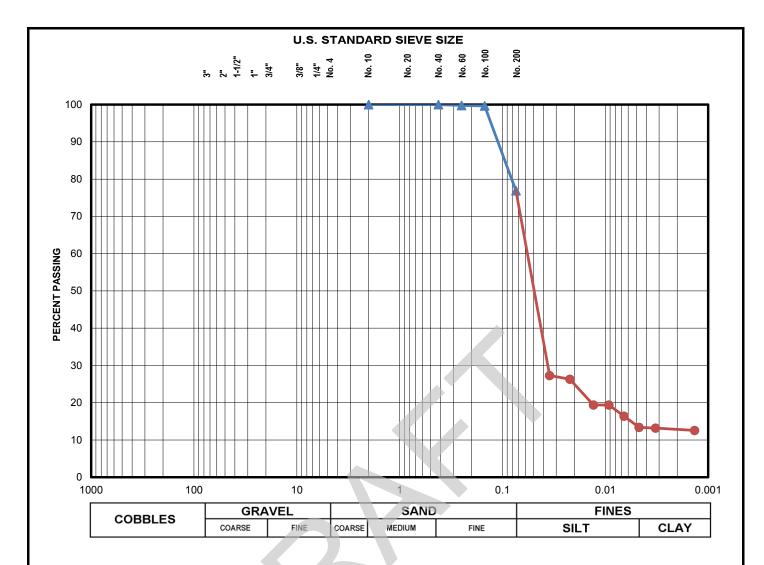
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Loose gray sandy	y silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	98.9
1/4"	100.0	No. 200	68.8

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1353

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/7/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SLC
Source/Depth (feet)	34.5 - 36		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

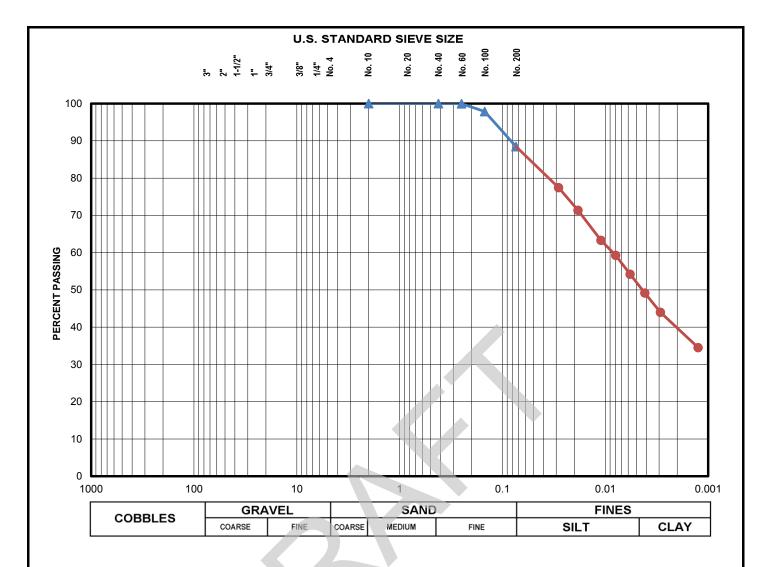
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

Description (D 2488)	Very loose gray s	sandy silt with 4" clay layer (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.8
3/8"	100.0	No. 100	99.6
1/4"	100.0	No. 200	76.9

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1161

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/8/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SLC
Source/Depth (feet)	39.5 - 41		

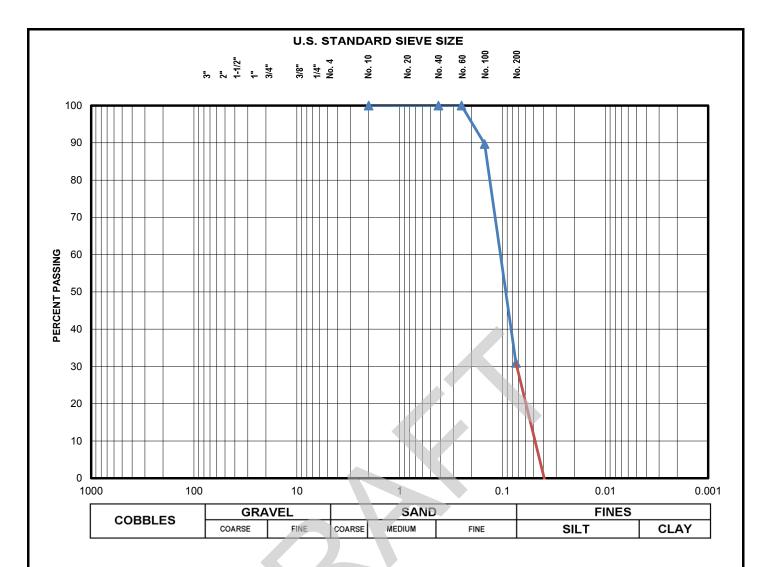
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

Description (D 2488)	edium gray clay (CL6)	

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	97.9
1/4"	100.0	No. 200	88.5


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	0

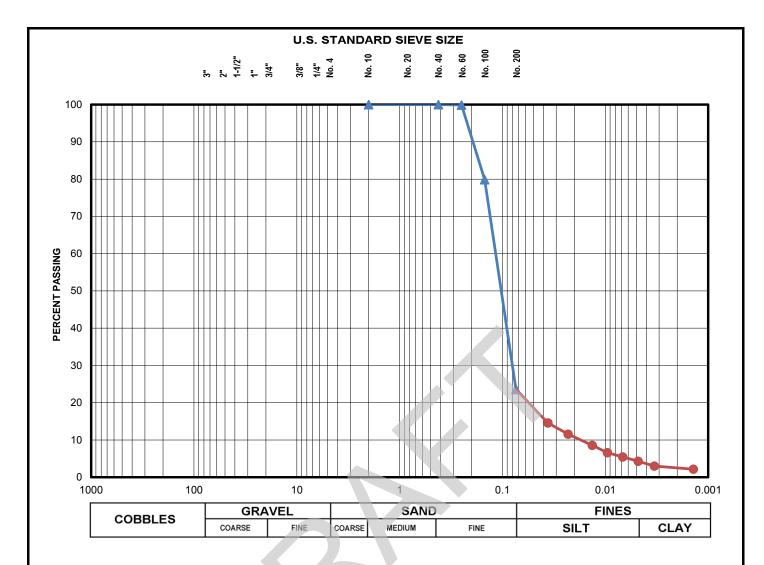
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/10/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SEF
Source/Depth (feet)	67.5 - 69		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Medium dense	gray silty sand (SM)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	89.7	
1/4"	100.0	No. 200	30.9	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	0

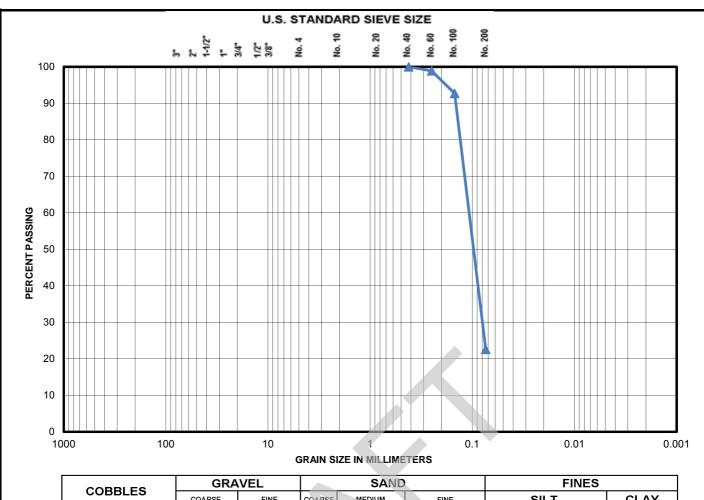
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/10/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SEF
Source/Depth (feet)	71 - 72		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Medium dense gray	y silty sand (SM)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	99.9	
3/8"	100.0	No. 100	79.9	
1/4"	100.0	No. 200	23.6	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	0

^{*}assumed unless noted

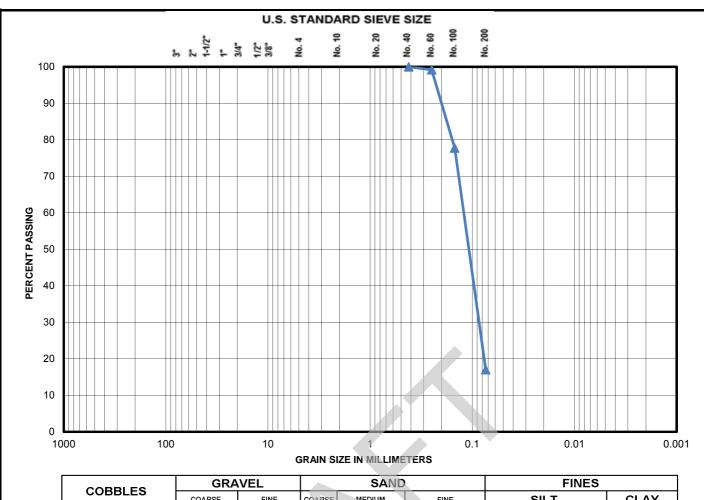
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/10/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-1Aa	Checked By	SEF
Source/Depth (feet)	76.5 - 78		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CORRIES	GRA	VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %	77.4	Fines (Silt & Clay) %		22.6	
USC Classification	SM	Cu	na	C _c	na
Description (D 2488)	Silty sand				

li	Individual Sieve Data - % Passing				
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	#N/A		
1"	#N/A	No. 40	100.0		
3/4"	#N/A	No. 60	98.9		
1/2"	#N/A	No. 100	92.7		
3/8"	#N/A	No. 200	22.6		


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Boring No.	B-1Aa	Checked By	SLC
Source/Dept	h (feet) 55 - 56.5	Sieve Type	Dry Sieve

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %	83.0	Fi	nes (Silt & C	lay) %	17.0	
USC Classification	SM		Cυ	na	C _c	na
Description (D 2488)	Silty sand					

l	Individual Sieve Data - % Passing							
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	100.0					
3/4"	#N/A	No. 60	99.2					
1/2"	#N/A	No. 100	77.8					
3/8"	#N/A	No. 200	17.0					


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquer	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Boring No.	B-1Aa	Checked By	SLC
Source/Dept	h (feet) 62.5 - 64	Sieve Type	Dry Sieve

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

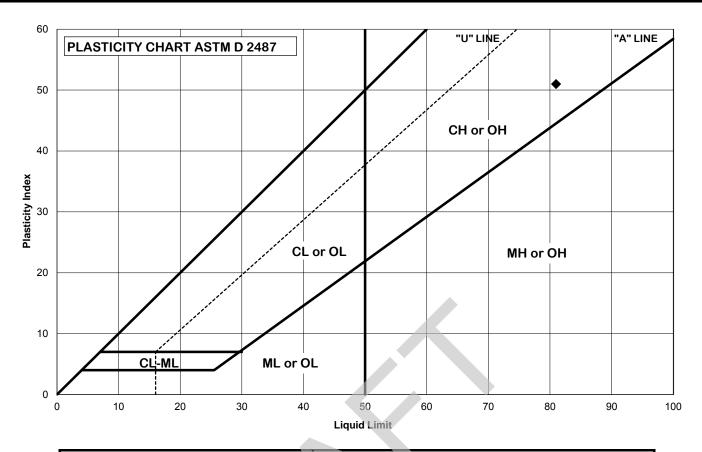
ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %	86.3		Fines (Silt & C	lay) %	13.7		
USC Classification	SM		Cu	na	C _c	na	
Description (D 2488) Silty sand							

Individual Sieve Data - % Passing							
3"	#N/A	No. 4	#N/A				
2"	#N/A	No. 10	#N/A				
1 1/2"	#N/A	No. 20	#N/A				
1"	#N/A	No. 40	100.0				
3/4"	#N/A	No. 60	97.7				
1/2"	#N/A	No. 100	46.5				
3/8"	#N/A	No. 200	13.7				


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquer	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Boring No.	B-1Aa	Checked By	SLC
Source/Dept	h (feet) 81.5 - 83	Sieve Type	Dry Sieve

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

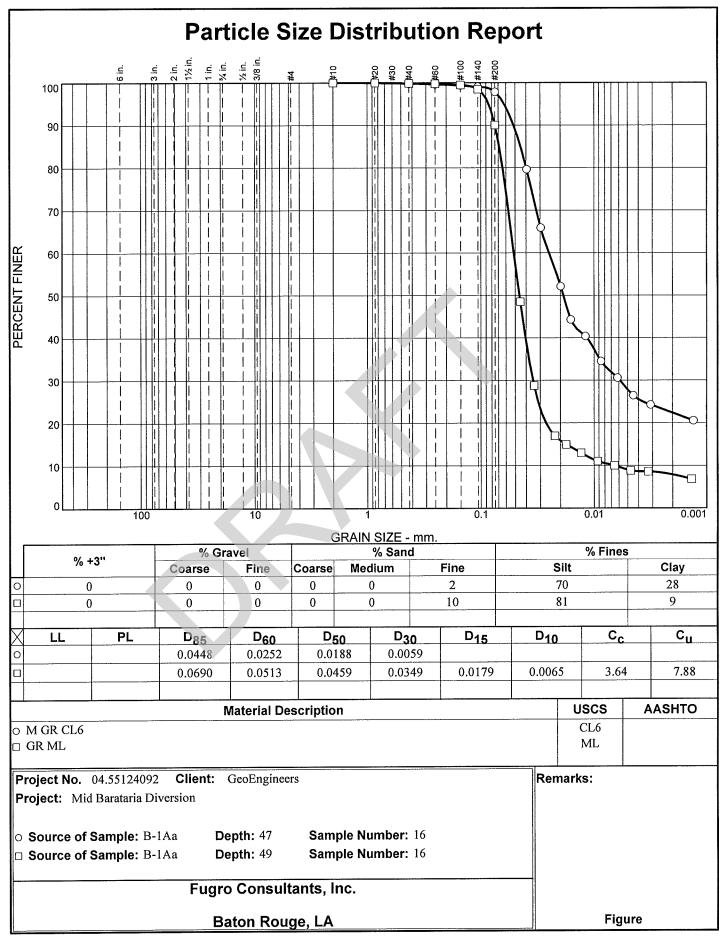
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

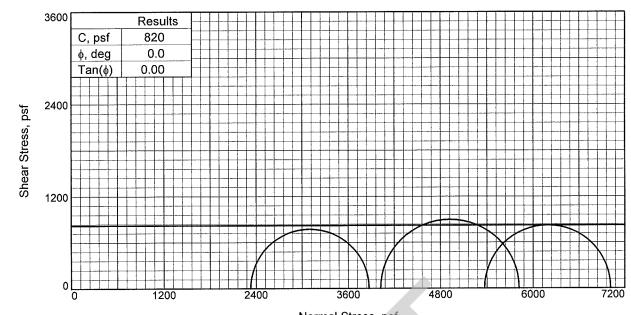
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	B-1Aa				Natural WC:	#DIV/0!		
Depth, ft.	72 - 73				Preparation:	Wet (as-received)		
Cup No.	1355				No. Points:			
Percent Retained on No. 40		0		Estimat	ted or Tested	0.0		
Original sample d	Soft gray	Soft gray clay with sand lenses, pockets and seams (CH4)						

Classification	Liquid Limit =	01	Date:
(fraction passing No. 40	•		Date.
sieve)	Plastic Limit =	30	Tested By:
СН	Plasticity Index =	51	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.




ATTERBERG LIMITS - ASTM D4318

10/1/2013 BH SLC


LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

Normal Stress, psf

	Sar	mple No.		1	2	3	
		Water Content, %		39.0	37.2	38.0	
	_	Dry Density, pcf		81.8	82.9	82.1	
	nitia	Saturation, %		99.9	97.9	98.1	
	ï.	Void Ratio		1.0455	1.0182		
		Diameter, in.		1.42	1.43		
_		Height, in.		2.85	2.80	2.86	
2		Water Content, %		39.0	37.2	38.0	
-	77	Dry Density, pcf		81.8	82.9	82.1	
1	Fest	Saturation, %		99.9	97.9	98.1	
	At	Void Ratio		1.0455	1.0182		
	ď	Diameter, in.		1.42	1.43	1.43	
		Height, in.		2.85	2.80	2.86	
	Stra	ain rate, in./min.		1.00	1.00	1.00	
	Bad	ck Pressure, psi		0.00	0.00	0.00	
	Cel	l Pressure, psi		16.16	27.93	37.28	
	Fai	I. Stress, psf		1544	1795	1646	
	5	Strain, %		10.3	11.3	11.6	
	Ult. Stress, psf Strain, %		1508	1790	1636		
			14.3	13.3	13.6		
	σ1	σ ₁ Failure, psf		3871	5817	7015	
	σ_3	Failure, psf		2327	4022	5368	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CL6

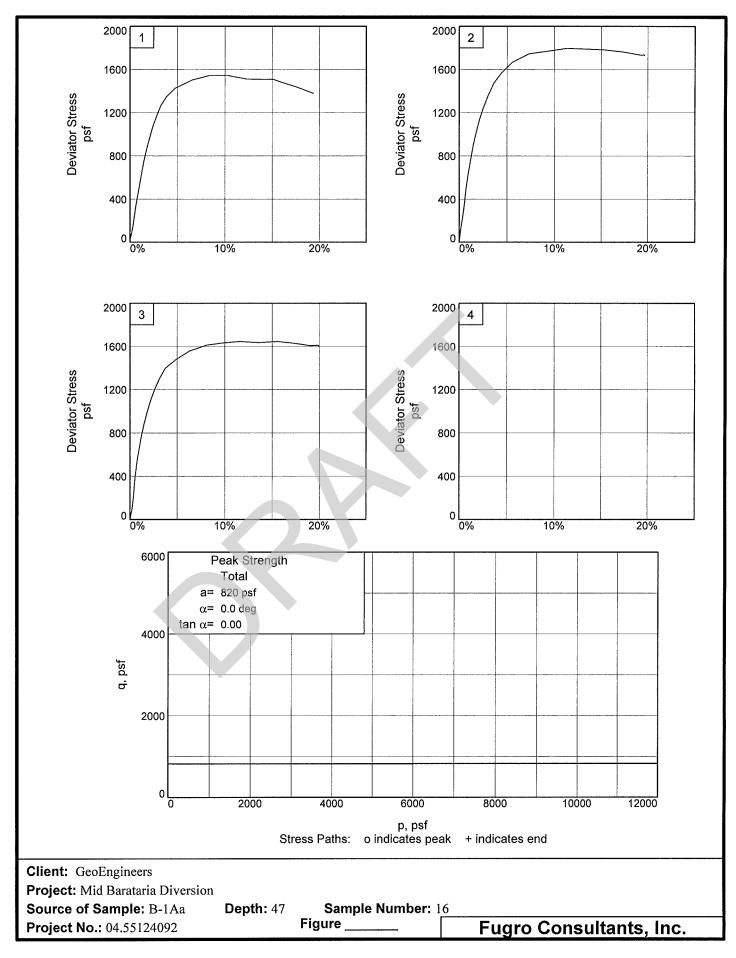
Assumed Specific Gravity= 2.68

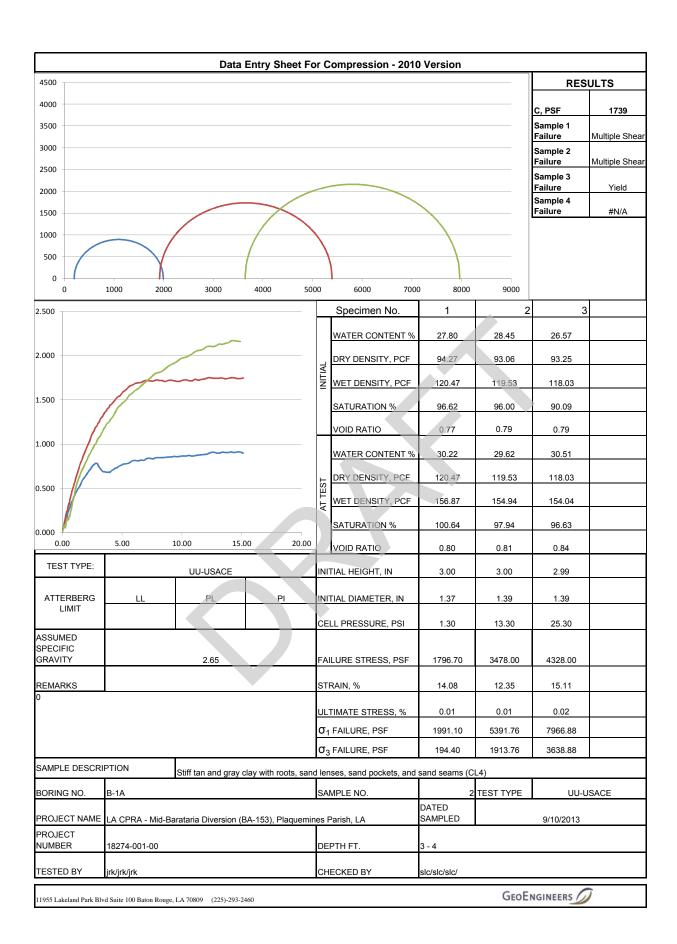
Remarks:

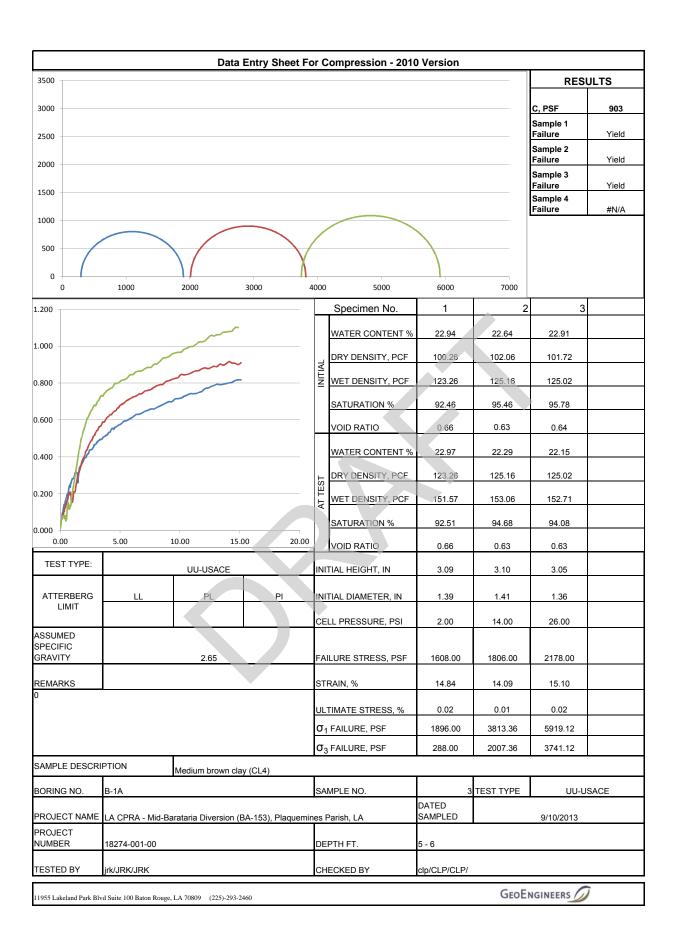
Client: GeoEngineers

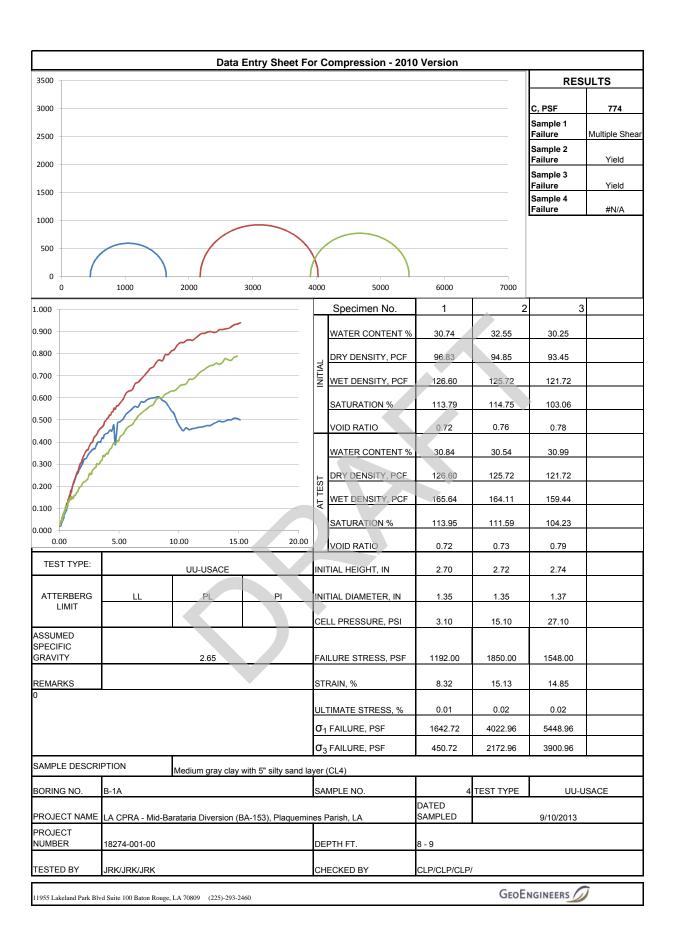
Project: Mid Barataria Diversion

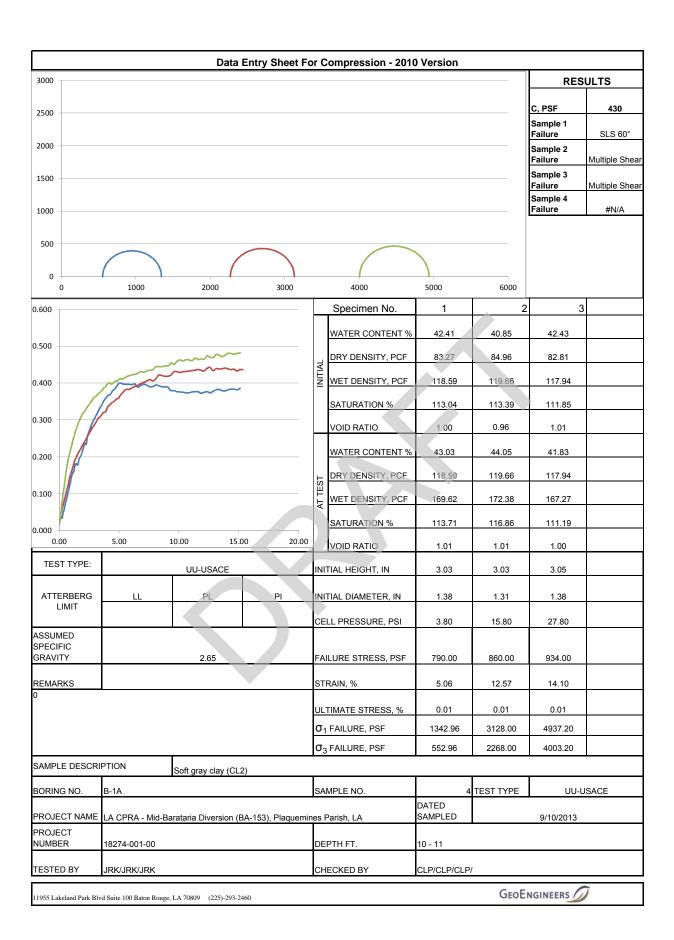
Source of Sample: B-1Aa Depth: 47

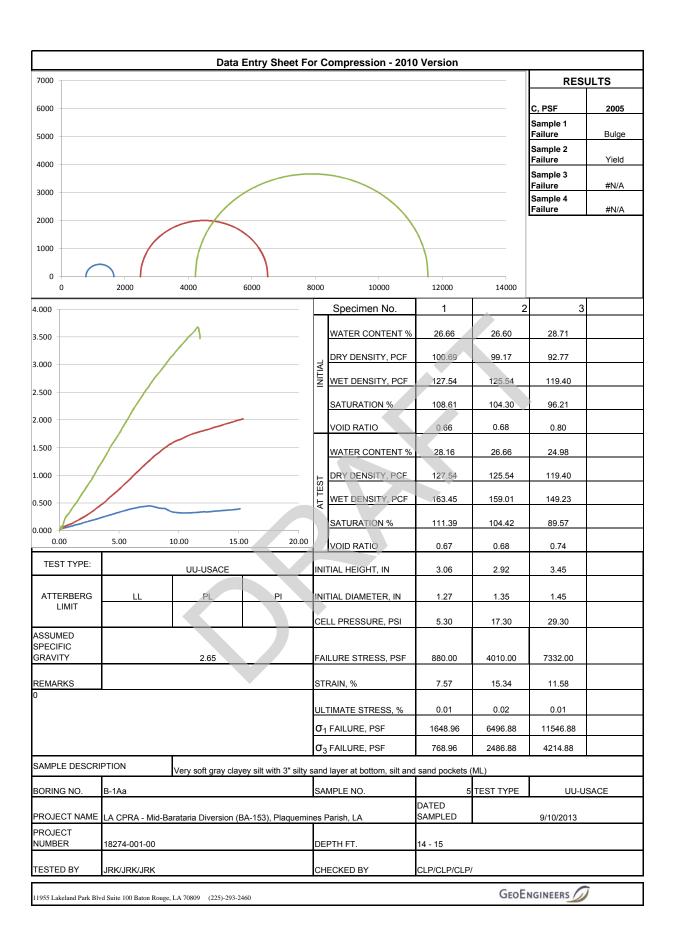

Sample Number: 16

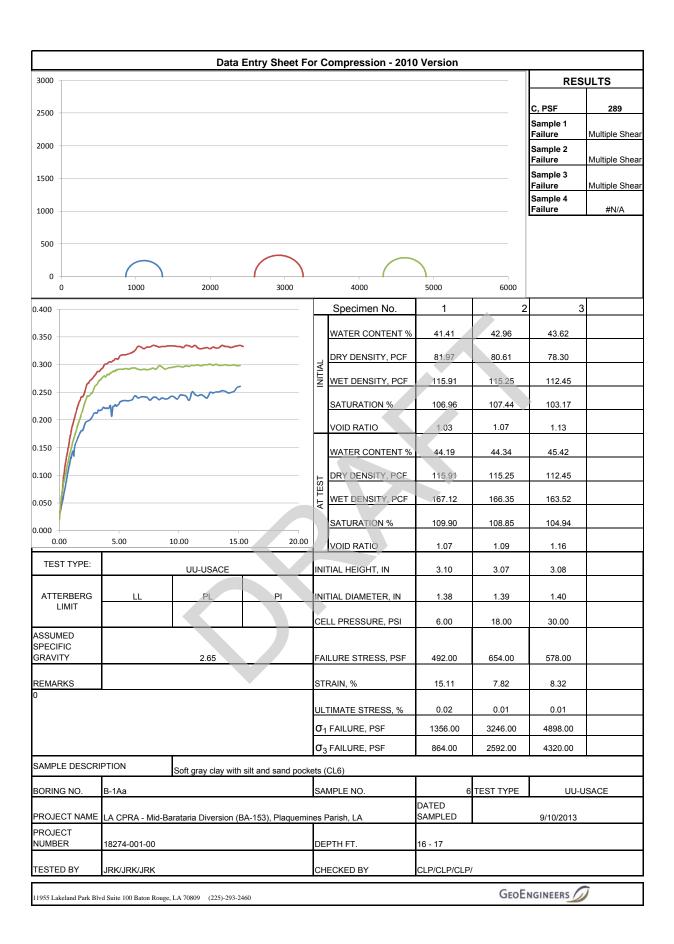

Proj. No.: 04.55124092 Date Sampled: 10/8/13

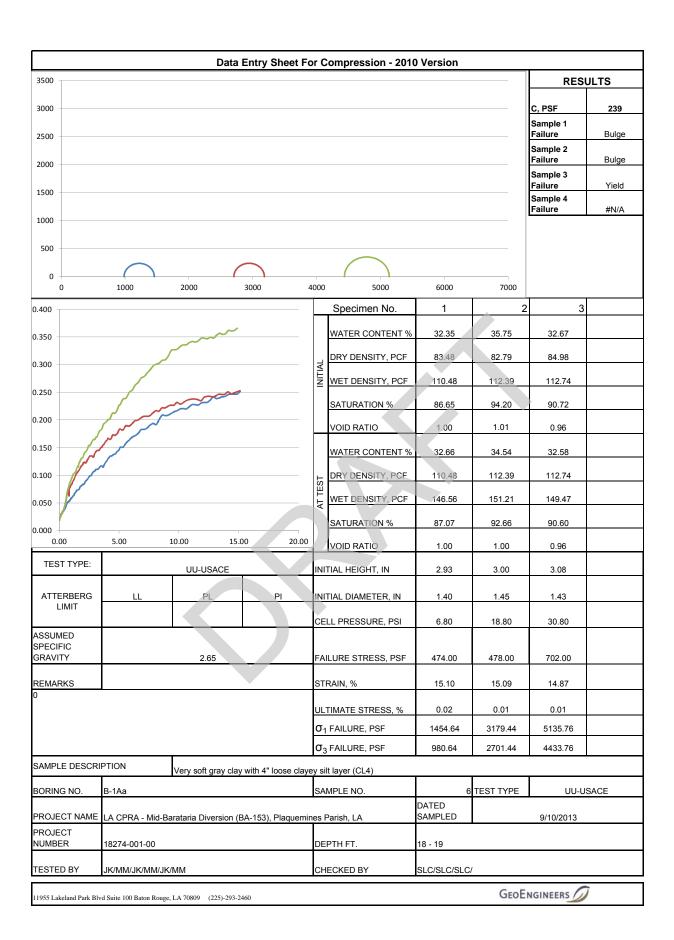

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc.

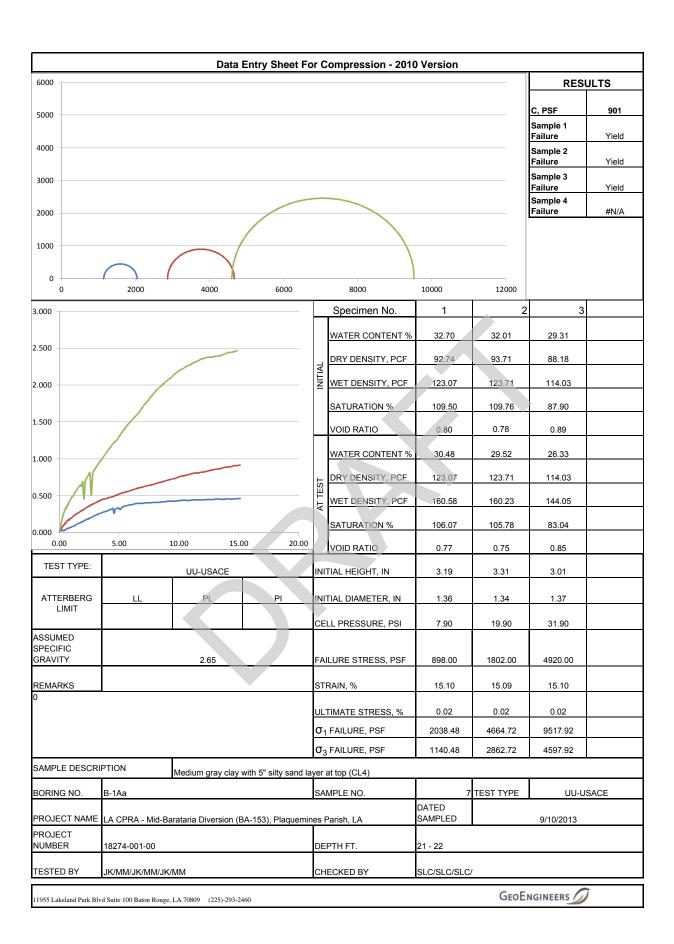

Baton Rouge, LA

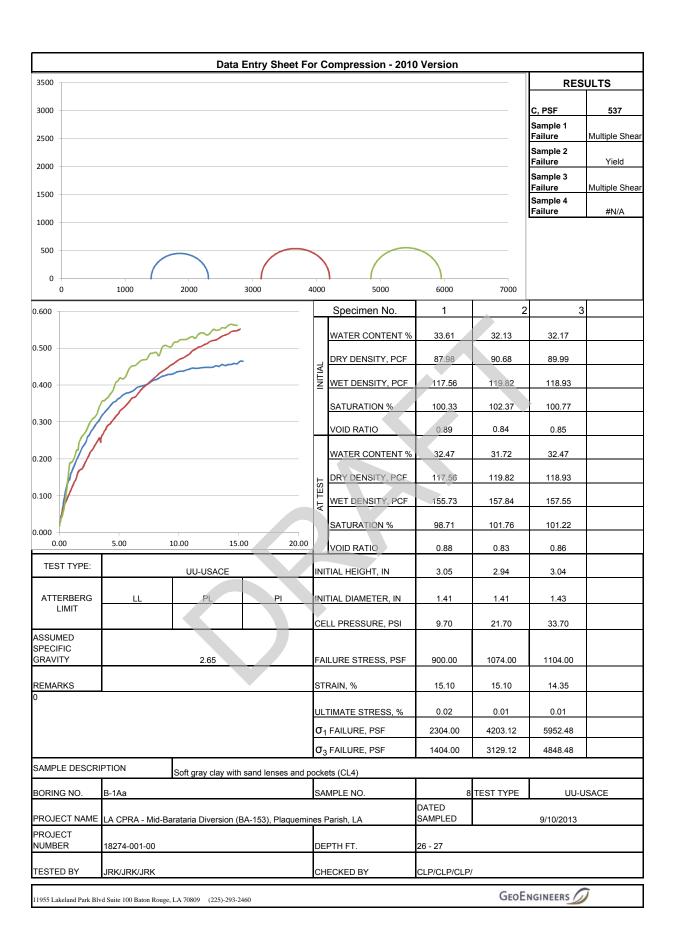

Figure

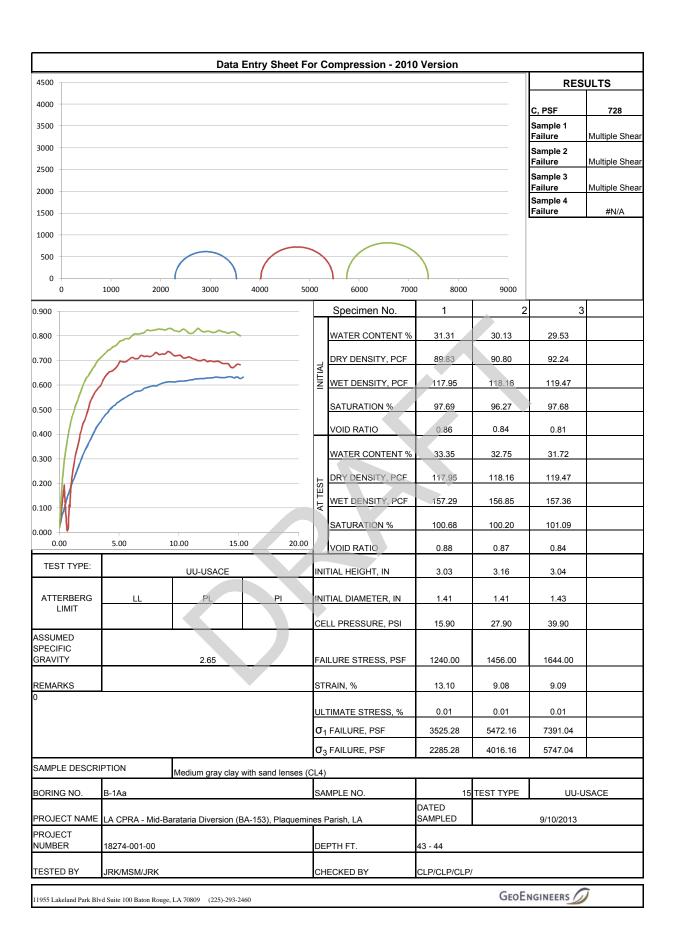


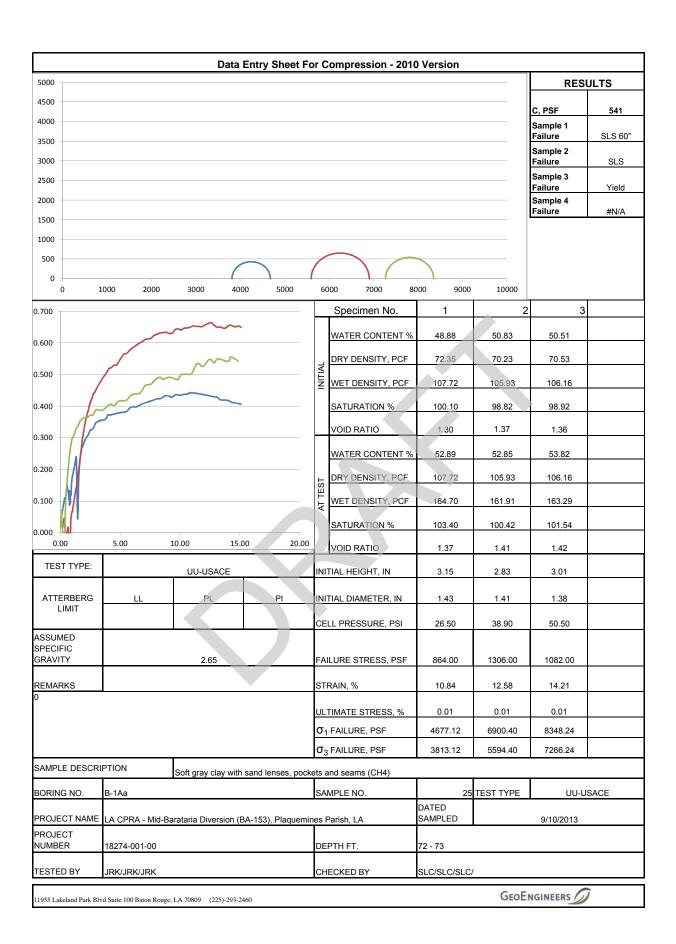


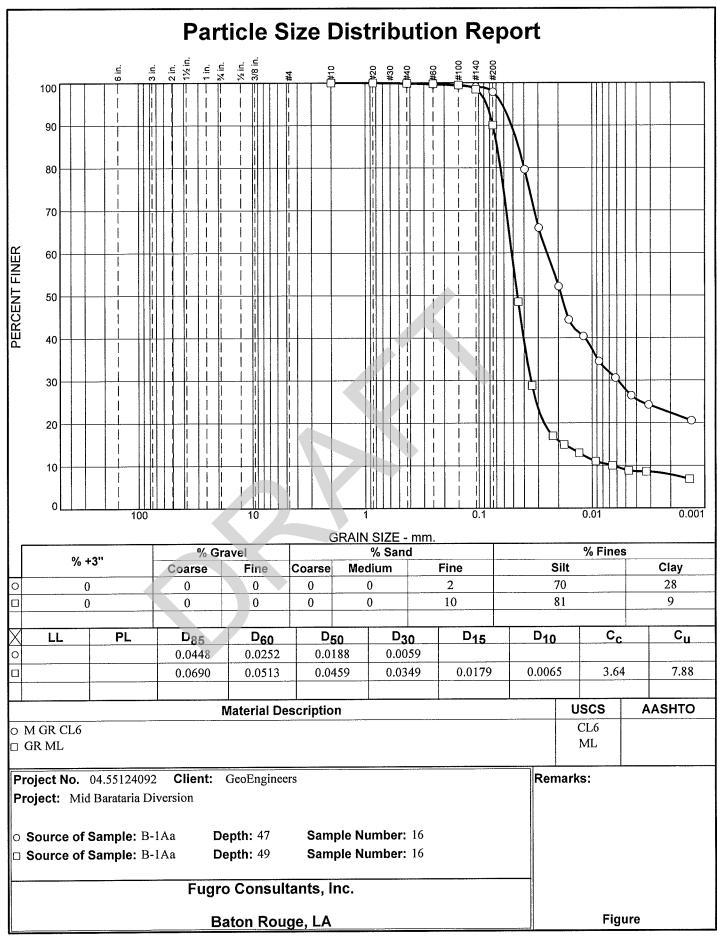


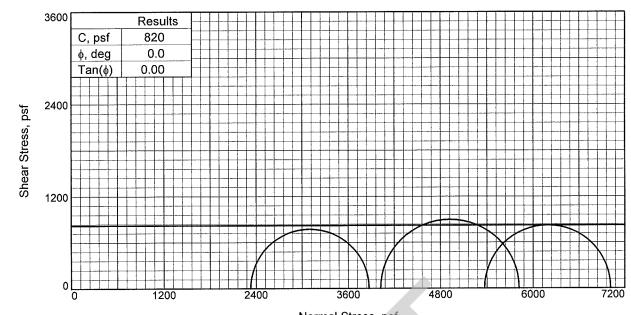














Normal Stress, psf

	Sar	mple No.	1	2	3	
		Water Content, %	 39.0	37.2	38.0	
	_	Dry Density, pcf	81.8	82.9	82.1	
	nitia	Saturation, %	99.9	97.9	98.1	
	ï.	Void Ratio	1.0455	1.0182		
		Diameter, in.	1.42	1.43		
_		Height, in.	 2.85	2.80	2.86	
2		Water Content, %	39.0	37.2	38.0	
-	77	Dry Density, pcf	81.8	82.9	82.1	
1	Fest	Saturation, %	99.9	97.9	98.1	
	At	Void Ratio	1.0455	1.0182		
	ď	Diameter, in.	1.42	1.43	1.43	
		Height, in.	2.85	2.80	2.86	
	Stra	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	16.16	27.93	37.28	
	Fai	I. Stress, psf	1544	1795	1646	
	5	Strain, %	10.3	11.3	11.6	
	Ult.	Stress, psf	1508	1790	1636	
	5	Strain, %	14.3	13.3	13.6	
	σ1	Failure, psf	3871	5817	7015	
	σ_3	Failure, psf	2327	4022	5368	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CL6

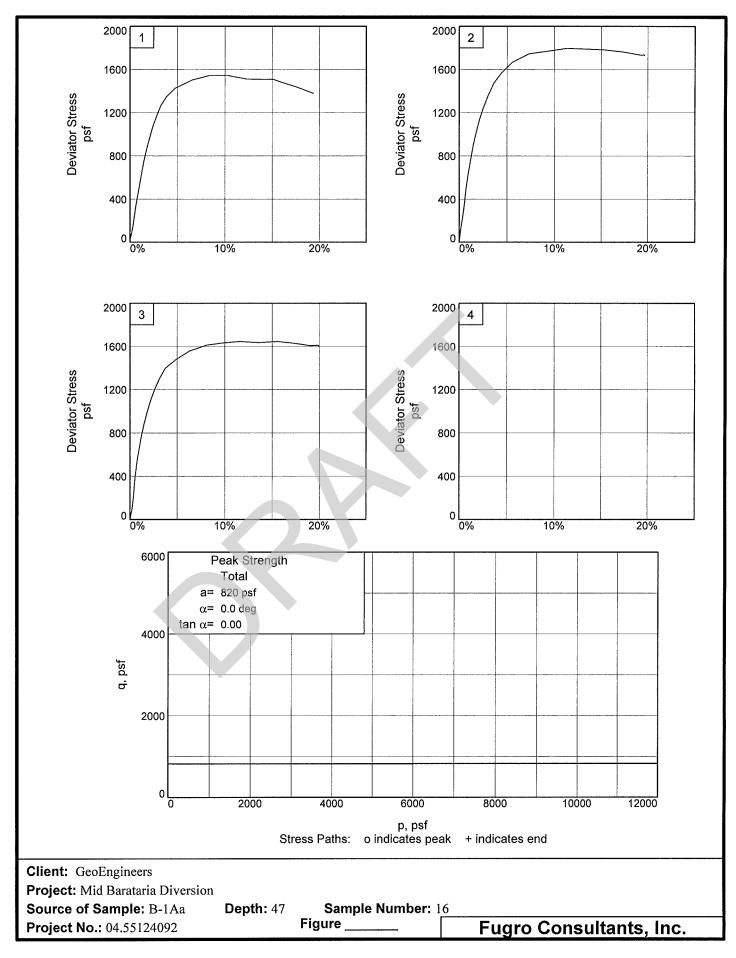
Assumed Specific Gravity= 2.68

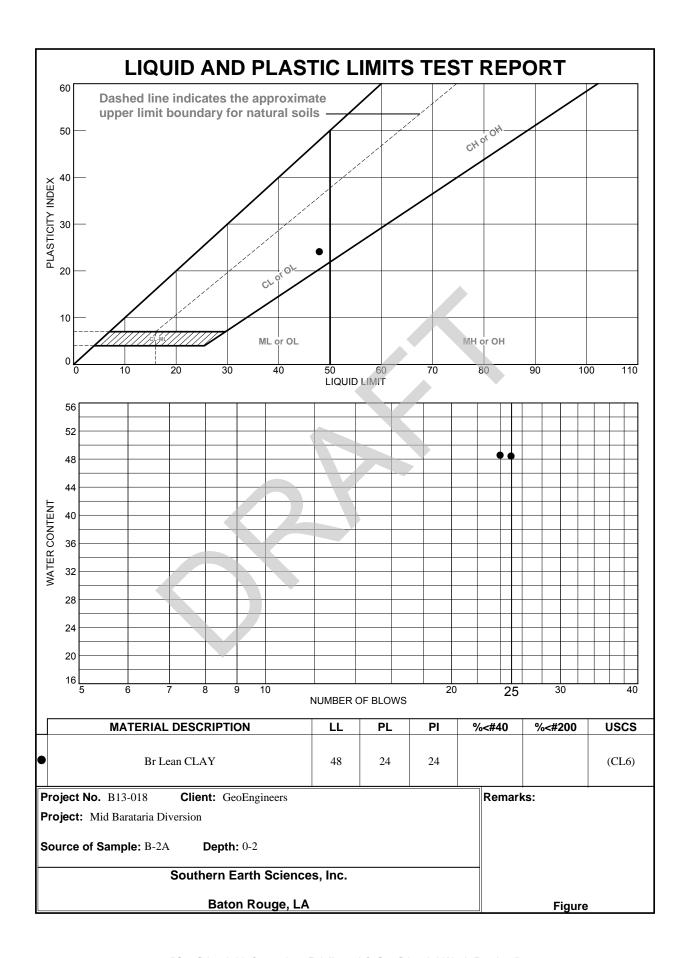
Remarks:

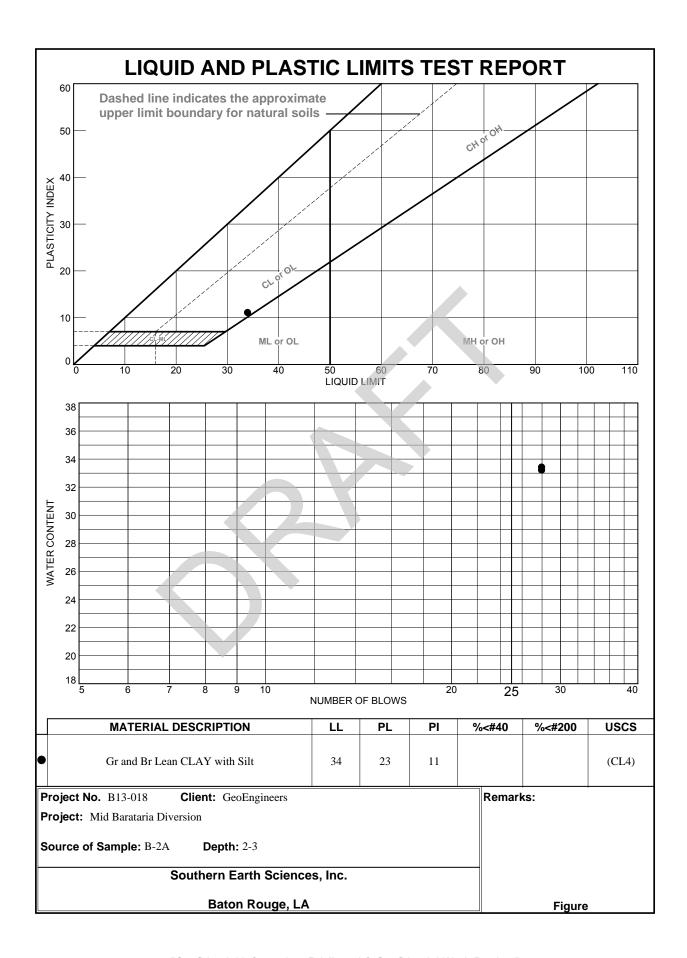
Client: GeoEngineers

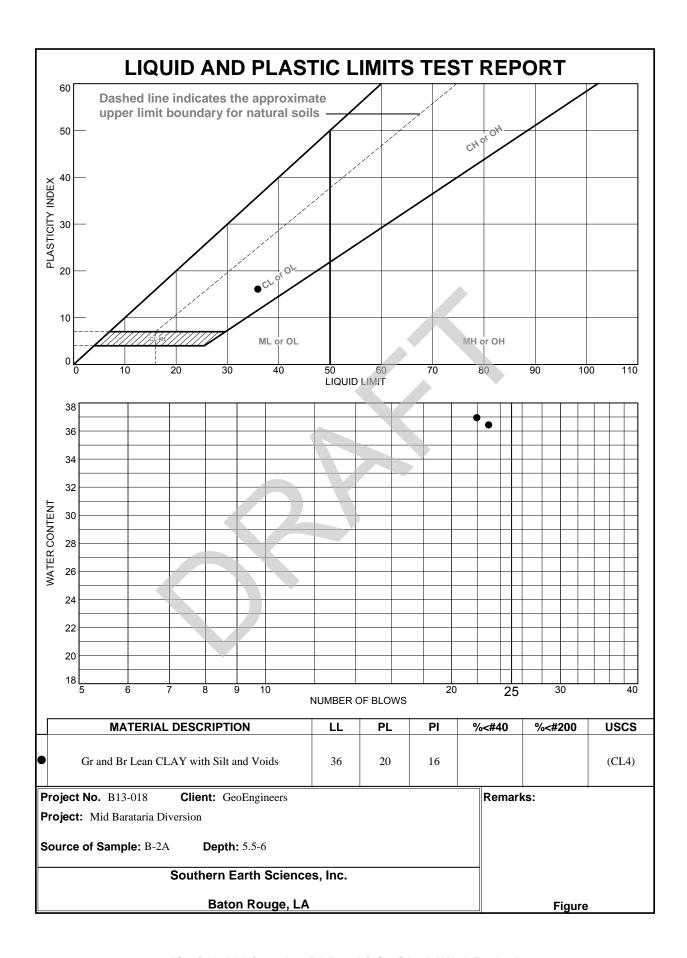
Project: Mid Barataria Diversion

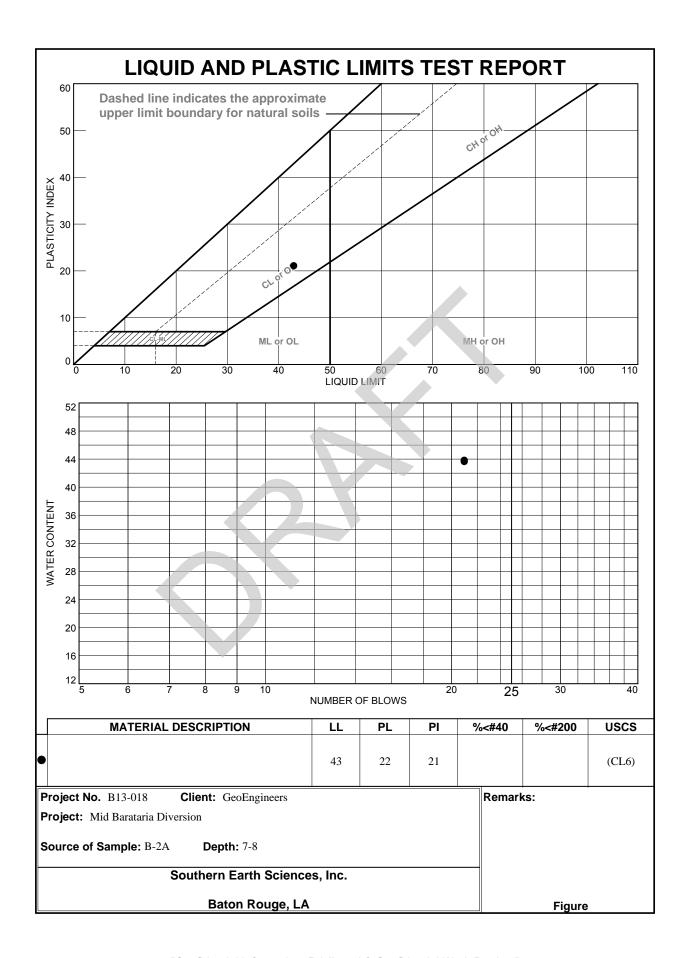
Source of Sample: B-1Aa Depth: 47

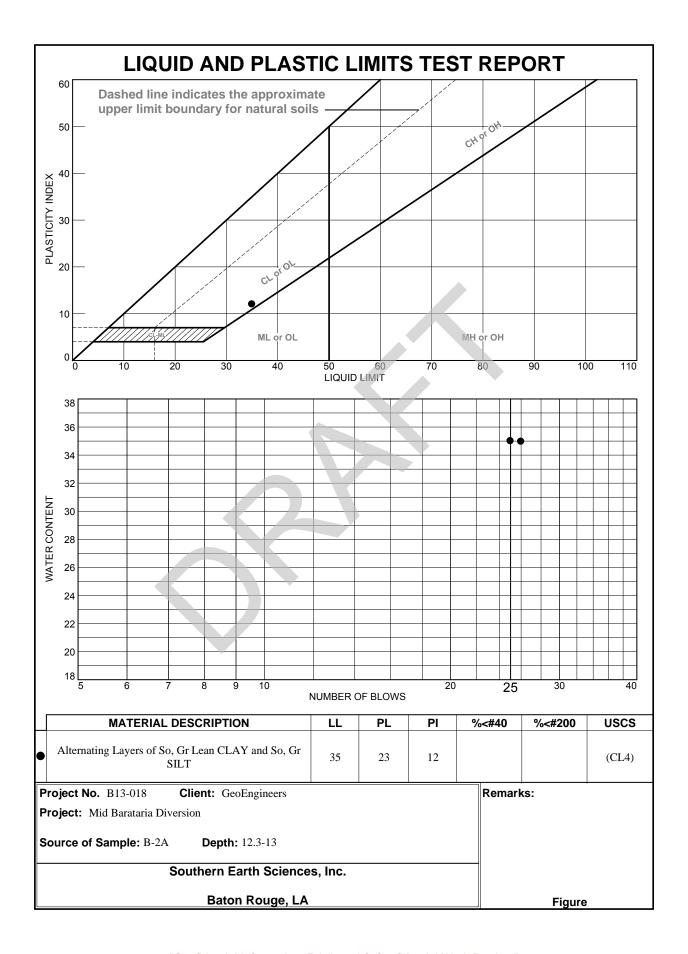

Sample Number: 16

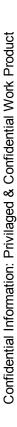

Proj. No.: 04.55124092 Date Sampled: 10/8/13

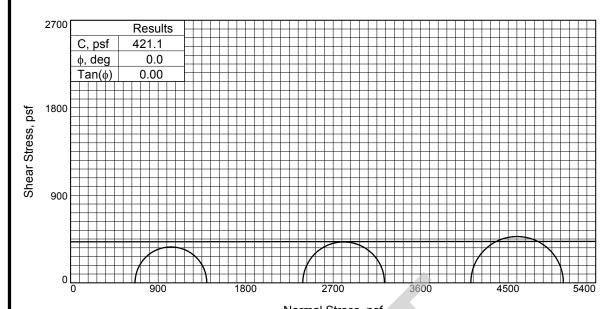

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc.

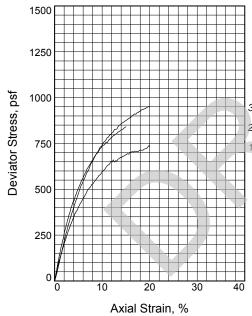

Baton Rouge, LA


Figure









Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Alternating Layers of So, Gr

Lean CLAY and So, Gr SILT (CL4)

Assumed Specific Gravity= 2.70

Remarks: Type Failure:

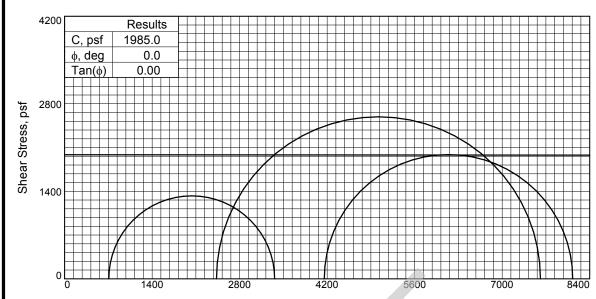
Bulge

Slumping under own weight

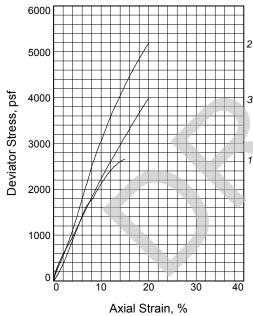
-1	กเ	ıre		
	чυ			

	Sa	mple No.	1	2	3	
		Water Content, %	35.8	35.4	34.1	
		Dry Density, pcf	85.3	86.2	87.5	
	Initial	Saturation, %	99.1	99.9	99.3	
	Ιυ	Void Ratio	0.9760	0.9562	0.9263	
_	\ \	Diameter, in.	1.385	1.385	1.385	
3		Height, in.	2.800	2.800	2.800	
2		Water Content, %	36.1	35.4	34.3	
1	st	Dry Density, pcf	85.3	86.2	87.5	
	<u>l</u> e	Saturation, %	100.0	100.0	100.0	
	At Te	Void Ratio	0.9760	0.9562	0.9263	
	`	Diameter, in.		1.385		
,		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.001	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	4.600	16.580	28.580	
	Fai	il. Stress, psf	737.9	840.7	952.2	
	5	Strain, %	19.8	15.0	19.8	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	1400.3	3228.3	5067.7	
	σ_3	Failure, psf	662.4	2387.5	4115.5	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: B-2A Depth: 12.3-13


Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

Normal Stress, psf

Type	of	Test:

Unconsolidated Undrained

Sample Type: Undisturbed

Description: St, Gr SILT with Clay and Fine

Sand

Assumed Specific Gravity= 2.65

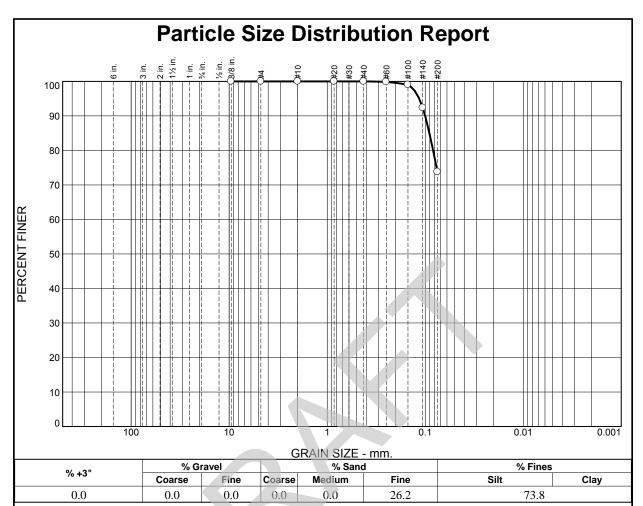
Remarks: Type Failure:

Bulge

Slumping under own weight

-ıa	ure	

	Sa	mple No.	1	2	3	
2		Water Content, %	31.1			
		Dry Density, pcf	88.1	89.7	89.1	
	nitia	Saturation, %	93.7	98.4	99.4	
	<u>-</u>	Void Ratio	0.8786	0.8443	0.8559	
3		Diameter, in.	1.385	1.382	1.385	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	33.2	31.9	32.3	
	it	Dry Density, pcf	88.1	89.7	89.1	
1	es	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	0.8786	0.8443	0.8559	
	1	Diameter, in.	1.385	1.382	1.384	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	4.910	16.870	28.850	
	Fai	il. Stress, psf	2652.0	5183.0	3974.1	
	5	Strain, %	14.8	20.0	20.0	
	Ult	. Stress, psf				
Strain, %		Strain, %				
σ ₁ Failure, psf			3359.0	7612.3	8128.5	
	σ_{3}	Failure, psf	707.0	2429.3	4154.4	


Client: GeoEngineers

Project: Mid Barataria Diversion

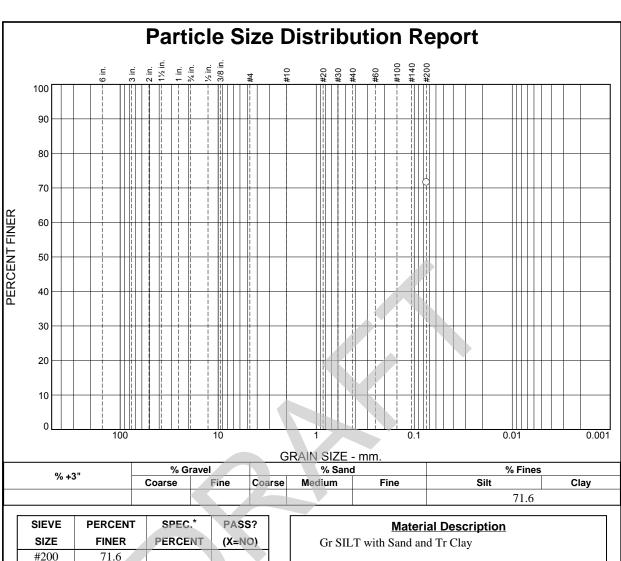
Source of Sample: B-2A Depth: 13-14

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.8		
#100	99.0		
#140	92.4		
#200	73.8		

Material Description Gr SILT with Sand and Tr Clay					
PL=	Atterberg Limits LL=	PI=			
USCS= (ML)	Classification AASHTO=				
F.M.=0.01	<u>Remarks</u>				


Source of Sample: B-2A Depth: 17-18

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

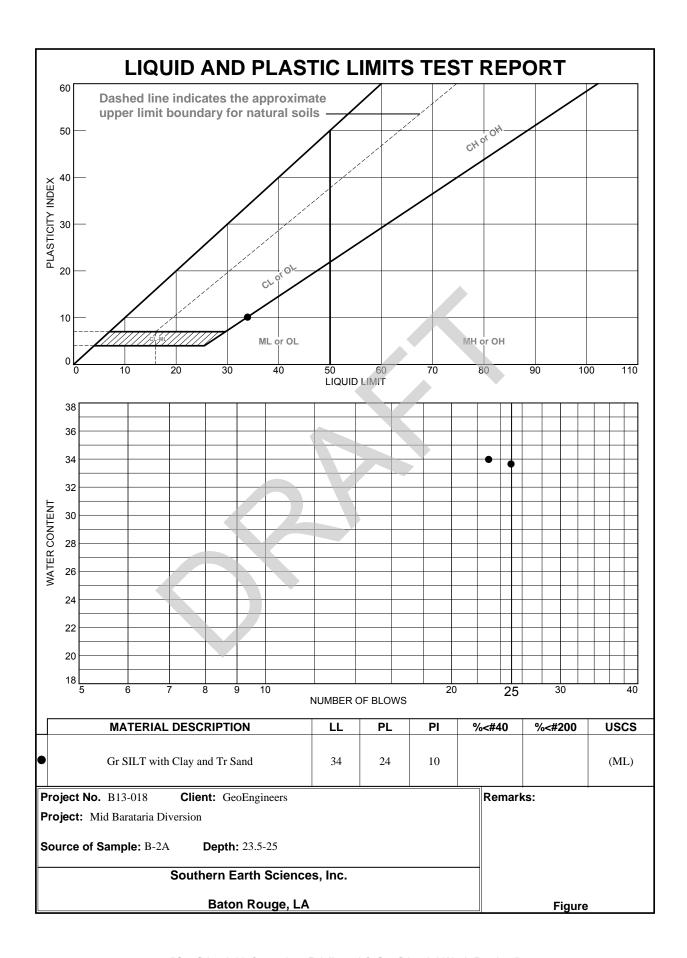
Client: GeoEngineers

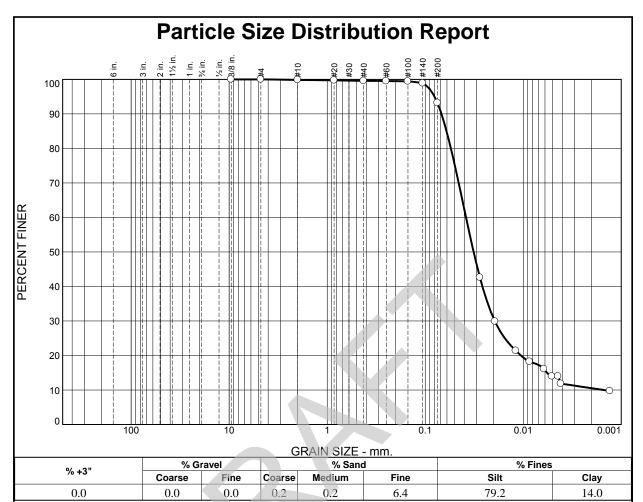
Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	71.6		,
* (no sr	pecification provid	led)	

Material Description Gr SILT with Sand and Tr Clay PL= Classification USCS= (ML) Remarks

Source of Sample: B-2A


Depth: 19-20


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

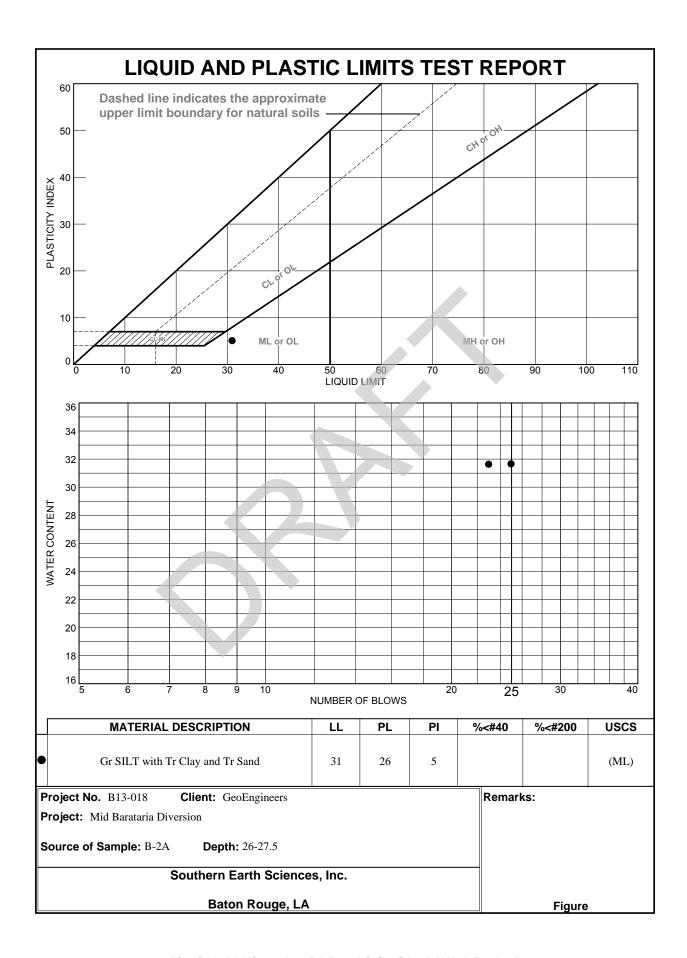
Project: Mid Barataria Diversion

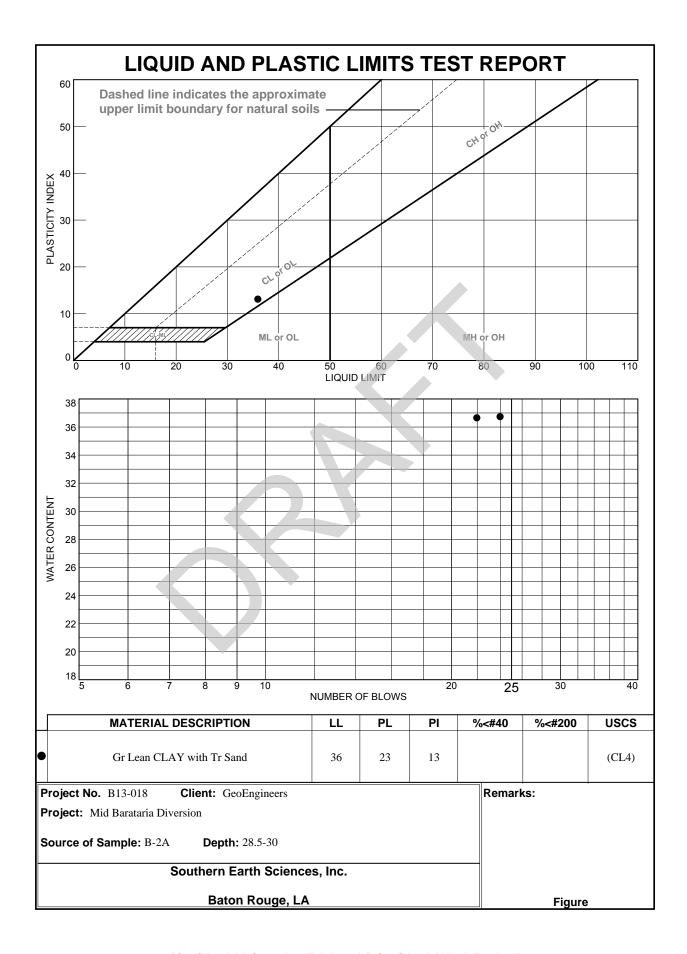
	_		
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	99.8		
#20	99.7		
#40	99.6		
#60	99.5		
#100	99.4		
#140	98.9		
#200	93.2		

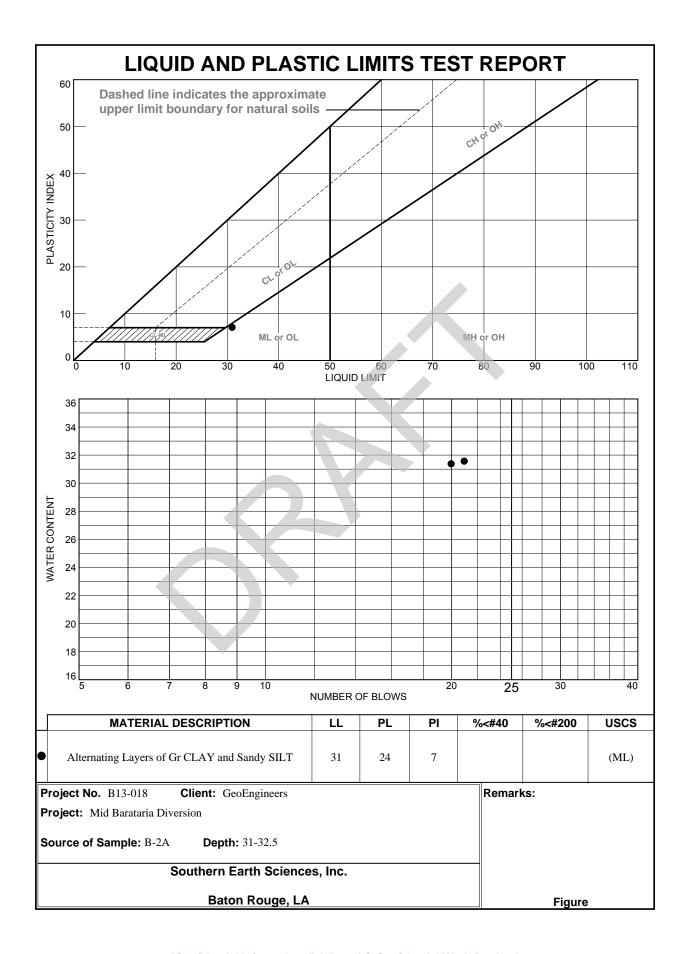
Material Description Gr SILT with Clay and Tr Sand						
PL= 24	Atterberg Limits LL= 34	PI= 10				
USCS= (ML)	Classification AASHTO=	A-4(10)				
F.M.=0.02	<u>Remarks</u>					

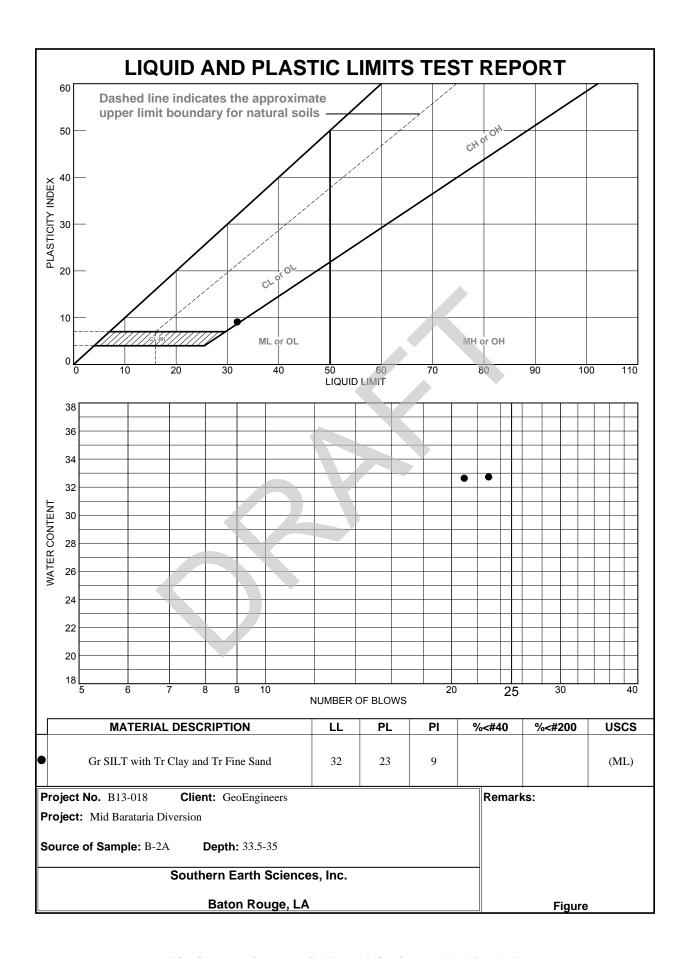
Source of Sample: B-2A

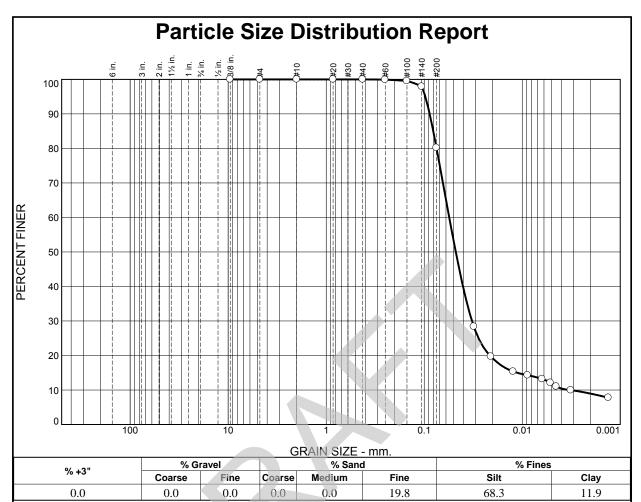
(no specification provided)


Depth: 23.5-25


Date:

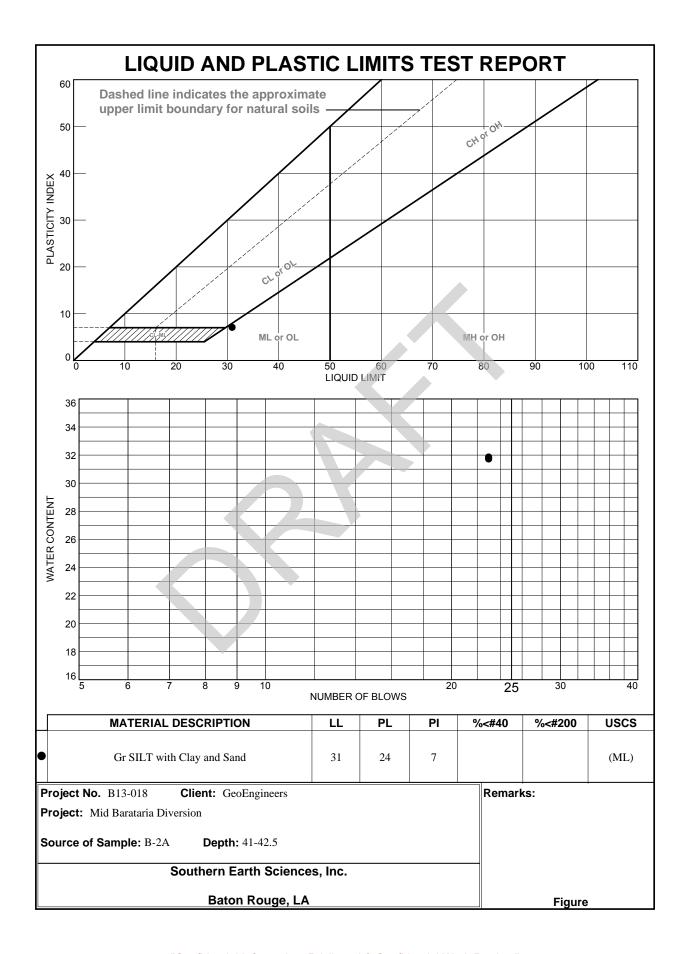

Southern Earth Sciences, Inc. **Baton Rouge, LA**

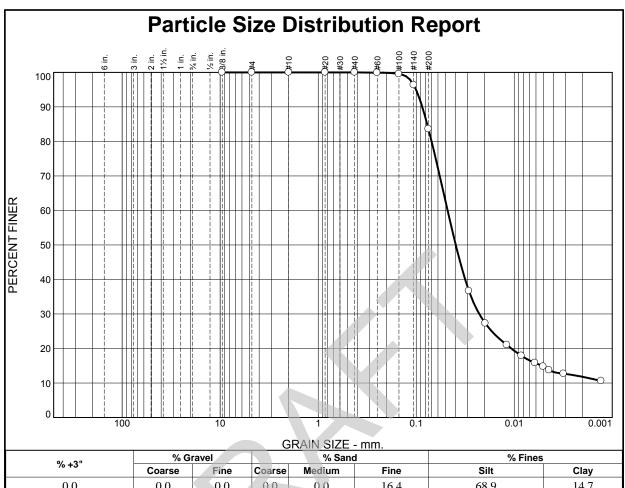

Client: GeoEngineers


Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
-	_		
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	99.5		
#140	97.9		
#200	80.2		

Material Description Gr SILT with Fine Sand and Clay							
	=						
ssification AASHTO=							
<u>emarks</u>							
	berg Limits Plessification						


Source of Sample: B-2A Depth: 36-37.5


Date:

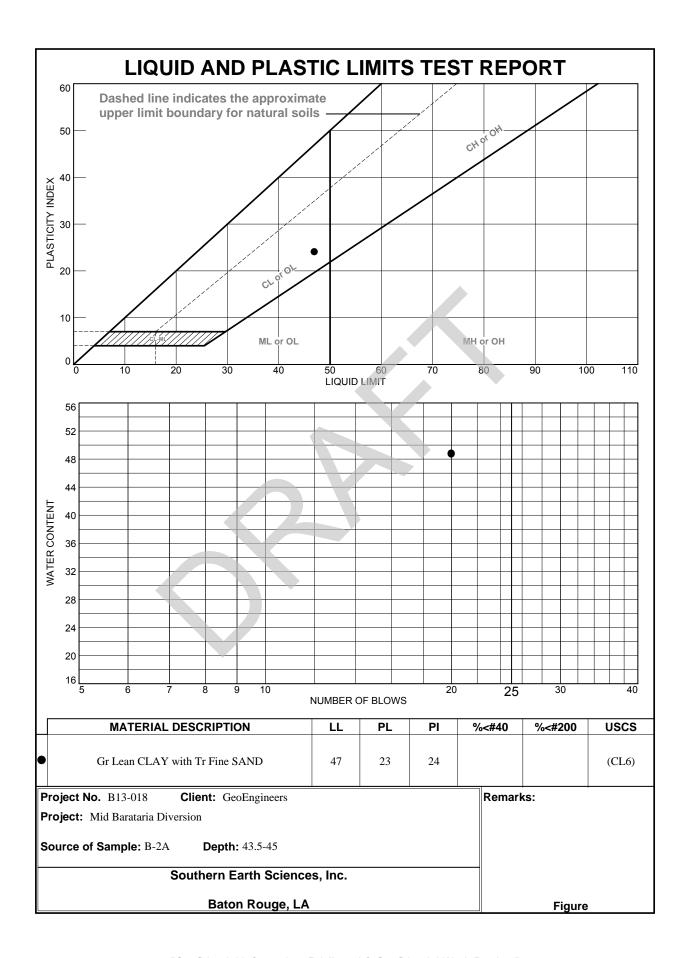
Southern Earth Sciences, Inc. Baton Rouge, LA

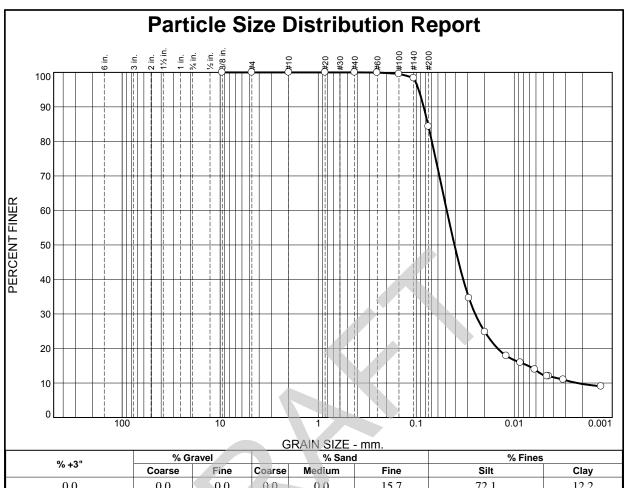
Client: GeoEngineers

Project: Mid Barataria Diversion

% +3"		% Gra	ivei		% Sand		70 FIIIE	:5	
	70 +3	•	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	0.0	0.0	0.0	16.4	68.9	14.7
	SIEVE	PERCENT	SPEC.*	PASS	3?		<u>Materi</u>	al Description	
	SIZE	FINER	PERCEN	T (X=NC)	Gr SIL	T with Clay an	d Sand	
	3/8"	100.0							

SIEVE	PERCENT	SPEC."	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	99.5		
#140	96.3		
#200	83.6		


<u>Material Description</u>						
Gr SILT with C	lay and Sand					
	Atterberg Limits					
PL= 24	LL= 31	PI= 7				
	Classification					
USCS= (ML)	AASHTO=	A-4(6)				
()		'(")				
EM 0.01	<u>Remarks</u>					
F.M.=0.01						


Source of Sample: B-2A Depth: 41-42.5

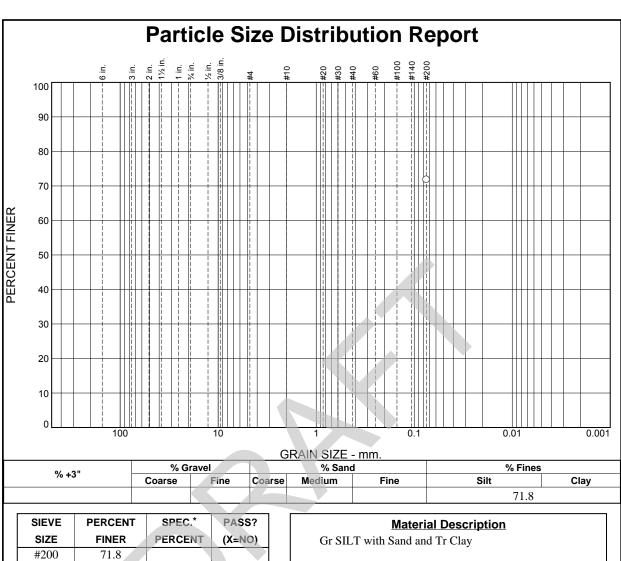
Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

% +3"		avei	% Sand		% rines				
	70 +3	•	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	0.0	0.0	0.0	15.7	72.1	12.2
	SIEVE	PERCENT	SPEC.	PASS	3?		Mater	ial Description	
	SIZE	FINER	PERCEN	IT (X=N	0)	Gr SIL	T with Fine Sa	nd and Clay	
	3/8"	100.0							

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	99.5	_	
#140	98.3		
#200	84.3		


Material Description					
Gr SILT with Fi	ine Sand and Clay				
PL=	Atterberg Limits LL=	PI=			
USCS= (ML)	Classification AASHTO=				
F.M.=0.00	<u>Remarks</u>				

Source of Sample: B-2A Depth: 46.5-47

Date:

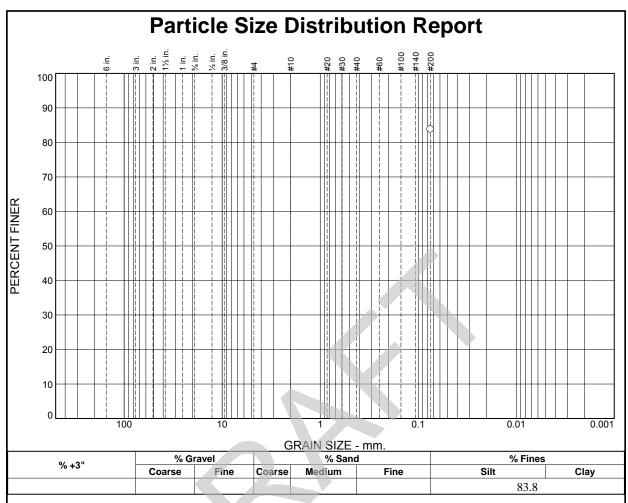
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	71.8		
200	71.0		
	· ·		
* (no sr	pecification provid	led)	
(110 S)	ochicanon provi	icu)	

Atterberg Limits LL= PL= PI= Classification AASHTO= USCS= (ML) **Remarks**

(no specification provided)


Source of Sample: B-2A **Depth:** 47-48

Date:

Southern Earth Sciences, Inc. **Baton Rouge, LA**

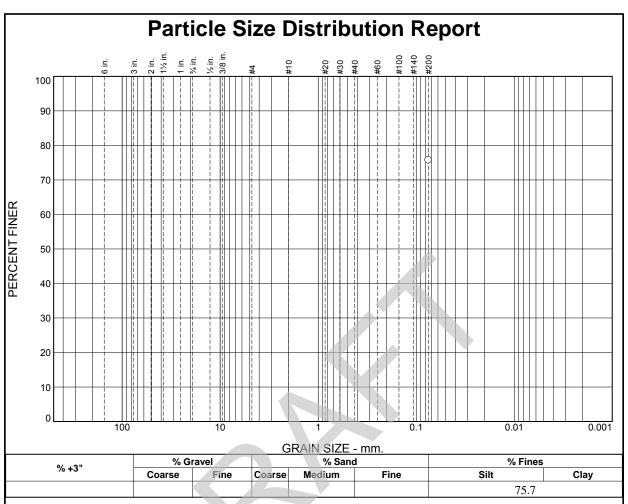
Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	83.8		
*			

Material Description Gr SILT with Sand and Tr Clay PL= Classification USCS= (ML) Remarks

Source of Sample: B-2A


Depth: 48-49

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

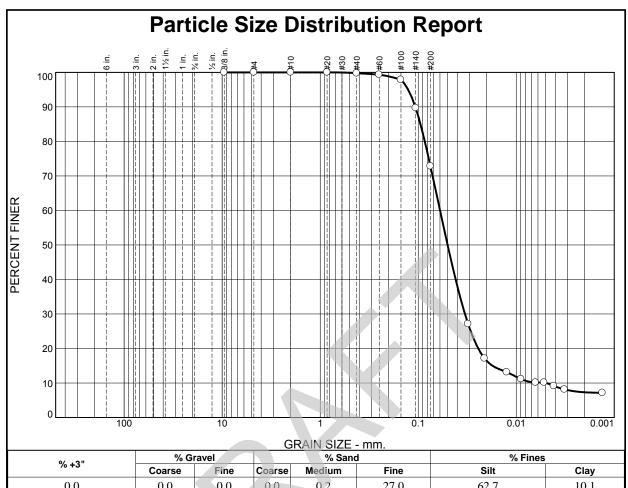
Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	75.7		
* (no sr	pecification provide	lad)	

Material Description Gr SILT with Sand and Tr Clay PL= Atterberg Limits LL= PI= Classification AASHTO= Remarks

Source of Sample: B-2A


Depth: 49-50

Date:

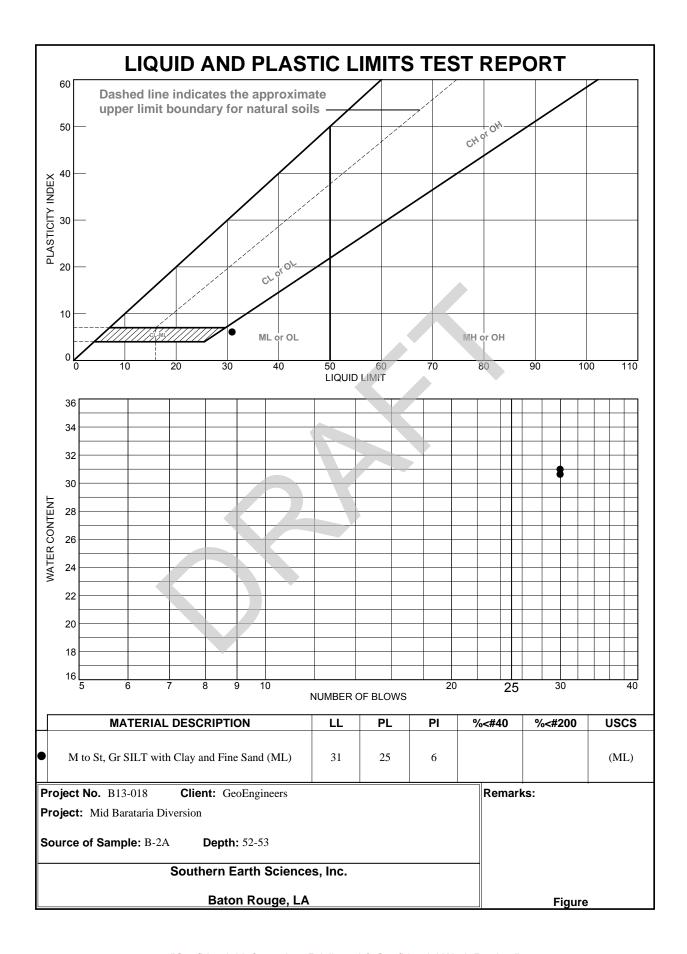
Southern Earth Sciences, Inc. Baton Rouge, LA

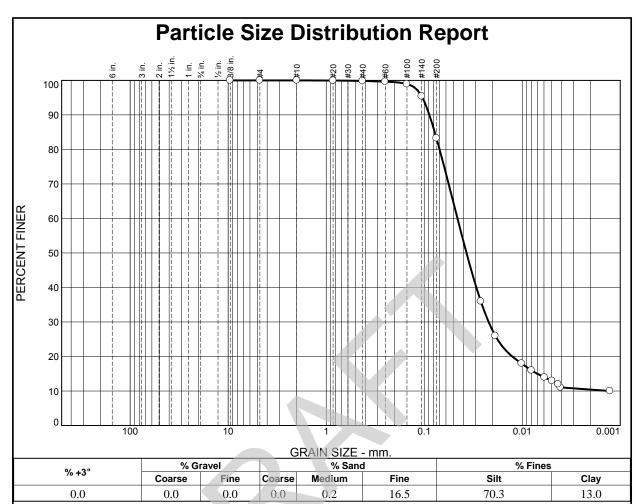
Client: GeoEngineers

Project: Mid Barataria Diversion

OT UNIT OF EE								
% +3"	% G	ravel	el % Sand		% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.0	0.2	27.0	62.7	10.1	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.8		
#60	99.3		
#100	97.9		
#140	89.7		
#200	72.8		


Material Description Gr SILT with Sand and Tr Clay						
PL=	Atterberg Limits LL=	PI=				
USCS= (ML)	Classification AASHTO=					
F.M.=0.03	<u>Remarks</u>					


Depth: 51-52 Source of Sample: B-2A

Date:

Southern Earth Sciences, Inc. **Baton Rouge, LA** Client: GeoEngineers

Project: Mid Barataria Diversion

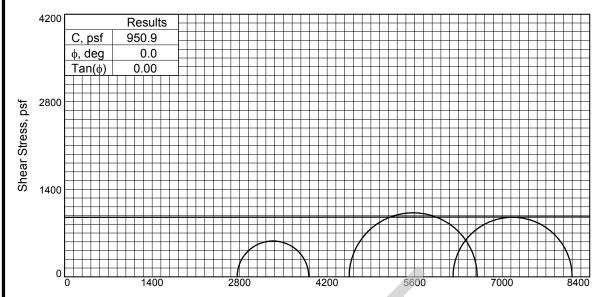
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		The state of the s
#10	100.0		
#20	99.9		
#40	99.8		
#60	99.6		
#100	98.9		
#140	95.4		
#200	83.3		

Material Description M to St, Gr SILT with Clay and Fine Sand (ML)					
M to St, Gr SIL	I with Clay and Fine	Sand (ML)			
PL= 25	Atterberg Limits LL= 31	PI= 6			
USCS= ML	Classification AASHTO=	= A-4(5)			
F.M.=0.01	<u>Remarks</u>				

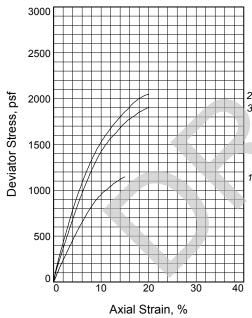
Source of Sample: B-2A **Depth:** 52-53

Date:

Figure


Southern Earth Sciences, Inc. **Baton Rouge, LA**

Client: GeoEngineers


Project: Mid Barataria Diversion

Project No: B13-018

Normal Stress, psf

_	•		
Type	Λt	I Det:	
IVDC	v	ı cət.	

Unconsolidated Undrained

Sample Type: Undisturbed

Description: M to St, Gr SILT with Clay and

Fine Sand (ML)

LL= 31 **PL=** 25 **PI=** 6

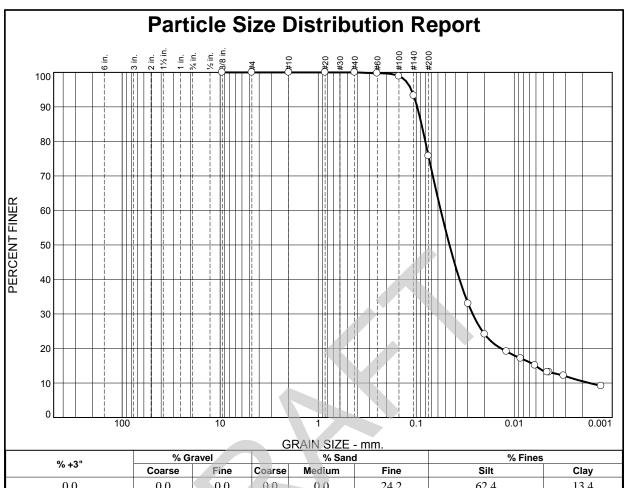
Assumed Specific Gravity= 2.65

Remarks: Type Failure: Bulge (sample 1,3)

Shear / Bulge (sample 2)

Slumping **Figure**

	Sa	mple No.	1	2	3	
		Water Content, %	31.1	30.7	30.9	
		Dry Density, pcf	89.0	92.1	90.8	
	Initial	Saturation, %	96.0	102.0	99.5	
	lni	Void Ratio	0.8582	0.7968	0.8217	
2		Diameter, in.	1.380	1.376	1.395	
3		Height, in.	2.800	2.800	2.800	
		Water Content, %	32.4	30.1	31.0	
	st	Dry Density, pcf	89.0	92.1	90.8	
	Fest	Saturation, %	100.0	100.0	100.0	
1	At T	Void Ratio	0.8582	0.7968	0.8217	
	`	Diameter, in.	1.380		1.395	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	0.999	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	19.170	31.610	43.150	
	Fai	I. Stress, psf	1146.0	2048.8	1905.4	
	5	Strain, %	15.0	19.9	19.9	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	ressure, psi 19.170 31.610 43.150 ttress, psf 1146.0 2048.8 1905.4 in, % 15.0 19.9 19.9 ress, psf in, % 3906.4 6600.6 8119.0			
	σ_3	Failure, psf	2760.5	4551.8	6213.6	


Client: GeoEngineers

Project: Mid Barataria Diversion

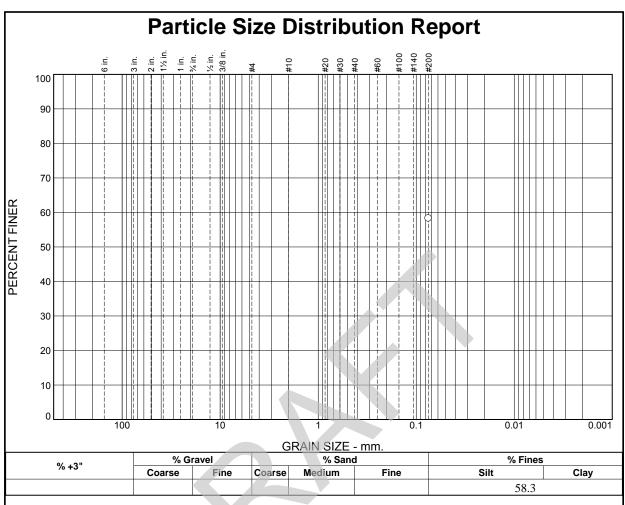
Source of Sample: B-2A Depth: 52-53

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

% + 3"		% Gra	avei		% San	a	% Fines	5	
	70 +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	1	0.0	0.0	0.0	0.0	24.2	62.4	13.4
	SIEVE	PERCENT	SPEC.	PASS	3?		<u>Materi</u>	ial Description	
	SIZE	FINER	PERCEN	IT (X=NC)	Gr SIL	T with Sand an	d Clay	
	3/8"	100.0							
	#⊿	100.0							

1	_		
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.7		
#100	98.9	_	
#140	93.3		
#200	75.8		


Gr SILT with Sand and Clay				
PL=	Atterberg Limits LL=	PI=		
USCS= (ML)	Classification AASHTO=			
F.M.=0.01	<u>Remarks</u>			

Source of Sample: B-2A Depth: 55-56

Date:

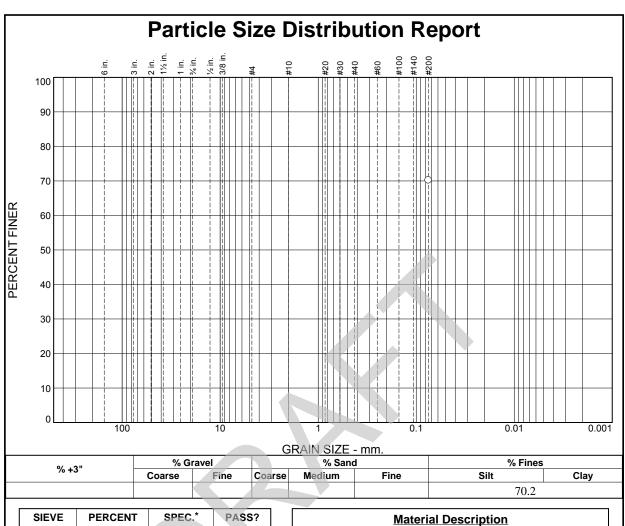
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	58.3		
* (::::::::::::::::::::::::::::::::::::	pecification provid	1.40	

Material Description Gr Sandy SILT with Tr Clay PL= Classification USCS= (ML) Remarks

Source of Sample: B-2A


Depth: 57-58

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

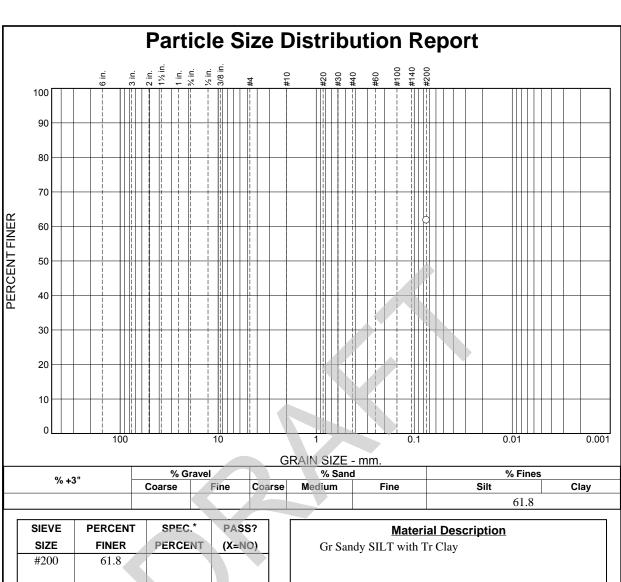
Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE PERCENT SPEC.* PASS? FINER PERCENT (X=NO) #200 70.2				
#200 70.2	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	#200	70.2		
* (no specification provided)				, i
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
* (no specification provided)				
(no specification provided)				
	* (no sp	pecification provid	led)	

Material Description Gr Sandy SILT with Tr Clay PL= Classification USCS= (ML) Remarks

Source of Sample: B-2A


Depth: 61.5-63

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

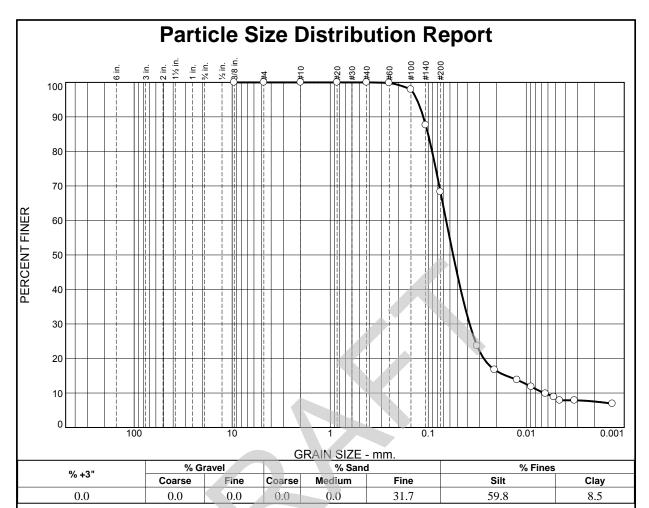
Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	61.8		
*			

Material Description Gr Sandy SILT with Tr Clay PL= Classification USCS= (ML) Remarks

Source of Sample: B-2A


Depth: 64-65.5

Date:

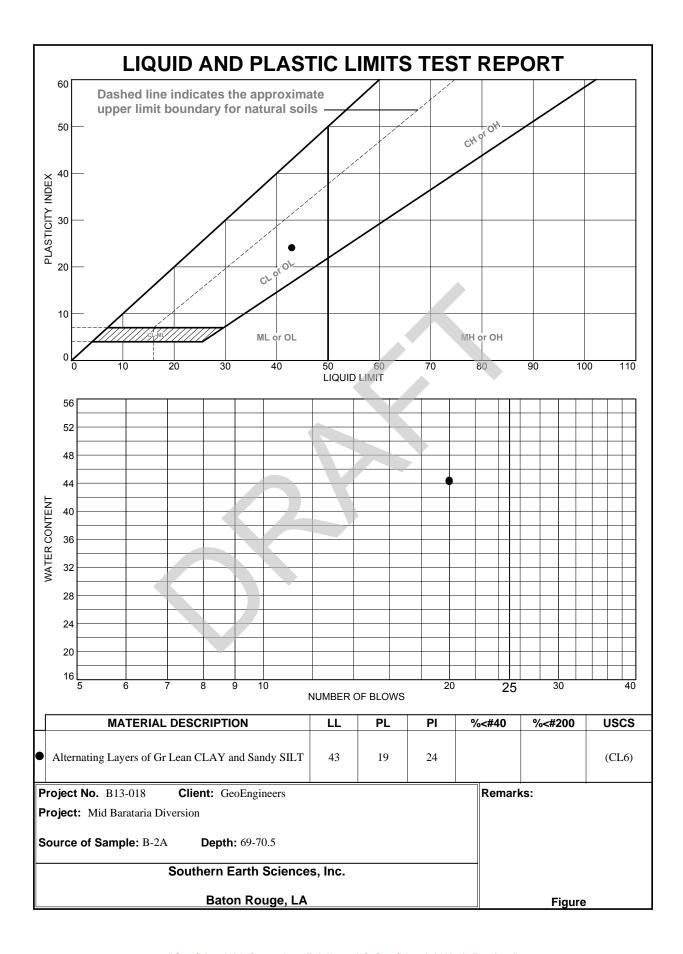
Southern Earth Sciences, Inc. Baton Rouge, LA

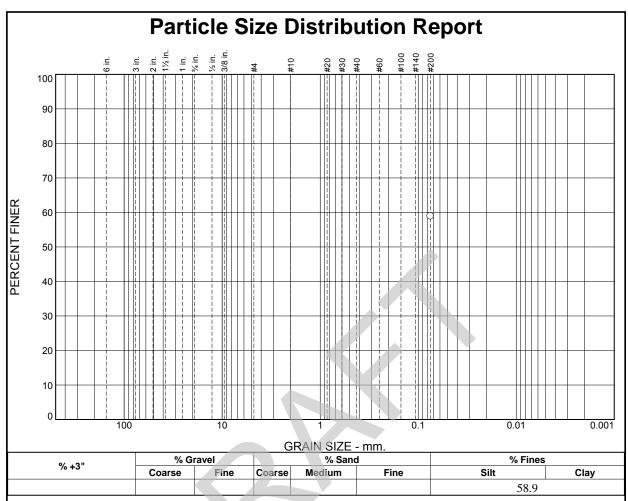
Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.8		
#100	97.9		
#140	87.6		
#200	68.3		
*			

Material Description Gr Sandy SILT with Tr Clay						
PL=	Atterberg Limits LL=	PI=				
USCS= (ML)	Classification AASHTO=					
F.M.=0.02	<u>Remarks</u>					


Source of Sample: B-2A Depth: 66.5-68


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

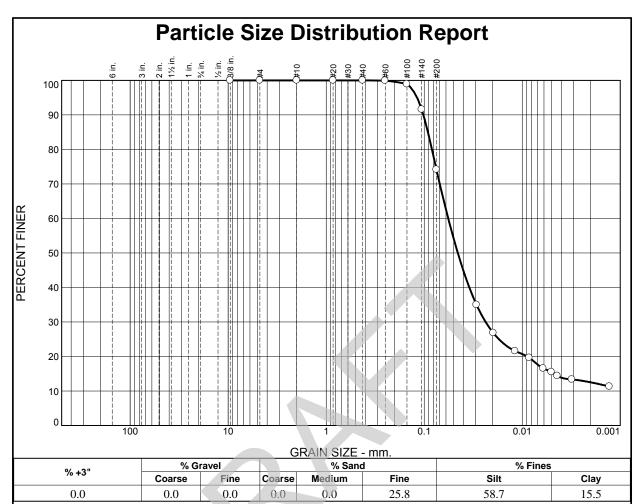
Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	58.9		
		·	

Material Description Gr Sandy SILT with Tr Clay PL= Classification USCS= (ML) Remarks

Source of Sample: B-2A


Depth: 71.5-73

Date:

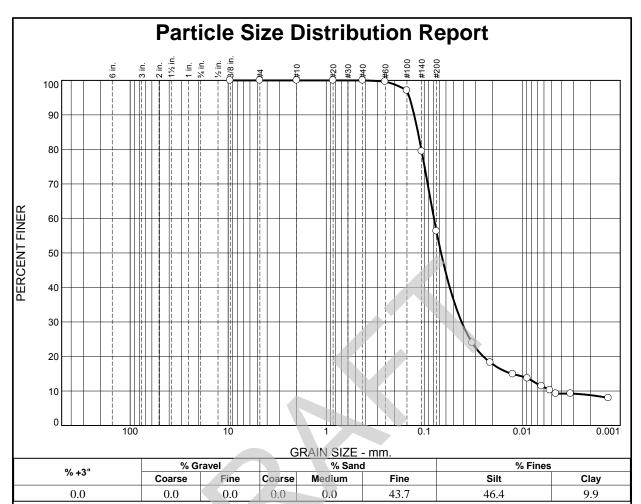
Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	98.9		
#140	91.6		
#200	74.2		

Material Description Gr SILT with Sand and Tr Clay						
PL=	Atterberg Limits LL=	PI=				
USCS= (ML)	Classification AASHTO=					
F.M.=0.01	<u>Remarks</u>					


Source of Sample: B-2A Depth: 74-75.5

Date:

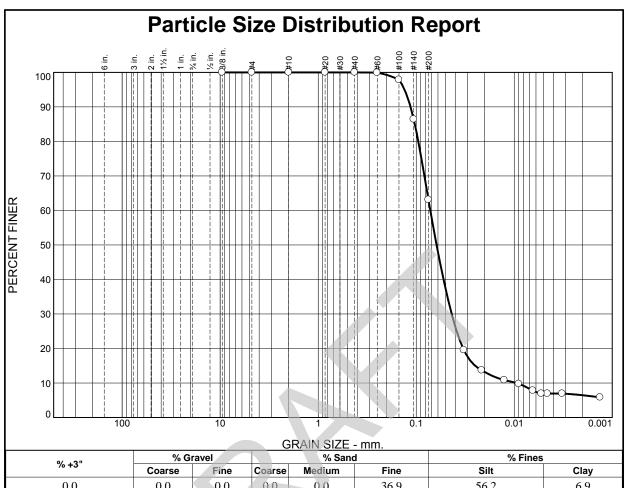
Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.7		
#100	97.1		
#140	79.4		
#200	56.3		

Material Description Gr Sandy SILT with Tr Clay						
PL=	Atterberg Limits LL=	PI=				
USCS= (ML)	Classification AASHTO=					
F.M.=0.03	<u>Remarks</u>					


Source of Sample: B-2A Depth: 76.5-78

Date:

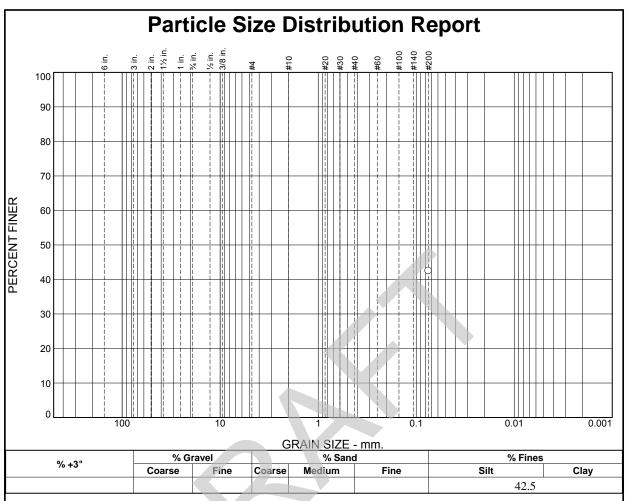
Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

	% +3	. "	% Gr	avel		% Sand	t	% Fine	es
	70 +3	•	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0)	0.0	0.0	0.0	0.0	36.9	56.2	6.9
	SIEVE	PERCENT	SPEC.	* PASS	3?		Mater	ial Description	
	SIZE	FINER	PERCE	VT (X=N)	Gr San	dy SILT with	r Clay	
	3/8"	100.0						-	
- 1	11.4	100.0			· I	1			

SIEVE	PERCEIVI	SPEC.	LW221
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	97.9		
#140	86.4		
#200	63.1		


<u>N</u>	Material Description					
Gr Sandy SILT	with Tr Clay					
PL=	Atterberg Limits	PI=				
USCS= (ML)	Classification AASHTO=					
	Remarks					
F.M.=0.02						

Source of Sample: B-2A Depth: 79-80.5

Date:

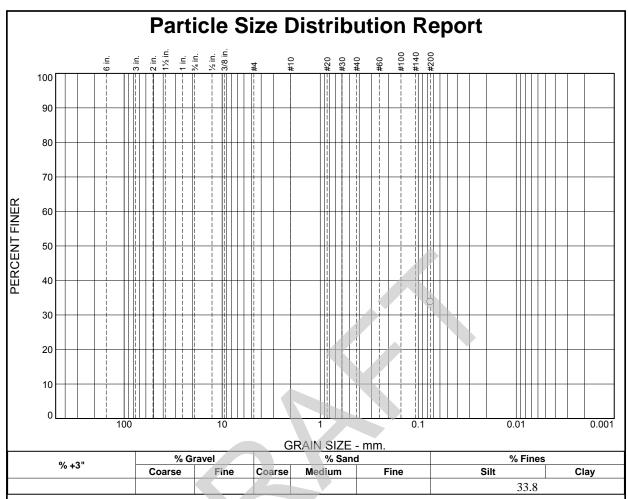
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	42.5		

Material Description Gr Silty SAND with Tr Clay PL= Classification USCS= (SM) AASHTO= Remarks

Source of Sample: B-2A


Depth: 81.5-83

Date:

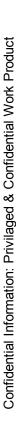
Southern Earth Sciences, Inc. Baton Rouge, LA

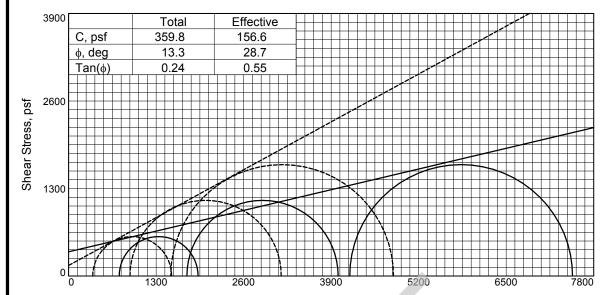
Client: GeoEngineers

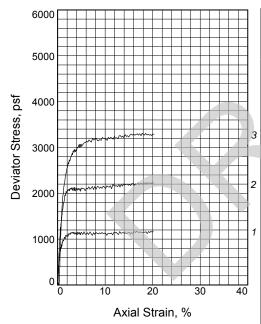
Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	33.8		
			The state of the s
* (no sr	ecification provid	led)	

Material Description											
Gr Silty SAND with Tr Clay											
PL=	Atterberg Limits LL=	PI=									
USCS= (SM)	Classification AASHTO=										
	Remarks										


Source of Sample: B-2A


Depth: 84-85.5


Date:

Southern Earth Sciences, Inc. **Baton Rouge, LA** Client: GeoEngineers

Project: Mid Barataria Diversion

	Sa	mple No.		1	2	3	
		Water Content, %		25.7	26.6	26.0	
		Dry Density, pcf		83.0	87.4	82.9	
	Initial	Saturation, %		67.2	77.4	67.8	
	Ϊ́	Void Ratio	1	.0319	0.9282	1.0343	
	\ 	Diameter, in.		1.394	1.380	1.399	
		Height, in.		2.800	2.800	2.800	
3		Water Content, %		37.2	32.7	35.2	
	it.	Dry Density, pcf		84.1	89.6	86.4	
	At Test	Saturation, %		100.0	100.0	100.0	
2	7	Void Ratio	1	.0047	0.8819	0.9511	
	`	Diameter, in.		1.388	1.369	1.380	
,		Height, in.		2.787	2.777	2.761	
1	Str	ain rate, in./min.		0.033	0.033	0.033	
•	Eff	. Cell Pressure, psi		5.220	12.200	29.000	
	Fai	il. Stress, psf	1	171.3	2247.1	3309.3	
	E	Excess Pore Pr., psf		393.1	845.4	2659.0	
	5	Strain, %		16.6	19.9	17.8	
	Ult	. Stress, psf					
	l .	Excess Pore Pr., psf					
		Strain, %					
	$\overline{\sigma}_1$	Failure, psf	1	529.9	3158.5	4826.3	
		Failure, psf		358.6	911.4	1517.0	

Type of Test:

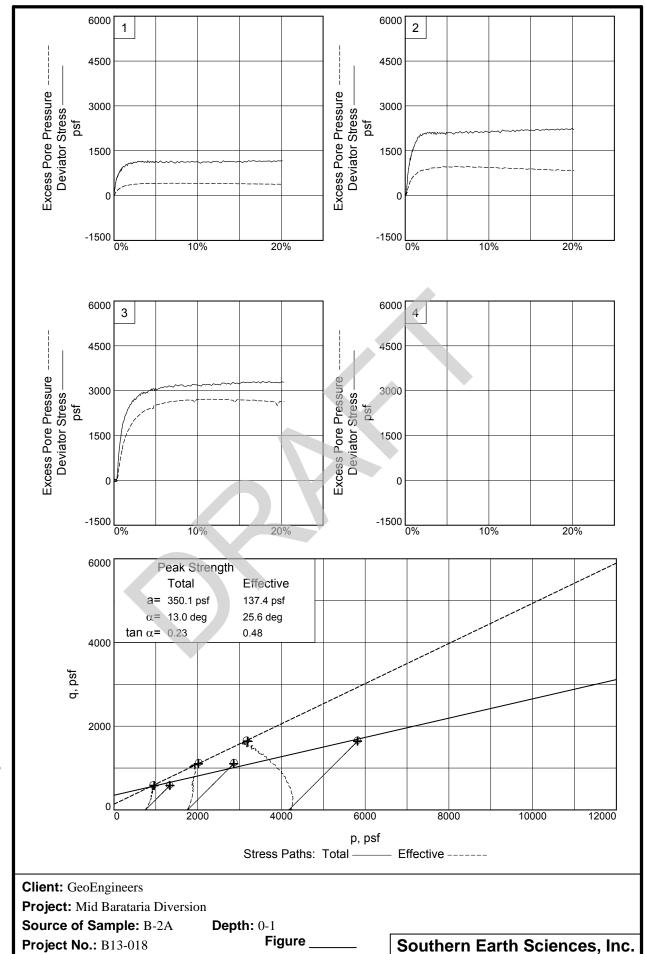
CU with Pore Pressures

Sample Type: Undisturbed

Description: Br Lean CLAY (CL6)

LL= 48 PL= 24 Pl= 24 Assumed Specific Gravity= 2.70

Remarks:


Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: B-2A Depth: 0-1

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

12/10/2013 2:26 PM

Date:

Client: GeoEngineers

Project: Mid Barataria Diversion

Project No.: B13-018 Location: B-2A Depth: 0 - 1

Description: Br Lean CLAY (CL6)

Remarks:

Type of Sample: Undisturbed

Assumed Specific Gravity=2.70 **PI=**24 LL=48 **PL=**24

COE uniform strain **Test Method:**

Р	arameters	for Specimen No.	1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	155.880			162.930
Moisture content: Dry soil+tare, gms.	131.990			129.520
Moisture content: Tare, gms.	38.910			38.120
Moisture, %	25.7	38.2	37.2	36.6
Moist specimen weight, gms.	116.94			
Diameter, in.	1.394	1.394	1.388	
Area, in.²	1.526	1.526	1.513	
Height, in.	2.800	2.800	2.787	
Net decrease in height, in.		0.000	0.013	
Wet density, pcf	104.2	114.7	115.4	
Dry density, pcf	83.0	83.0	84.1	
Void ratio	1.0319	1.0319	1.0047	
Saturation, %	67.2	100.0	100.0	

Test Readings for Specimen No. 1

Consolidation cell pressure = 80.220 psi (11551.7 psf) **Consolidation back pressure =** 75.000 psi (10800.0 psf) Consolidation effective confining stress = 751.7 psf

Strain rate, in./min. = 0.033

Fail. Stress = 1171.3 psf at reading no. 126

					Test Re	adings fo	r Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	1.2	0	0.0	0.0	737.1	737.1	1.00	75.101	737.1	0.0
1	0.0006	1.7	1	0.0	53.3	737.0	790.3	1.07	75.102	763.7	26.7
2	0.0016	2.7	2	0.1	144.5	727.8	872.3	1.20	75.166	800.0	72.2
3	0.0022	3.3	2	0.1	203.3	718.2	921.5	1.28	75.233	819.8	101.6
4	0.0030	3.6	2	0.1	235.1	705.2	940.3	1.33	75.323	822.7	117.6
5	0.0037	4.0	3	0.1	266.6	693.5	960.1	1.38	75.404	826.8	133.3
6	0.0040	4.5	3	0.1	313.4	678.8	992.2	1.46	75.506	835.5	156.7
7	0.0044	5.3	4	0.2	391.6	663.5	1055.1	1.59	75.613	859.3	195.8
8	0.0053	5.7	5	0.2	430.3	650.8	1081.1	1.66	75.701	865.9	215.2
9	0.0060	5.6	4	0.2	425.2	638.8	1064.0	1.67	75.784	851.4	212.6
10	0.0069	6.6	5	0.2	511.5	627.4	1138.9	1.82	75.863	883.1	255.7
11	0.0076	6.9	6	0.3	544.8	618.5	1163.2	1.88	75.925	890.9	272.4
12	0.0083	6.8	6	0.3	532.2	612.5	1144.7	1.87	75.967	878.6	266.1
13	0.0090	7.4	6	0.3	593.3	601.1	1194.4	1.99	76.046	897.8	296.7
14	0.0096	7.5	6	0.3	601.8	592.0	1193.8	2.02	76.109	892.9	300.9
15	0.0107	7.5	6	0.4	598.7	587.1	1185.7	2.02	76.143	886.4	299.3
16	0.0114	8.0	7	0.4	647.1	578.8	1225.9	2.12	76.200	902.4	323.5
17	0.0118	8.1	7	0.4	652.7	570.6	1223.3	2.14	76.258	896.9	326.3
18	0.0122	7.8	7	0.4	626.0	566.0	1192.0	2.11	76.289	879.0	313.0
19	0.0127	8.3	7	0.5	675.1	559.8	1234.9	2.21	76.332	897.4	337.5
20	0.0133	8.5	7	0.5	690.5	554.2	1244.7	2.25	76.371	899.5	345.3
21	0.0143	8.3	7	0.5	677.6	546.1	1223.7	2.24	76.427	884.9	338.8
22	0.0153	8.7	8	0.5	711.2	542.6	1253.8	2.31	76.452	898.2	355.6
23	0.0157	8.8	8	0.6	726.4	535.5	1261.9	2.36	76.502	898.7	363.2
24	0.0165	9.1	8	0.6	747.2	530.0	1277.2	2.41	76.540	903.6	373.6
25	0.0173	9.3	8	0.6	765.4	527.4	1292.9	2.45	76.557	910.1	382.7
26	0.0182	9.5	8	0.7	788.9	520.7	1309.5	2.52	76.604	915.1	394.4
27	0.0189	9.5	8	0.7	788.6	516.0	1304.6	2.53	76.637	910.3	394.3
28	0.0193	9.7	8	0.7	803.0	511.3	1314.3	2.57	76.669	912.8	401.5
29	0.0197	9.9	9	0.7	825.3	508.2	1333.5	2.62	76.691	920.8	412.7
30	0.0205	9.7	9	0.7	804.5	502.0	1306.4	2.60	76.734	904.2	402.2
31	0.0214	9.8	9	0.8	817.0	497.3	1314.4	2.64	76.766	905.9	408.5
32	0.0225	10.5	9	0.8	877.0	495.6	1372.6	2.77	76.779	934.1	438.5
33	0.0231	10.2	9	0.8	852.5	491.0	1343.5	2.74	76.810	917.3	426.3
34	0.0238	9.9	9	0.9	825.6	482.8	1308.5	2.71	76.867	895.7	412.8
35	0.0248	10.6	9	0.9	892.1	480.3	1372.4	2.86	76.885	926.4	446.1
36	0.0253	10.5	9	0.9	883.5	475.4	1358.9	2.86	76.918	917.2	441.7
37	0.0258	10.3	9	0.9	862.9	471.2	1334.1	2.83	76.948	902.7	431.4
38	0.0264	11.1	10	0.9	932.4	467.6	1400.0	2.99	76.973	933.8	466.2
39	0.0274	10.9	10	1.0	918.8	463.7	1382.5	2.98	77.000	923.1	459.4
40	0.0282	10.9	10	1.0	917.3	463.5	1380.8	2.98	77.001	922.1	458.6
41	0.0307	11.5	10	1.1	977.3	447.8	1425.1	3.18	77.111	936.4	488.7
42	0.0337	11.3	10	1.1	964.0	436.8	1400.8	3.10	77.111	918.8	482.0
43	0.0356	11.4	10	1.3	957.7	427.4	1385.1	3.24	77.180	906.3	478.8
44	0.0330	12.2	11	1.3	1033.6	427.4	1454.2	3.46	77.299	937.4	516.8
45	0.0392	12.2	11	1.4	1033.0	414.3	1454.2	3.40	77.343	934.8	520.6
46	0.0418	11.8	11	1.5	1041.1	414.3	1433.4	3.44	77.373	909.9	500.0
40	0.0440	11.0	11	1.0	1000.0	409.9	1409.9	3.44	11.313	909.9	500.0

					Test Re	adings fo	r Specim	en No.	. 1		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
47	0.0475	12.7	12	1.7	1082.2	404.9	1487.1	3.67	77.408	946.0	541.1
48	0.0502	12.6	11	1.8	1064.3	400.1	1464.5	3.66	77.441	932.3	532.2
49	0.0532	12.6	11	1.9	1067.5	392.0	1459.5	3.72	77.498	925.8	533.7
50	0.0567	13.0	12	2.0	1102.7	388.6	1491.3	3.84	77.521	940.0	551.4
51	0.0591	12.6	11	2.1	1060.6	382.4	1442.9	3.77	77.565	912.6	530.3
52	0.0619	12.7	11	2.2	1069.0	378.6	1447.5	3.82	77.591	913.1	534.5
53	0.0650	13.2	12	2.3	1119.9	375.4	1495.3	3.98	77.613	935.4	560.0
54	0.0672	13.0	12	2.4	1099.2	373.6	1472.8	3.94	77.626	923.2	549.6
55	0.0702	13.3	12	2.5	1121.2	369.0	1490.3	4.04	77.657	929.7	560.6
56	0.0729	13.2	12	2.6	1117.7	367.1	1484.8	4.04	77.671	925.9	558.8
57	0.0762	13.1	12	2.7	1107.0	369.5	1476.5	4.00	77.654	923.0	553.5
58	0.0787	13.6	12	2.8	1145.8	365.1	1510.9	4.14	77.685	938.0	572.9
59	0.0817	13.5	12	2.9	1135.9	363.6	1499.5	4.12	77.695	931.6	568.0
60	0.0842	13.4	12	3.0	1127.2	362.8	1490.0	4.11	77.700	926.4	563.6
61	0.0870	13.6	12	3.1	1143.8	357.6	1501.3	4.20	77.737	929.4	571.9
62	0.0903	13.6	12	3.2	1143.5	354.0	1497.5	4.23	77.762	925.7	571.7
63	0.0927	13.4	12	3.3	1123.8	355.3	1479.1	4.16	77.753	917.2	561.9
64	0.0953	13.7	13	3.4	1151.6	350.7	1502.2	4.28	77.785	926.4	575.8
65	0.0983	13.5	12	3.5	1129.4	348.8	1478.2	4.24	77.797	913.5	564.7
66	0.1012	13.2	12	3.6	1107.2	349.3	1456.5	4.17	77.794	902.9	553.6
67	0.1036	13.6	12	3.7	1136.0	350.9	1486.9	4.24	77.783	918.9	568.0
68	0.1067	13.5	12	3.8	1128.8	351.2	1479.9	4.21	77.781	915.6	564.4
69	0.1098	13.2	12	3.9	1101.5	351.8	1453.3	4.13	77.777	902.5	550.7
70	0.1121	13.9	13	4.0	1160.3	350.3	1510.5	4.31	77.788	930.4	580.1
71	0.1154	13.7	13	4.1	1146.7	347.6	1494.3	4.30	77.806	921.0	573.4
72	0.1178	13.2	12	4.2	1098.6	346.7	1445.3	4.17	77.812	896.0	549.3
73	0.1207	13.6	12	4.3	1136.5	342.9	1479.4	4.31	77.839	911.2	568.2
74	0.1235	13.7	13	4.4	1139.1	343.4	1482.5	4.32	77.835	913.0	569.6
75	0.1263	13.4	12	4.5	1109.8	344.7	1454.5	4.22	77.826	899.6	554.9
	0.1292	13.4	13	4.6	1145.2	342.0	1487.2	4.35	77.845	914.6	572.6
77	0.1232	13.6	12	4.7	1123.3	341.5	1464.7	4.29	77.849	903.1	561.6
78	0.1348	13.3	12	4.8	1097.9	344.6	1442.5	4.19	77.827	893.6	549.0
79	0.1378	13.8	13	4.9	1145.2	343.0	1488.2	4.34	77.838	915.6	572.6
80	0.1402	13.8	13	5.0	1143.4	343.9	1487.3	4.32	77.832	915.6	571.7
81	0.1476	13.4	12	5.3	1101.5	342.1	1443.6	4.22	77.845	892.8	550.8
82	0.1542	14.0	13	5.5	1158.2	340.5	1498.7	4.40	77.855	919.6	579.1
83	0.1342	13.5	12	5.8	1108.2	339.0	1448.0	4.27	77.866	893.5	554.5
84	0.1617	13.5	12	6.0	1104.1	338.1	1442.2	4.27	77.872	890.1	552.0
85	0.1030	13.9	13	6.3	1138.9	341.3	1442.2	4.27	77.850	910.8	569.5
86	0.1821	13.5	12	6.5	1101.1	337.8	1438.9	4.26	77.874	888.4	550.6
87	0.1895	14.2	13	6.8	1156.0	337.1	1493.2	4.43	77.879	915.1	578.0
88	0.1968	13.8	13	7.1	1117.8	335.7	1453.5	4.33	77.888	894.6	558.9
89	0.2037	13.4	12	7.3	1081.4	338.8	1420.1	4.19	77.868	879.4	540.7
90	0.2107	14.1	13	7.6	1139.7	341.0	1480.6	4.34	77.852	910.8	569.8
91	0.2173	13.8	13	7.8	1104.4	337.0	1441.4	4.28	77.880	889.2	552.2
92	0.2243	14.3	13	8.0	1147.0	337.0	1484.0	4.40	77.880	910.5	573.5
93	0.2317	14.0	13	8.3	1123.8	337.8	1461.6	4.33	77.874	899.7	561.9

					Test Re	adings fo	r Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	0.2382	14.0	13	8.5	1113.4	341.3	1454.7	4.26	77.850	898.0	556.7
95	0.2456	14.2	13	8.8	1135.2	340.5	1475.7	4.33	77.855	908.1	567.6
96	0.2529	14.1	13	9.1	1117.0	339.2	1456.2	4.29	77.865	897.7	558.5
97	0.2600	14.4	13	9.3	1144.4	338.2	1482.6	4.38	77.871	910.4	572.2
98	0.2673	14.2	13	9.6	1124.3	343.4	1467.7	4.27	77.836	905.5	562.2
99	0.2735	14.3	13	9.8	1129.6	341.7	1471.3	4.31	77.847	906.5	564.8
100	0.2807	14.4	13	10.1	1130.6	340.6	1471.2	4.32	77.855	905.9	565.3
101	0.2882	13.9	13	10.3	1083.8	339.7	1423.5	4.19	77.861	881.6	541.9
102	0.2950	14.4	13	10.6	1123.7	345.4	1469.1	4.25	77.822	907.2	561.9
103	0.3025	14.4	13	10.9	1126.2	348.0	1474.2	4.24	77.804	911.1	563.1
104	0.3093	14.4	13	11.1	1122.9	344.3	1467.2	4.26	77.829	905.8	561.4
105	0.3159	14.6	13	11.3	1133.1	343.5	1476.6	4.30	77.835	910.0	566.5
106	0.3234	14.1	13	11.6	1092.0	346.3	1438.3	4.15	77.815	892.3	546.0
107	0.3300	14.8	14	11.8	1144.2	349.2	1493.4	4.28	77.795	921.3	572.1
108	0.3369	14.7	14	12.1	1135.3	352.2	1487.5	4.22	77.774	919.8	567.6
109	0.3435	15.0	14	12.3	1152.3	347.8	1500.1	4.31	77.805	924.0	576.1
110	0.3510	14.6	13	12.6	1115.3	347.5	1462.9	4.21	77.806	905.2	557.7
111	0.3574	14.5	13	12.8	1104.2	351.0	1455.3	4.15	77.782	903.2	552.1
112	0.3644	15.2	14	13.1	1165.2	350.4	1515.6	4.33	77.787	933.0	582.6
113	0.3714	14.8	14	13.3	1127.2	350.4	1477.6	4.22	77.787	914.0	563.6
114	0.3787	15.0	14	13.6	1139.0	350.0	1489.0	4.25	77.789	919.5	569.5
115	0.3859	15.1	14	13.8	1138.8	353.9	1492.8	4.22	77.762	923.4	569.4
116	0.3930	15.0	14	14.1	1131.6	354.2	1485.8	4.19	77.760	920.0	565.8
117	0.3997	15.1	14	14.3	1134.8	352.1	1486.9	4.22	77.775	919.5	567.4
118	0.4071	15.0	14	14.6	1121.5	354.8	1476.4	4.16	77.756	915.6	560.8
119	0.4140	15.3	_14	14.9	1147.8	357.9	1505.6	4.21	77.735	931.7	573.9
120	0.4210	15.3	14		1143.2	357.2	1500.3	4.20	77.740	928.7	571.6
121	0.4282	14.9	14	15.4	1106.0	354.6	1460.6	4.12	77.757	907.6	553.0
122	0.4347	15.4	14	15.6	1142.5	355.1	1497.7	4.22	77.754	926.4	571.3
123	0.4421	15.2	14	15.9	1124.1	362.4	1486.5	4.10	77.703	924.5	562.0
124	0.4490	15.8	15	16.1	1167.5	362.4	1529.9	4.22	77.703	946.1	583.8
125	0.4559	15.6	14	16.4	1146.1	361.4	1507.4	4.17	77.711	934.4	573.0
126	0.4533	15.9	15	16.6	1171.3	358.6	1529.9	4.27	77.730	944.3	585.6
127	0.4706	15.8	15	16.9	1171.3	361.3	1515.9	4.20	77.711	938.6	577.3
128	0.4772	15.7	14	17.1	1143.4	364.7	1508.1	4.13	77.687	936.4	571.7
129	0.4772	15.7	15	17.1	1160.8	362.9	1523.7	4.20	77.700	943.3	580.4
130	0.4912	15.8	15	17.4	1145.5	364.0	1509.5	4.20	77.692	936.7	572.8
131	0.4912	15.8	15	17.0	1143.3	364.6	1516.6	4.15	77.688	940.6	576.0
131		15.9		18.1				4.10			
	0.5055		15		1149.3	369.0	1518.3		77.657	943.7	574.6
133	0.5121	16.0	15	18.4	1153.7	366.8	1520.6	4.14	77.672	943.7	576.9
134	0.5192	16.1	15	18.6	1158.0	364.9	1522.9	4.17	77.686	943.9	579.0 560.2
135	0.5256	15.7	15	18.9	1120.6	367.1	1487.7	4.05	77.671	927.4	560.3
136	0.5336	16.3	15	19.1	1164.3	372.2	1536.5	4.13	77.635	954.4	582.1
137	0.5401	16.1	15	19.4	1144.1	374.2	1518.3	4.06	77.621	946.3	572.1
138	0.5466	16.4	15	19.6	1166.4	369.7	1536.1	4.16	77.653	952.9	583.2
139	0.5539	16.3	15	19.9	1155.8	370.1	1526.0	4.12	77.650	948.1	577.9
140	0.5611	16.5	15	20.1	1167.6	375.2	1542.8	4.11	77.615	959.0	583.8

P	arameters f	or Specimen No.	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	145.650			190.570
Moisture content: Dry soil+tare, gms.	123.230			159.010
Moisture content: Tare, gms.	39.000			62.470
Moisture, %	26.6	34.4	32.7	32.7
Moist specimen weight, gms.	121.68			
Diameter, in.	1.380	1.380	1.369	
Area, in.²	1.496	1.496	1.472	
Height, in.	2.800	2.800	2.777	
Net decrease in height, in.		0.000	0.022	
Wet density, pcf	110.7	117.5	118.8	
Dry density, pcf	87.4	87.4	89.6	
Void ratio	0.9282	0.9282	0.8819	
Saturation, %	77.4	100.0	100.0	

Test Readings for Specimen No. 2

Consolidation cell pressure = 87.200 psi (12556.8 psf)

Consolidation back pressure = 75.000 psi (10800.0 psf)

Consolidation effective confining stress = 1756.8 psf

Strain rate, in./min. = 0.033

Fail. Stress = 2247.1 psf at reading no. 139

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.9	0	0.0	0.0	1743.4	1743.4	1.00	75.093	1743.4	0.0
1	0.0008	1.5	1	0.0	60.9	1741.8	1802.6	1.03	75.104	1772.2	30.4
2	0.0012	1.0	0	0.0	7.2	1744.7	1751.8	1.00	75.084	1748.3	3.6
3	0.0018	1.4	1	0.1	49.9	1742.0	1792.0	1.03	75.103	1767.0	25.0
4	0.0025	1.6	1	0.1	65.4	1738.0	1803.4	1.04	75.131	1770.7	32.7
5	0.0030	1.4	0	0.1	46.9	1734.7	1781.6	1.03	75.154	1758.1	23.4
6	0.0037	2.5	2	0.1	159.6	1712.9	1872.6	1.09	75.305	1792.8	79.8
7	0.0048	3.5	3	0.2	257.5	1686.7	1944.2	1.15	75.486	1815.5	128.7
8	0.0056	4.0	3	0.2	306.9	1660.6	1967.5	1.18	75.668	1814.1	153.4
9	0.0063	5.0	4	0.2	397.9	1641.0	2038.9	1.24	75.804	1840.0	198.9
10	0.0067	5.1	4	0.2	410.9	1629.9	2040.8	1.25	75.881	1835.4	205.4
11	0.0072	6.0	5	0.3	497.6	1596.9	2094.5	1.31	76.111	1845.7	248.8
12	0.0077	7.2	6	0.3	612.9	1560.8	2173.8	1.39	76.361	1867.3	306.5
13	0.0085	8.0	7	0.3	691.4	1527.6	2219.0	1.45	76.592	1873.3	345.7
14	0.0095	8.7	8	0.3	760.4	1499.7	2260.1	1.51	76.785	1879.9	380.2
15	0.0102	9.7	9	0.4	858.7	1468.6	2327.3	1.58	77.001	1897.9	429.4
16	0.0106	10.1	9	0.4	901.2	1442.6	2343.8	1.62	77.182	1893.2	450.6
17	0.0115	10.2	9	0.4	908.0	1418.9	2327.0	1.64	77.346	1872.9	454.0
18	0.0125	11.2	10	0.5	1001.9	1396.3	2398.2	1.72	77.504	1897.2	501.0
19	0.0134	11.6	11	0.5	1045.5	1374.2	2419.7	1.76	77.657	1896.9	522.7
20	0.0139	11.5	11	0.5	1032.0	1353.3	2385.3	1.76	77.802	1869.3	516.0
21	0.0147	12.4	12	0.5	1123.7	1334.9	2458.6	1.84	77.930	1896.8	561.9
22	0.0153	12.8	12	0.5	1156.5	1316.9	2473.4	1.88	78.055	1895.2	578.2
23	0.0155	12.9	12	0.6	1165.2	1300.8	2466.0	1.90	78.166	1883.4	582.6
24	0.0160	13.7	13	0.6	1244.3	1284.0	2528.3	1.97	78.283	1906.1	622.1
25	0.0171	13.8	13	0.6	1258.5	1267.9	2526.4	1.99	78.395	1897.1	629.3
26	0.0177	13.1	12	0.6	1187.9	1266.1	2454.1	1.94	78.407	1860.1	594.0
								_			

					Test Re	adings fo	r Specim	en No.	2		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
27	0.0185	13.7	13	0.7	1244.9	1245.3	2490.2	2.00	78.552	1867.7	622.5
28	0.0189	14.6	14	0.7	1331.9	1231.9	2563.8	2.08	78.645	1897.8	665.9
29	0.0196	14.6	14	0.7	1330.7	1225.4	2556.1	2.09	78.690	1890.8	665.3
30	0.0206	14.5	14	0.7	1324.7	1203.2	2527.9	2.10	78.844	1865.6	662.3
31	0.0214	15.3	14	0.8	1402.3	1197.2	2599.4	2.17	78.886	1898.3	701.1
32	0.0219	15.5	15	0.8	1421.5	1186.3	2607.8	2.20	78.962	1897.1	710.8
33	0.0225	16.0	15	0.8	1470.1	1171.3	2641.4	2.26	79.066	1906.3	735.1
34	0.0230	16.2	15	0.8	1483.2	1161.0	2644.2	2.28	79.138	1902.6	741.6
35	0.0239	16.0	15	0.9	1470.4	1152.1	2622.5	2.28	79.200	1887.3	735.2
36	0.0247	16.6	16	0.9	1524.2	1142.0	2666.2	2.33	79.269	1904.1	762.1
37	0.0256	16.9	16	0.9	1555.9	1132.8	2688.7	2.37	79.333	1910.8	777.9
38	0.0263	16.7	16	0.9	1534.9	1126.7	2661.6	2.36	79.376	1894.1	767.4
39	0.0266	17.4	17	1.0	1599.5	1117.0	2716.5	2.43	79.443	1916.8	799.8
40	0.0278	17.6	17	1.0	1617.0	1108.9	2725.9	2.46	79.499	1917.4	808.5
41	0.0306	18.0	17	1.1	1659.9	1082.2	2742.2	2.53	79.685	1912.2	830.0
42	0.0336	19.4	18	1.2	1784.9	1055.0	2839.9	2.69	79.874	1947.4	892.5
43	0.0365	19.5	19	1.3	1800.4	1037.1	2837.6	2.74	79.998	1937.3	900.2
44	0.0387	20.0	19	1.4	1843.7	1018.0	2861.8	2.81	80.130	1939.9	921.9
45	0.0418	21.1	20	1.5	1951.9	970.7	2922.7	3.01	80.459	1946.7	976.0
46	0.0447	21.3	20	1.6	1965.3	955.2	2920.5	3.06	80.567	1937.9	982.7
47	0.0468	21.2	20	1.7	1951.0	942.1	2893.2	3.07	80.657	1917.6	975.5
48	0.0498	22.2	21	1.8	2046.3	931.5	2977.9	3.20	80.731	1954.7	1023.2
49	0.0529	21.8	21	1.9	2004.0	922.2	2926.3	3.17	80.795	1924.3	1002.0
50	0.0550	21.8	21	2.0	2002.3	913.8	2916.1	3.19	80.854	1914.9	1001.2
51	0.0583	22.5	22	2.1	2070.8	906.6	2977.4	3.28	80.904	1942.0	1035.4
52	0.0609	22.4	22	2.2	2057.8	900.3	2958.1	3.29	80.948	1929.2	1028.9
53	0.0638	22.6	22	2.3	2074.8	893.3	2968.0	3.32	80.997	1930.6	1037.4
54	0.0666	22.7	22	2.4	2087.3	891.4	2978.7	3.34	81.010	1935.0	1043.6
55	0.0692	22.4	22	2.5	2056.2	888.7	2944.9	3.31	81.028	1916.8	1028.1
56	0.0729	23.0	22	2.6	2108.0	884.2	2992.2	3.38	81.060	1938.2	1054.0
57	0.0755	23.0	22	2.7	2103.1	882.4	2985.6	3.38	81.072	1934.0	1051.6
58	0.0781	22.8	22	2.8	2086.9	876.8	2963.7	3.38	81.111	1920.3	1043.5
59	0.0809	23.2	22	2.9	2116.2	841.8	2958.0	3.51	81.354	1899.9	1058.1
60	0.0838	23.0	22	3.0	2098.6	840.2	2938.8	3.50	81.365	1889.5	1049.3
61	0.0867	22.7	22	3.1	2065.1	836.9	2902.0	3.47	81.389	1869.4	1032.6
62	0.0893	23.3	22	3.2	2120.4	834.8	2955.2	3.54	81.403	1895.0	1060.2
63	0.0924	23.2	22	3.3	2114.6	830.4	2945.1	3.55	81.433	1887.7	1057.3
64	0.0953	22.7	22	3.4	2058.1	828.2	2886.3	3.48	81.449	1857.2	1029.0
65	0.0985	23.4	23	3.5	2125.6	829.3	2955.0	3.56	81.441	1892.2	1062.8
66	0.1011	22.7	22	3.6	2056.0	828.0	2883.9	3.48	81.450	1856.0	1028.0
67	0.1037	22.7	22	3.7	2051.9	827.5	2879.4	3.48	81.453	1853.5	1025.9
68	0.1065	23.4	22	3.8	2115.1	828.5	2943.7	3.55	81.446	1886.1	1057.6
69	0.1005	23.0	22	3.9	2081.4	826.8	2908.2	3.52	81.458	1867.5	1040.7
70	0.1033	23.1	22	4.0	2089.8	824.7	2914.4	3.53	81.473	1869.5	1044.9
71	0.1122	23.3	22	4.1	2104.6	820.8	2925.3	3.56	81.500	1873.0	1052.3
72	0.1177	22.9	22	4.2	2066.6	824.2	2890.8	3.51	81.477	1857.5	1032.3
73	0.1177	23.4	22	4.3	2103.1	791.5	2894.5	3.66	81.704	1843.0	1055.5
13	0.1203	49.4	22	7.3	2103.1	191.3	2074.3	5.00	01./04	10+3.0	1051.5

					Test Re	adings fo	r Specim	en No.	2		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
74	0.1233	23.3	22	4.4	2099.0	792.4	2891.3	3.65	81.697	1841.8	1049.5
75	0.1262	23.0	22	4.5	2069.0	792.3	2861.3	3.61	81.698	1826.8	1034.5
76	0.1285	23.3	22	4.6	2095.1	792.5	2887.6	3.64	81.696	1840.1	1047.5
77	0.1318	23.2	22	4.7	2079.9	796.6	2876.5	3.61	81.668	1836.5	1039.9
78	0.1346	22.9	22	4.8	2046.1	797.3	2843.4	3.57	81.663	1820.3	1023.1
79	0.1370	23.6	23	4.9	2114.1	799.6	2913.7	3.64	81.647	1856.6	1057.0
80	0.1405	23.5	23	5.1	2096.7	799.5	2896.2	3.62	81.648	1847.9	1048.3
81	0.1467	23.6	23	5.3	2109.0	798.1	2907.0	3.64	81.658	1852.6	1054.5
82	0.1544	23.6	23	5.6	2097.2	804.6	2901.9	3.61	81.612	1853.3	1048.6
83	0.1610	23.2	22	5.8	2058.5	775.5	2834.0	3.65	81.814	1804.8	1029.2
84	0.1683	23.9	23	6.1	2111.3	786.9	2898.2	3.68	81.736	1842.5	1055.6
85	0.1746	23.7	23	6.3	2094.7	789.2	2884.0	3.65	81.719	1836.6	1047.4
86	0.1821	24.3	23	6.6	2141.8	795.1	2937.0	3.69	81.678	1866.0	1070.9
87	0.1886	23.8	23	6.8	2088.0	796.6	2884.7	3.62	81.668	1840.6	1044.0
88	0.1961	24.2	23	7.1	2116.0	807.6	2923.6	3.62	81.592	1865.6	1058.0
89	0.2034	24.6	24	7.3	2147.6	785.7	2933.3	3.73	81.744	1859.5	1073.8
90	0.2095	23.9	23	7.5	2082.6	790.0	2872.6	3.64	81.714	1831.3	1041.3
91	0.2165	24.7	24	7.8	2145.6	794.6	2940.2	3.70	81.682	1867.4	1072.8
92	0.2243	24.1	23	8.1	2089.0	803.6	2892.5	3.60	81.620	1848.1	1044.5
93	0.2320	24.8	24	8.4	2146.0	811.2	2957.2	3.65	81.566	1884.2	1073.0
94	0.2382	24.8	24	8.6	2142.1	815.2	2957.3	3.63	81.539	1886.3	1071.1
95	0.2452	24.5	24	8.8	2108.4	793.7	2902.1	3.66	81.688	1847.9	1054.2
96	0.2521	24.9	24	9.1	2135.9	804.6	2940.6	3.65	81.612	1872.6	1068.0
97	0.2591	24.7	24	9.3	2108.1	811.3	2919.4	3.60	81.566	1865.4	1054.0
98	0.2662	25.3	24	9.6	2155.1	815.4	2970.5	3.64	81.538	1892.9	1077.6
99	0.2726	25.1	24	9.8	2136.4	822.2	2958.6	3.60	81.491	1890.4	1068.2
100	0.2804	24.8	24	10.1	2107.1	831.1	2938.2	3.54	81.428	1884.7	1053.5
101	0.2876	25.5	25	10.4	2161.8	813.4	2975.2	3.66	81.551	1894.3	1080.9
102	0.2947	25.4	24	10.6	2141.2	820.2	2961.4	3.61	81.504	1890.8	1070.6
103	0.3017	25.4	24	10.9	2135.1	822.5	2957.6	3.60	81.489	1890.0	1067.6
104	0.3079	25.8	25	11.1	2164.6	829.1	2993.6	3.61	81.443	1911.3	1082.3
105	0.3154	25.1	24	11.4	2100.2	840.9	2941.1	3.50	81.360	1891.0	1050.1
106	0.3229	26.3	25	11.6	2194.4	846.9	3041.3	3.59	81.318	1944.1	1097.2
107	0.3294	26.0	25	11.9	2165.8	827.1	2992.9	3.62	81.456	1910.0	1082.9
108	0.3369	26.0	25	12.1	2162.0	832.0	2994.0	3.60	81.422	1913.0	1081.0
109	0.3440	26.1	25	12.4	2160.5	842.5	3002.9	3.56	81.349	1922.7	1080.2
110	0.3506	26.0	25	12.6	2146.2	847.9	2994.1	3.53	81.312	1921.0	1073.1
111	0.3579	26.6	26	12.9	2190.9	851.2	3042.1	3.57	81.289	1946.6	1095.4
112	0.3643	26.0	25	13.1	2136.0	860.1	2996.1	3.48	81.227	1928.1	1068.0
113	0.3714	26.8	26	13.4	2192.0	842.7	3034.7	3.60	81.348	1938.7	1096.0
114	0.3782	26.4	26	13.6	2157.8	854.6	3012.4	3.53	81.265	1933.5	1078.9
115	0.3856	27.0	26	13.9	2204.1	853.2	3057.3	3.58	81.275	1955.3	1102.0
116	0.3917	26.8	26	14.1	2181.0	860.4	3041.4	3.53	81.225	1950.9	1090.5
117	0.3989	27.1	26	14.4	2195.0	870.0	3064.9	3.52	81.159	1967.5	1097.5
118	0.4061	27.2	26	14.6	2198.3	877.3	3075.5	3.51	81.108	1976.4	1099.1
119	0.4135	27.0	26	14.9	2177.0	855.7	3032.7	3.54	81.258	1944.2	1088.5
120	0.4202	27.3	26	15.1	2191.8	861.5	3053.3	3.54	81.218	1957.4	1095.9

					Test Re	adings fo	r Specim	en No.	2		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
121	0.4276	27.1	26	15.4	2170.1	872.5	3042.6	3.49	81.141	1957.6	1085.0
122	0.4346	27.7	27	15.6	2214.0	880.2	3094.2	3.52	81.088	1987.2	1107.0
123	0.4416	27.7	27	15.9	2205.9	881.8	3087.8	3.50	81.076	1984.8	1103.0
124	0.4482	27.4	27	16.1	2176.1	886.9	3063.0	3.45	81.041	1974.9	1088.1
125	0.4556	27.8	27	16.4	2203.5	871.4	3074.9	3.53	81.149	1973.1	1101.8
126	0.4629	27.8	27	16.7	2194.7	880.7	3075.4	3.49	81.084	1978.0	1097.3
127	0.4694	28.3	27	16.9	2228.1	883.8	3111.8	3.52	81.063	1997.8	1114.0
128	0.4764	27.9	27	17.2	2190.3	888.5	3078.8	3.47	81.030	1983.7	1095.2
129	0.4835	28.3	27	17.4	2215.5	897.9	3113.4	3.47	80.965	2005.7	1107.8
130	0.4908	28.4	27	17.7	2213.6	906.6	3120.2	3.44	80.904	2013.4	1106.8
131	0.4979	28.2	27	17.9	2191.6	910.9	3102.5	3.41	80.874	2006.7	1095.8
132	0.5051	28.7	28	18.2	2229.1	888.9	3117.9	3.51	81.027	2003.4	1114.5
133	0.5118	28.4	27	18.4	2194.3	900.5	3094.8	3.44	80.946	1997.7	1097.2
134	0.5192	29.0	28	18.7	2233.2	907.0	3140.2	3.46	80.901	2023.6	1116.6
135	0.5260	28.7	28	18.9	2206.1	910.2	3116.3	3.42	80.879	2013.3	1103.1
136	0.5327	29.1	28	19.2	2228.4	914.6	3143.1	3.44	80.848	2028.9	1114.2
137	0.5400	29.1	28	19.4	2224.9	925.4	3150.3	3.40	80.773	2037.9	1112.4
138	0.5468	29.0	28	19.7	2206.9	904.8	3111.7	3.44	80.917	2008.2	1103.4
139	0.5541	29.6	29	19.9	2247.1	911.4	3158.5	3.47	80.871	2035.0	1123.6

2205.2

913.6

29.1 28 20.2

140 0.5599

3118.8

3.41 80.856 2016.2 1102.6

F	Parameters f	or Specimen No.	3	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	158.410			158.600
Moisture content: Dry soil+tare, gms.	133.570			130.710
Moisture content: Tare, gms.	37.940			37.940
Moisture, %	26.0	38.3	35.2	30.1
Moist specimen weight, gms.	117.93			
Diameter, in.	1.399	1.399	1.380	
Area, in. ²	1.537	1.537	1.495	
Height, in.	2.800	2.800	2.761	
Net decrease in height, in.		0.000	0.038	
Wet density, pcf	104.4	114.6	116.8	
Dry density, pcf	82.9	82.9	86.4	
Void ratio	1.0343	1.0343	0.9511	
Saturation, %	67.8	100.0	100.0	
Ta	of Doodings	for Consissed N	- 2	

Test Readings for Specimen No. 3
Consolidation cell pressure = 104.000 psi (14976.0 psf)

Consolidation back pressure = 75.000 psi (10800.0 psf)

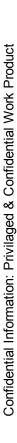
Consolidation effective confining stress = 4176.0 psf

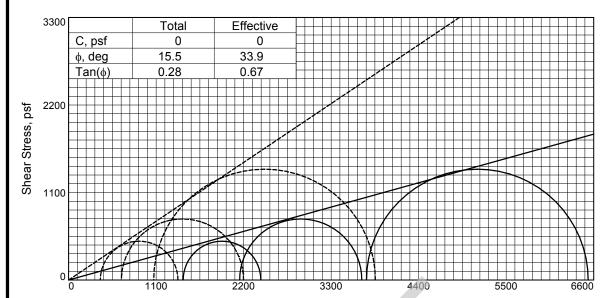
Strain rate, in./min. = 0.033

Fail. Stress = 3309.3 psf at reading no. 130

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.9	0	0.0	0.0	4210.9	4210.9	1.00	74.758	4210.9	0.0
1	0.0007	1.2	0	0.0	30.9	4209.3	4240.2	1.01	74.769	4224.8	15.4
2	0.0017	1.0	0	0.1	9.8	4209.2	4219.0	1.00	74.769	4214.1	4.9
3	0.0024	1.3	0	0.1	40.9	4212.4	4253.2	1.01	74.747	4232.8	20.4
4	0.0032	1.3	0	0.1	42.9	4210.7	4253.7	1.01	74.759	4232.2	21.5
5	0.0039	1.0	0	0.1	13.5	4210.4	4223.9	1.00	74.761	4217.1	6.7
6	0.0044	1.0	0	0.2	12.0	4212.4	4224.3	1.00	74.747	4218.4	6.0
7	0.0055	1.2	0	0.2	26.2	4211.1	4237.4	1.01	74.756	4224.2	13.1
8	0.0063	0.9	0	0.2	-2.8	4209.3	4206.5	1.00	74.769	4207.9	-1.4
9	0.0067	1.2	0	0.2	30.1	4209.3	4239.3	1.01	74.769	4224.3	15.0
10	0.0070	1.3	0	0.3	37.7	4209.1	4246.9	1.01	74.770	4228.0	18.9
11	0.0075	0.8	0	0.3	-8.9	4213.8	4204.8	1.00	74.738	4209.3	-4.5
12	0.0081	1.1	0	0.3	21.8	4209.2	4231.0	1.01	74.769	4220.1	10.9
13	0.0089	1.2	0	0.3	32.8	4210.6	4243.4	1.01	74.760	4227.0	16.4
14	0.0102	1.9	1	0.4	93.5	4191.9	4285.4	1.02	74.890	4238.6	46.8
15	0.0105	2.5	2	0.4	157.3	4163.3	4320.6	1.04	75.088	4242.0	78.6
16	0.0113	3.7	3	0.4	268.7	4134.4	4403.0	1.06	75.289	4268.7	134.3
17	0.0120	4.5	4	0.4	350.1	4095.8	4445.9	1.09	75.557	4270.8	175.0
18	0.0130	5.3	4	0.5	423.0	4046.6	4469.6	1.10	75.899	4258.1	211.5
19	0.0136	6.7	6	0.5	558.7	3999.5	4558.2	1.14	76.226	4278.8	279.3
20	0.0141	7.6	7	0.5	648.3	3941.4	4589.7	1.16	76.629	4265.6	324.1
21	0.0143	8.6	8	0.5	737.8	3889.9	4627.7	1.19	76.987	4258.8	368.9
22	0.0151	9.2	8	0.5	801.4	3843.2	4644.6	1.21	77.311	4243.9	400.7
23	0.0160	10.1	9	0.6	887.4	3787.7	4675.2	1.23	77.696	4231.4	443.7
24	0.0169	11.2	10	0.6	989.3	3736.7	4726.0	1.26	78.051	4231.3	494.7
25	0.0177	12.0	11	0.6	1063.1	3684.2	4747.2	1.29	78.415	4215.7	531.5
26	0.0183	12.4	11	0.7	1097.3	3637.8	4735.1	1.30	78.738	4186.4	548.6
								_			

					Test Re	adings fo	r Specim	en No.	3		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
27	0.0190	13.2	12	0.7	1174.4	3590.2	4764.5	1.33	79.068	4177.3	587.2
28	0.0199	14.0	13	0.7	1255.1	3543.6	4798.7	1.35	79.392	4171.1	627.6
29	0.0204	14.5	14	0.7	1302.2	3499.2	4801.5	1.37	79.700	4150.3	651.1
30	0.0209	14.9	14	0.8	1338.3	3455.9	4794.2	1.39	80.001	4125.1	669.2
31	0.0218	15.7	15	0.8	1420.0	3413.5	4833.4	1.42	80.295	4123.5	710.0
32	0.0228	16.1	15	0.8	1449.6	3373.5	4823.1	1.43	80.573	4098.3	724.8
33	0.0234	16.9	16	0.8	1529.5	3332.5	4862.0	1.46	80.858	4097.2	764.8
34	0.0239	17.5	17	0.9	1587.3	3294.7	4882.0	1.48	81.120	4088.3	793.7
35	0.0244	17.8	17	0.9	1612.1	3257.3	4869.5	1.49	81.380	4063.4	806.1
36	0.0252	18.1	17	0.9	1647.5	3221.8	4869.2	1.51	81.627	4045.5	823.7
37	0.0260	18.8	18	0.9	1706.6	3189.0	4895.6	1.54	81.854	4042.3	853.3
38	0.0266	19.2	18	1.0	1748.2	3153.8	4902.0	1.55	82.098	4027.9	874.1
39	0.0271	19.3	18	1.0	1759.6	3122.0	4881.7	1.56	82.319	4001.9	879.8
40	0.0276	20.1	19	1.0	1828.9	3091.5	4920.4	1.59	82.531	4005.9	914.4
41	0.0301	21.1	20	1.1	1930.2	2973.4	4903.6	1.65	83.351	3938.5	965.1
42	0.0336	22.1	21	1.2	2017.3	2868.8	4886.1	1.70	84.078	3877.5	1008.6
43	0.0363	23.5	23	1.3	2147.9	2777.7	4925.6	1.77	84.711	3851.6	1074.0
44	0.0388	24.1	23	1.4	2200.9	2695.5	4896.4	1.82	85.281	3795.9	1100.4
45	0.0418	24.7	24	1.5	2260.3	2619.3	4879.6	1.86	85.811	3749.4	1130.2
46	0.0446	25.7	25	1.6	2354.4	2550.5	4904.9	1.92	86.288	3727.7	1177.2
47	0.0476	26.5	26	1.7	2423.4	2491.2	4914.6	1.97	86.700	3702.9	1211.7
48	0.0508	26.8	26	1.8	2455.2	2426.1	4881.3	2.01	87.152	3653.7	1227.6
49	0.0534	27.7	27	1.9	2535.4	2372.2	4907.6	2.07	87.526	3639.9	1267.7
50	0.0562	27.9	27	2.0	2548.4	2322.3	4870.6	2.10	87.873	3596.4	1274.2
51	0.0594	28.7	28	2.2	2620.9	2276.3	4897.2	2.15	88.192	3586.7	1310.4
52	0.0618	29.2	28	2.2	2670.7	2232.2	4902.9	2.20	88.499	3567.6	1335.3
53	0.0644	29.0	28	2.3	2643.5	2188.7	4832.2	2.21	88.801	3510.4	1321.7
54	0.0671	29.9	29	2.4	2731.8	2152.6	4884.4	2.27	89.051	3518.5	1365.9
55	0.0702	29.6	29	2.5	2700.0	2121.9	4821.9	2.27	89.264	3471.9	1350.0
56	0.0730	30.0	29	2.6	2726.3	2090.0	4816.4	2.30	89.486	3453.2	1363.2
57	0.0759	30.6	30	2.7	2784.9	2060.8	4845.7	2.35	89.689	3453.2	1392.4
58	0.0785	30.8	30	2.8	2798.0	2036.8	4834.8	2.37	89.855	3435.8	1399.0
59	0.0814	31.2	30	2.9	2834.7	2006.5	4841.2	2.41	90.066	3423.8	1417.3
60	0.0846	31.6	31	3.1	2871.2	1979.7	4851.0	2.45	90.252	3415.3	1435.6
61	0.0872	31.3	30	3.2	2841.6	1954.3	4795.9	2.45	90.428	3375.1	1420.8
62	0.0895	32.1	31	3.2	2913.0	1927.9	4840.9	2.51	90.612	3384.4	1456.5
63	0.0927	32.4	31	3.4	2930.4	1907.1	4837.6	2.54	90.756	3372.4	1465.2
64	0.0953	32.0	31	3.4	2893.6	1885.4	4779.1	2.53	90.907	3332.2	1446.8
65	0.0977	32.7	32	3.5	2953.4	1867.4	4820.8	2.58	91.032	3344.1	1476.7
66	0.1011	32.4	32	3.7	2925.1	1849.0	4774.1	2.58	91.160	3311.5	1462.5
67	0.1033	32.2	31	3.7	2905.8	1832.5	4738.2	2.59	91.275	3285.3	1452.9
68	0.1063	32.7	32	3.8	2951.0	1825.6	4776.6	2.62	91.322	3301.1	1475.5
69	0.1096	32.5	32	4.0	2927.1	1810.6	4737.7	2.62	91.426	3274.2	1463.6
70	0.1124	33.1	32	4.1	2973.7	1796.3	4770.0	2.66	91.526	3283.2	1486.9
71	0.1152	33.4	33	4.2	3004.3	1785.8	4790.1	2.68	91.598	3288.0	1502.1
72	0.1176	33.4	33	4.3	2998.7	1775.9	4774.6	2.69	91.668	3275.2	1499.4
73	0.1176	33.7	33	4.4	3023.7	1761.5	4785.2	2.72	91.767	3273.2	1511.8
, 5	0.1203	55.1	55	⊤. Ŧ	5045.1	1/01.5	1703.2	2.12	71.101	J21J.J	1511.0

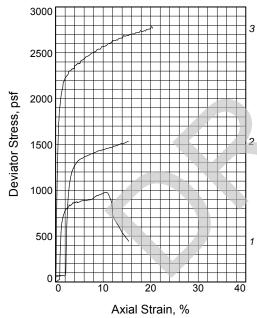

					Test Re	adings fo	r Specim	en No.	3		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
74	0.1235	34.1	33	4.5	3057.4	1754.4	4811.7	2.74	91.817	3283.0	1528.7
75	0.1260	33.5	33	4.6	2997.3	1757.4	4754.8	2.71	91.796	3256.1	1498.7
76	0.1287	34.3	33	4.7	3069.6	1781.6	4851.2	2.72	91.627	3316.4	1534.8
77	0.1319	34.3	33	4.8	3061.7	1684.4	4746.1	2.82	92.303	3215.3	1530.9
78	0.1341	33.7	33	4.9	3007.4	1671.1	4678.4	2.80	92.395	3174.8	1503.7
79	0.1370	34.4	34	5.0	3072.7	1664.6	4737.3	2.85	92.440	3201.0	1536.4
80	0.1392	33.9	33	5.0	3022.2	1654.5	4676.8	2.83	92.510	3165.7	1511.1
81	0.1471	34.5	34	5.3	3066.7	1634.6	4701.3	2.88	92.649	3168.0	1533.4
82	0.1543	35.0	34	5.6	3100.9	1616.0	4717.0	2.92	92.777	3166.5	1550.5
83	0.1610	35.1	34	5.8	3107.7	1600.6	4708.4	2.94	92.884	3154.5	1553.9
84	0.1682	35.5	35	6.1	3135.1	1579.7	4714.7	2.98	93.030	3147.2	1567.5
85	0.1752	35.4	35	6.3	3117.8	1565.9	4683.7	2.99	93.126	3124.8	1558.9
86	0.1818	36.0	35	6.6	3163.8	1553.5	4717.3	3.04	93.212	3135.4	1581.9
87	0.1893	35.9	35	6.9	3137.8	1541.4	4679.2	3.04	93.296	3110.3	1568.9
88	0.1961	35.7	35	7.1	3119.1	1540.4	4659.5	3.02	93.303	3100.0	1559.6
89	0.2033	36.8	36	7.4	3201.8	1525.5	4727.3	3.10	93.406	3126.4	1600.9
90	0.2104	36.4	36	7.6	3161.7	1517.8	4679.5	3.08	93.460	3098.6	1580.9
91	0.2174	36.8	36	7.9	3186.9	1504.7	4691.5	3.12	93.551	3098.1	1593.4
92	0.2249	37.0	36	8.1	3199.2	1501.0	4700.2	3.13	93.576	3100.6	1599.6
93	0.2315	36.6	36	8.4	3149.7	1494.2	4643.9	3.11	93.624	3069.0	1574.9
94	0.2384	36.7	36	8.6	3150.3	1491.3	4641.6	3.11	93.644	3066.5	1575.2
95	0.2454	37.0	36	8.9	3171.9	1487.8	4659.7	3.13	93.668	3073.8	1585.9
96	0.2529	36.9	36	9.2	3154.5	1492.8	4647.3	3.11	93.633	3070.1	1577.3
97	0.2599	37.7	37	9.4	3216.8	1494.1	4710.9	3.15	93.624	3102.5	1608.4
98	0.2667	37.6	37	9.7	3197.9	1560.5	4758.4	3.05	93.163	3159.4	1599.0
99	0.2731	37.7	37	9.9	3194.6	1463.6	4658.2	3.18	93.836	3060.9	1597.3
100	0.2802	37.6	37	10.1	3179.4	1464.4	4643.8	3.17	93.831	3054.1	1589.7
101	0.2875	37.4	37	10.4	3154.1	1464.1	4618.3	3.15	93.832	3041.2	1577.1
102	0.2947	38.3	37	10.7	3218.9	1467.6	4686.5	3.19	93.808	3077.1	1609.4
103	0.3016	38.1	37	10.9	3192.0	1463.3	4655.2	3.18	93.839	3059.2	1596.0
104	0.3088	38.5	38	11.2	3217.6	1461.5	4679.2	3.20	93.850	3070.4	1608.8
105	0.3153	38.4	38	11.4	3205.3	1461.7	4667.0	3.19	93.849	3064.3	1602.6
106	0.3225	38.3	37	11.7	3179.6	1462.6	4642.3	3.17	93.843	3052.5	1589.8
107	0.3289	39.0	38	11.9	3235.5	1462.7	4698.1	3.21	93.843	3080.4	1617.7
108	0.3360	38.7	38	12.2	3201.0	1463.2	4664.2	3.19	93.839	3063.7	1600.5
109	0.3438	39.0	38	12.4	3213.2	1464.4	4677.6	3.19	93.831	3071.0	1606.6
110	0.3507	38.8	38	12.7	3189.6	1467.7	4657.3	3.17	93.808	3062.5	1594.8
111	0.3573	39.7	39	12.9	3253.6	1475.1	4728.7	3.21	93.757	3101.9	1626.8
112	0.3642	39.8	39	13.2	3257.4	1471.7	4729.1	3.21	93.780	3100.4	1628.7
113	0.3710	39.5	39	13.4	3222.4	1473.2	4695.6	3.19	93.770	3084.4	1611.2
114	0.3783	39.9	39	13.7	3247.6	1477.8	4725.5	3.20	93.737	3101.7	1623.8
115	0.3850	39.6	39	13.9	3212.7	1486.2	4698.9	3.16	93.679	3092.6	1606.4
116	0.3926	40.6	40	14.2	3279.0	1494.5	4773.5	3.19	93.622	3134.0	1639.5
117	0.3920	40.2	39	14.5	3241.9	1569.2	4811.2	3.17	93.102	3190.2	1621.0
118	0.3994	40.2	40	14.7	3256.0	1475.7	4731.8	3.07	93.752	3190.2	1628.0
119	0.4039	40.3	39	15.0	3228.6	1483.8	4712.4	3.18	93.696	3098.1	1614.3
120	0.4131	40.9	40	15.0	3271.7	1485.1	4712.4	3.10	93.687	3121.0	1635.8
120	0.4203	40.7	40	13.4	5411.1	1403.1	+130.0	3.20	93.007	J121.U	1033.0


					Test Re	adings fo	r Specim	en No.	3		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
121	0.4275	41.3	40	15.5	3291.2	1485.3	4776.5	3.22	93.685	3130.9	1645.6
122	0.4344	41.2	40	15.7	3270.3	1490.2	4760.5	3.19	93.652	3125.3	1635.2
123	0.4415	41.5	41	16.0	3287.5	1492.7	4780.2	3.20	93.634	3136.4	1643.8
124	0.4488	41.4	41	16.3	3268.3	1496.6	4764.8	3.18	93.607	3130.7	1634.1
125	0.4558	41.7	41	16.5	3284.9	1491.1	4776.0	3.20	93.645	3133.5	1642.5
126	0.4627	42.0	41	16.8	3297.7	1489.3	4786.9	3.21	93.658	3138.1	1648.8
127	0.4695	41.8	41	17.0	3269.8	1500.6	4770.4	3.18	93.579	3135.5	1634.9
128	0.4771	42.3	41	17.3	3298.2	1513.6	4811.8	3.18	93.489	3162.7	1649.1
129	0.4843	41.9	41	17.5	3257.6	1516.7	4774.3	3.15	93.467	3145.5	1628.8
130	0.4910	42.7	42	17.8	3309.3	1517.0	4826.3	3.18	93.465	3171.7	1654.7
131	0.4980	42.4	42	18.0	3281.7	1521.0	4802.8	3.16	93.437	3161.9	1640.9
132	0.5049	42.4	42	18.3	3270.6	1529.5	4800.1	3.14	93.379	3164.8	1635.3
133	0.5117	43.0	42	18.5	3305.4	1534.1	4839.5	3.15	93.346	3186.8	1652.7
134	0.5191	42.7	42	18.8	3273.9	1537.3	4811.2	3.13	93.324	3174.3	1636.9
135	0.5256	43.0	42	19.0	3284.4	1544.6	4829.0	3.13	93.274	3186.8	1642.2
136	0.5329	42.9	42	19.3	3268.5	1557.1	4825.6	3.10	93.187	3191.4	1634.2
137	0.5390	43.2	42	19.5	3281.4	1673.7	4955.1	2.96	92.377	3314.4	1640.7
138	0.5464	43.1	42	19.8	3260.1	1541.0	4801.1	3.12	93.298	3171.1	1630.0
139	0.5535	43.6	43	20.0	3293.6	1542.6	4836.1	3.14	93.288	3189.3	1646.8

4834.2

3.12 93.243 3191.6 1642.6

140 0.5603 43.7 43 20.3 3285.1 1549.1



Water Content, %

Dry Density, pcf

Saturation, %

Sample No.

1		2	Void Ratio	0.9152	0.9348	0.8593	
ł			Diameter, in.	1.397	1.391	1.416	
			Height, in.	2.800	2.800	2.800	
			Water Content, %	28.5	29.1	26.6	
١	2	+1	Dry Density, pcf	97.3	96.3	100.2	
1		e.	Saturation, %	100.0	100.0	100.0	
l		At Test	Void Ratio	0.7966	0.8150	0.7442	
ł		4	Diameter, in.	1.367	1.361	1.386	
Ì			Height, in.	2.741	2.741	2.741	
١		Str	ain rate, in./min.	0.017	0.017	0.017	
ł	1	Eff	. Cell Pressure, psi	10.000	14.930	26.000	
ł		Fai	l. Stress, psf	975.6	1535.1	2786.4	
1		Е	Excess Pore Pr., psf	1041.9	1486.6	2674.8	
1		5	Strain, %	10.5	15.3	20.2	
		Ult	. Stress, psf				
		Е	Excess Pore Pr., psf				
			Strain, %				
		$\overline{\sigma}_1$	Failure, psf	1373.7	2198.4	3855.6	
		$\overline{\sigma}_{3}$	Failure, psf	398.1	663.3	1069.2	

1

25.2

91.3

77.0

2

24.0

90.3

71.8

3

24.3

94.0

79.3

Type of Test:

CU with Pore Pressures

Sample Type: Undisturbed

Description: So, Gr and Br Lean CLAY with

Silt and Voids (CL6)

LL= 36 **PL=** 20 **Pl=** 16

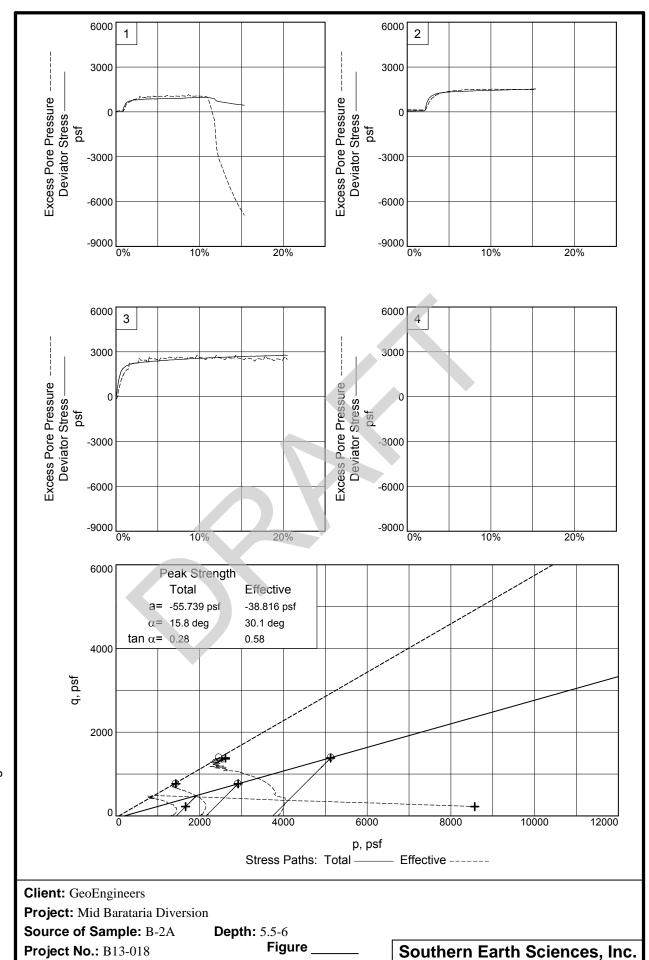
Assumed Specific Gravity= 2.80

Remarks: Type Failure:

Bulge (sample 1)

Multi Shear / Bulge (sample 2)

Figure


Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: B-2A Depth: 5.5-6

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

12/10/2013 2:31 PM

Date:

GeoEngineers Client:

Project: Mid Barataria Diversion

B13-018 Project No.: Location: B-2A Depth: 5.5-6

Description: So, Gr and Br Lean CLAY with Silt and Voids (CL6)

Remarks: Type Failure:

Bulge (sample 1)

Multi Shear / Bulge (sample 2)

Type of Sample: Undisturbed

Assumed Specific Gravity=2.80 LL=36 **PI=**16 **PL=**20

Test Method: COE uniform strain

P	arameters	s for Specimen No.	1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	194.600			191.950
Moisture content: Dry soil+tare, gms.	163.120			164.840
Moisture content: Tare, gms.	38.040			62.480
Moisture, %	25.2	32.7	28.5	26.5
Moist specimen weight, gms.	128.70			
Diameter, in.	1.397	1.397	1.367	
Area, in. ²	1.533	1.533	1.469	
Height, in.	2.800	2.800	2.741	
Net decrease in height, in.		0.000	0.059	
Wet density, pcf	114.2	121.1	125.0	
Dry density, pcf	91.3	91.3	97.3	
Void ratio	0.9152	0.9152	0.7966	
Saturation, %	77.0	100.0	100.0	

Test Readings for Specimen No. 1

Consolidation cell pressure = 85.000 psi (12240.0 psf) Consolidation back pressure = 75.000 psi (10800.0 psf)Consolidation effective confining stress = 1440.0 psf

Strain rate, in./min. = 0.017

Fail. Stress = 975.6 psf at reading no. 101

					Test Re	adings fo	r Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.2	0	0.0	0.0	1410.6	1410.6	1.00	75.204	1410.6	0.0
1		0.2	0			1414.7			75.176		
2		0.1	0			1415.0			75.173		
3		0.1	0			1417.5			75.156		
4		0.1	0			1425.8			75.099		
5		0.1	0			1427.4			75.087		
6		0.1	0			1433.0			75.049		
7		0.1	0			1437.7			75.016		
8		0.1	0			1437.4			75.018		
9		0.0	0			1436.0			75.028		
10		0.0	0			1436.0			75.028		
11		-0.1	0			1433.2			75.047		
12		-0.1	0			1434.2			75.040		
13		-0.1	0			1435.5			75.031		
14		-0.1	0			1439.0			75.007		
15		0.0	0			1346.8			75.648		
16		0.0	0			1372.9			75.466		
17		0.0	0			1411.4			75.198		
18		0.0	0			1422.0			75.125		
19		-0.1	0			1428.5			75.080		
20		-0.1	0			1426.4			75.095		
21		-0.3	-1			1426.1			75.097		
22		0.0	0			1427.8			75.085		
23		-0.1	0			1427.3			75.088		
24		-0.1	0			1429.3			75.074		
25		-0.1	0			1436.6			75.024		
26		-0.1	0			1439.0			75.007		
27		-0.1	0			1440.5			74.996		
28		-0.1	0			1443.6			74.975		
29		-0.1	0			1444.8			74.967		
30		0.0	0			1443.9			74.973		
31		0.5	0			806.1			79.402		
32		0.0	0			1420.1			75.138		
33	0.0233	0.5	0	0.8	29.0	1306.3	1335.3	1.02	75.929	1320.8	14.5
34	0.0242	1.1	1	0.9	86.4	1355.0	1441.5	1.06	75.590	1398.3	43.2
35	0.0247	1.8	2	0.9	151.9	1354.1	1506.0	1.11	75.596	1430.1	75.9
36	0.0250	2.5	2	0.9	218.7	1334.8	1553.4	1.16	75.731	1444.1	109.3
37	0.0255	3.2	3	0.9	287.1	1307.9	1595.0	1.22	75.917	1451.5	143.6
38	0.0266	3.8	4	1.0	343.8	1280.3	1624.1	1.27	76.109	1452.2	171.9
39	0.0277	4.1	4	1.0	378.2	1261.3	1639.5	1.30	76.241	1450.4	189.1
40	0.0285	4.3	4	1.0	393.6	1215.8	1609.4	1.32	76.557	1412.6	196.8
41	0.0309	5.8	6	1.1	539.1	1101.2	1640.3	1.49	77.353	1370.8	269.6
42	0.0338	6.5	6	1.2	609.5	912.3	1521.8	1.67	78.665	1217.1	304.7
43	0.0364	6.9	7	1.3	650.4	903.3	1553.7	1.72	78.727	1228.5	325.2
44	0.0393	7.3	7	1.4	682.3	853.2	1535.6	1.80	79.075	1194.4	341.2
45	0.0423	7.5	7	1.5	703.7	808.9	1512.6	1.87	79.383	1160.8	351.8
46	0.0446	7.8	8	1.6	725.8	761.4	1487.2	1.95	79.713	1124.3	362.9
					_						

					Test Re	adings fo	r Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
47	0.0477	7.9	8	1.7	740.8	737.6	1478.4	2.00	79.877	1108.0	370.4
48	0.0507	8.1	8	1.8	757.2	701.8	1458.9	2.08	80.126	1080.4	378.6
49	0.0529	8.3	8	1.9	774.5	680.2	1454.7	2.14	80.276	1067.4	387.2
50	0.0560	8.4	8	2.0	781.7	665.8	1447.5	2.17	80.376	1056.6	390.8
51	0.0578	8.5	8	2.1	794.3	597.1	1391.4	2.33	80.853	994.3	397.1
52	0.0621	8.6	8	2.3	801.0	599.9	1400.9	2.34	80.834	1000.4	400.5
53	0.0640	8.5	8	2.3	795.1	584.5	1379.6	2.36	80.941	982.1	397.6
54	0.0668	8.7	8	2.4	806.3	567.8	1374.1	2.42	81.057	971.0	403.2
55	0.0699	8.7	8	2.5	806.6	561.0	1367.6	2.44	81.104	964.3	403.3
56	0.0728	8.8	9	2.7	814.7	545.0	1359.7	2.50	81.216	952.3	407.4
57	0.0755	8.9	9	2.8	822.6	543.3	1366.0	2.51	81.227	954.6	411.3
58	0.0781	9.1	9	2.8	842.2	385.6	1227.8	3.18	82.322	806.7	421.1
59	0.0807	9.0	9	2.9	832.5	491.0	1323.5	2.70	81.590	907.3	416.3
60	0.0838	9.0	9	3.1	830.4	497.5	1327.8	2.67	81.545	912.6	415.2
61	0.0868	9.0	9	3.2	835.1	483.1	1318.3	2.73	81.645	900.7	417.6
62	0.0889	9.1	9	3.2	839.5	486.4	1326.0	2.73	81.622	906.2	419.8
63	0.0921	9.1	9	3.4	843.8	480.5	1324.3	2.76	81.663	902.4	421.9
64	0.0948	9.2	9	3.5	850.5	475.1	1325.6	2.79	81.701	900.4	425.3
65	0.0985	9.3	9	3.6	856.2	480.9	1337.1	2.78	81.660	909.0	428.1
66	0.1004	9.4	9	3.7	866.1	385.7	1251.8	3.25	82.321	818.7	433.0
67	0.1036	9.4	9	3.8	861.4	439.2	1300.7	2.96	81.950	869.9	430.7
68	0.1063	9.4	9	3.9	864.1	439.2	1303.3	2.97	81.950	871.2	432.1
69	0.1091	9.4	9	4.0	866.9	436.8	1303.7	2.98	81.967	870.2	433.5
70	0.1122	9.4	9	4.1	864.4	443.8	1308.1	2.95	81.918	876.0	432.2
71	0.1144	9.5	9	4.2	866.7	434.7	1301.4	2.99	81.981	868.0	433.4
72	0.1175	9.5	9	4.3	872.3	440.0	1312.3	2.98	81.944	876.2	436.2
73	0.1205	9.5	9		870.4	439.3	1309.7	2.98	81.949	874.5	435.2
74	0.1233	9.6	9	4.5	875.2	378.5	1253.7	3.31	82.371	816.1	437.6
75	0.1261	9.5	9	4.6	864.9	413.0	1277.9	3.09	82.132	845.4	432.4
	0.1285	9.5	9	4.7	867.7	408.6	1276.3	3.12	82.163	842.4	433.8
77	0.1315	9.5	9	4.8	869.1	414.6	1283.8	3.10	82.121	849.2	434.6
78	0.1342	9.6	9	4.9	870.5	416.6	1287.1	3.09	82.107	851.8	435.3
79	0.1369	9.6	9	5.0	874.0	411.6	1285.5	3.12	82.142	848.5	437.0
80	0.1399	9.6	9	5.1	874.5	421.2	1295.8	3.08	82.075	858.5	437.3
81	0.1464	9.7	10	5.3	882.9	388.0	1271.0	3.28	82.305	829.5	441.5
82	0.1542	9.8	10	5.6	886.0	402.7	1288.7	3.20	82.203	845.7	443.0
83	0.1613	9.9	10	5.9	889.1	406.0	1295.1	3.19	82.181	850.5	444.6
84	0.1681	9.9	10	6.1	890.1	327.1	1217.2	3.72	82.728	772.1	445.0
85	0.1751	9.9	10	6.4	884.7	388.2	1273.0	3.28	82.304	830.6	442.4
86	0.1731	10.0	10	6.6	891.0	396.0	1287.0	3.25	82.250	841.5	445.5
87	0.1896	10.0	10	6.9	895.7	403.2	1298.9	3.22	82.200	851.1	447.9
88	0.1962	10.0	10	7.2	893.9	378.1	1272.1	3.36	82.374	825.1	447.0
89	0.1902	10.0	10	7.4	900.7	388.8	1272.1	3.32	82.300	839.1	450.3
90	0.2030	10.1	10	7.7	902.3	394.5	1289.4	3.32	82.261	845.6	450.3
91	0.2101	10.2	10	7.7	902.3	365.1	1278.4	3.50	82.464	821.8	456.6
92	0.2177	10.5	10	8.2	925.4	381.0	1306.4	3.43	82.354	843.7	462.7
92	0.2243	10.5	10	8.4	923.4	390.0	1306.4	3.43	82.292	856.5	462.7
73	0.2310	10.0	10	0.4	734.7	370.0	1344.9	3.39	04.494	0.00.3	400.4

					Test Re	adings fo	r Specim	en No.	1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	0.2380	10.8	11	8.7	945.3	285.1	1230.5	4.32	83.020	757.8	472.7
95	0.2446	10.8	11	8.9	940.2	373.4	1313.6	3.52	82.407	843.5	470.1
96	0.2520	10.9	11	9.2	951.9	383.6	1335.4	3.48	82.336	859.5	475.9
97	0.2588	10.9	11	9.4	951.2	390.3	1341.6	3.44	82.289	865.9	475.6
98	0.2656	11.1	11	9.7	962.7	365.8	1328.5	3.63	82.460	847.2	481.4
99	0.2725	11.1	11	9.9	961.3	379.8	1341.1	3.53	82.363	860.4	480.6
100	0.2795	11.3	11	10.2	973.6	388.3	1361.9	3.51	82.303	875.1	486.8
101	0.2866	11.3	11	10.5	975.6	398.1	1373.7	3.45	82.235	885.9	487.8
102	0.2943	11.4	11	10.7	974.7	414.2	1388.8	3.35	82.124	901.5	487.3
103	0.3010	11.3	11	11.0	970.6	466.2	1436.8	3.08	81.762	951.5	485.3
104	0.3081	11.1	11	11.2	944.1	918.0	1862.1	2.03	78.625	1390.0	472.1
105	0.3153	10.7	10	11.5	908.3	1456.9	2365.2	1.62	74.883	1911.1	454.2
106	0.3227	10.3	10	11.8	874.9	1972.0	2846.9	1.44	71.306	2409.4	437.4
107	0.3295	8.7	8	12.0	731.3	3813.4	4544.7	1.19	58.518	4179.0	365.6
108	0.3358	8.4	8	12.3	699.8	4508.7	5208.5	1.16	53.689	4858.6	349.9
109	0.3433	8.0	8	12.5	670.4	4903.1	5573.5	1.14	50.951	5238.3	335.2
110	0.3503	7.8	8	12.8	647.5	5284.4	5931.9	1.12	48.303	5608.1	323.8
111	0.3570	7.6	7	13.0	628.1	5648.5	6276.6	1.11	45.774	5962.6	314.1
112	0.3637	7.4	7	13.3	609.9	5994.4	6604.3	1.10	43.372	6299.4	305.0
113	0.3714	7.1	7	13.5	582.4	6361.1	6943.5	1.09	40.826	6652.3	291.2
114	0.3781	6.8	7	13.8	557.6	6705.0	7262.6	1.08	38.437	6983.8	278.8
115	0.3857	6.6	6	14.1	533.5	7022.9	7556.4	1.08	36.230	7289.7	266.8
116	0.3919	6.4	6	14.3	520.0	7322.8	7842.7	1.07	34.148	7582.7	260.0
117	0.3992	6.2	6	14.6	498.4	7610.1	8108.4	1.07	32.152	7859.3	249.2
118	0.4066	6.0	6	14.8	481.2	7880.4	8361.6	1.06	30.275	8121.0	240.6
119	0.4135	5.8	6	15.1	466.0	8120.2	8586.2	1.06	28.609	8353.2	233.0
120	0.4205	5.6	5	15.3	446.4	8343.3	8789.6	1.05	27.061	8566.4	223.2

121 0.4205

5.6

5 15.3

445.5

8347.0

8792.5

1.05 27.035 8569.7 222.8

F	Parameters f	or Specimen No.	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	130.810			187.390
Moisture content: Dry soil+tare, gms.	112.860			162.150
Moisture content: Tare, gms.	37.960			62.480
Moisture, %	24.0	33.4	29.1	25.3
Moist specimen weight, gms.	125.00			
Diameter, in.	1.391	1.391	1.361	
Area, in. ²	1.519	1.519	1.455	
Height, in.	2.800	2.800	2.741	
Net decrease in height, in.		0.000	0.059	
Wet density, pcf	112.0	120.5	124.3	
Dry density, pcf	90.3	90.3	96.3	
Void ratio	0.9348	0.9348	0.8150	
Saturation, %	71.8	100.0	100.0	
т.	at Dandinas	for Cooping AN	- 0	

Test Readings for Specimen No. 2

Consolidation cell pressure = 54.930 psi (7909.9 psf)

Consolidation back pressure = 40.000 psi (5760.0 psf)

Consolidation effective confining stress = 2149.9 psf

Strain rate, in./min. = 0.017

Fail. Stress = 1535.1 psf at reading no. 121

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.7	0	0.0	0.0	2006.8	2006.8	1.00	40.994	2006.8	0.0
1	0.0008	1.1	0	0.0	39.9	2008.4	2048.3	1.02	40.982	2028.4	19.9
2	0.0014	1.4	1	0.1	66.7	2007.5	2074.2	1.03	40.989	2040.8	33.3
3	0.0019	1.4	1	0.1	63.7	2009.4	2073.1	1.03	40.976	2041.2	31.8
4	0.0028	1.3	1	0.1	61.2	2008.6	2069.8	1.03	40.982	2039.2	30.6
5	0.0038	1.4	1	0.1	67.6	2008.3	2075.9	1.03	40.984	2042.1	33.8
6	0.0039	1.3	1	0.1	62.0	2010.7	2072.7	1.03	40.967	2041.7	31.0
7	0.0044	1.4	1	0.2	66.8	2005.1	2071.9	1.03	41.006	2038.5	33.4
8	0.0054	1.4	1	0.2	68.3	2005.4	2073.8	1.03	41.003	2039.6	34.2
9	0.0066	1.4	1	0.2	66.0	2006.3	2072.3	1.03	40.997	2039.3	33.0
10	0.0075	1.4	1	0.3	63.1	2003.8	2067.0	1.03	41.015	2035.4	31.6
11	0.0079	1.4	1	0.3	67.1	2004.1	2071.2	1.03	41.013	2037.6	33.5
12	0.0088	1.4	1	0.3	68.8	2005.9	2074.7	1.03	41.000	2040.3	34.4
13	0.0095	1.4	1	0.3	65.2	2004.9	2070.1	1.03	41.007	2037.5	32.6
14	0.0101	1.4	1	0.4	66.7	2005.1	2071.7	1.03	41.006	2038.4	33.3
15	0.0106	1.4	1	0.4	63.3	2008.4	2071.7	1.03	40.983	2040.0	31.7
16	0.0111	1.4	1	0.4	66.0	2005.4	2071.4	1.03	41.003	2038.4	33.0
17	0.0119	1.4	1	0.4	66.6	2008.2	2074.8	1.03	40.984	2041.5	33.3
18	0.0127	1.4	1	0.5	65.1	2011.5	2076.6	1.03	40.961	2044.0	32.5
19	0.0131	1.3	1	0.5	60.8	2012.1	2072.9	1.03	40.957	2042.5	30.4
20	0.0141	1.4	1	0.5	67.7	2012.2	2079.9	1.03	40.957	2046.0	33.8
21	0.0149	1.4	1	0.5	67.0	2015.4	2082.4	1.03	40.934	2048.9	33.5
22	0.0155	1.4	1	0.6	65.7	2013.5	2079.2	1.03	40.948	2046.3	32.8
23	0.0161	1.4	1	0.6	66.3	2013.4	2079.7	1.03	40.948	2046.5	33.2
24	0.0170	1.4	1	0.6	68.3	2016.3	2084.6	1.03	40.928	2050.5	34.2
25	0.0180	1.4	1	0.7	68.2	2015.2	2083.4	1.03	40.936	2049.3	34.1
26	0.0185	1.4	1	0.7	67.3	2015.4	2082.8	1.03	40.934	2049.1	33.7
					Sout	harn Eartl	Science	. Inc			

	Test Readings for Specimen No. 2												
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf		
27	0.0188	1.4	1	0.7	67.9	2018.2	2086.1	1.03	40.915	2052.1	33.9		
28	0.0193	1.4	1	0.7	66.1	2014.8	2080.9	1.03	40.938	2047.9	33.0		
29	0.0204	1.4	1	0.7	69.3	2013.9	2083.2	1.03	40.945	2048.5	34.6		
30	0.0209	1.4	1	0.8	64.3	2016.1	2080.4	1.03	40.929	2048.3	32.1		
31	0.0216	1.4	1	0.8	67.3	2012.0	2079.3	1.03	40.958	2045.7	33.7		
32	0.0222	1.4	1	0.8	69.7	2013.3	2083.0	1.03	40.949	2048.1	34.8		
33	0.0230	1.4	1	0.8	69.4	2015.6	2085.0	1.03	40.933	2050.3	34.7		
34	0.0236	1.4	1	0.9	66.9	2013.2	2080.1	1.03	40.949	2046.7	33.4		
35	0.0243	1.4	1	0.9	67.9	2013.8	2081.6	1.03	40.945	2047.7	33.9		
36	0.0254	1.4	1	0.9	63.9	2016.1	2080.0	1.03	40.930	2048.0	31.9		
37	0.0264	1.4	1	1.0	65.1	2014.9	2079.9	1.03	40.938	2047.4	32.5		
38	0.0269	1.4	1	1.0	70.5	2014.2	2084.7	1.04	40.942	2049.5	35.3		
39	0.0275	1.4	1	1.0	67.1	2017.6	2084.7	1.03	40.919	2051.2	33.6		
40	0.0281	1.4	1	1.0	68.4	2017.5	2085.9	1.03	40.920	2051.7	34.2		
41	0.0311	1.4	1	1.1	69.8	2018.5	2088.3	1.03	40.912	2053.4	34.9		
42	0.0341	1.4	1	1.2	67.5	2018.3	2085.8	1.03	40.914	2052.0	33.8		
43	0.0363	1.4	1	1.3	69.1	2017.3	2086.4	1.03	40.921	2051.9	34.5		
44	0.0391	1.4	1	1.4	69.6	2020.4	2090.0	1.03	40.899	2055.2	34.8		
45	0.0418	1.4	1	1.5	69.1	2020.4	2089.5	1.03	40.899	2054.9	34.5		
46	0.0450	1.4	1	1.6	67.5	2023.0	2090.5	1.03	40.881	2056.8	33.8		
47	0.0474	1.4	1	1.7	69.4	2024.3	2093.7	1.03	40.872	2059.0	34.7		
48	0.0503	1.4	1	1.8	67.0	2022.8	2089.8	1.03	40.883	2056.3	33.5		
49	0.0527	1.4	1	1.9	67.0	2021.4	2088.4	1.03	40.893	2054.9	33.5		
50	0.0557	1.4	1	2.0	67.3	2024.0	2091.3	1.03	40.874	2057.6	33.6		
51	0.0591	2.0	1	2.2	121.7	2019.4	2141.1	1.06	40.907	2080.2	60.8		
52	0.0616	4.7	4	2.2	387.5	1952.0	2339.5	1.20	41.374	2145.8	193.7		
53	0.0640	6.9	6	2.3	601.1	1832.3	2433.4	1.33	42.206	2132.8	300.5		
54	0.0671	8.3	8	2.4	736.8	1708.6	2445.4	1.43	43.064	2077.0	368.4		
55	0.0698	9.5	9	2.5	846.1	1592.2	2438.3	1.53	43.873	2015.2	423.0		
56	0.0722	10.3	10	2.6	922.9	1492.8	2415.7	1.62	44.563	1954.2	461.4		
57	0.0755	11.0	10	2.8	985.3	1402.4	2387.8	1.70	45.191	1895.1	492.7		
58	0.0780	11.5	11	2.8	1035.9	1317.4	2353.3	1.79	45.781	1835.4	517.9		
59	0.0806	12.0	11	2.9	1080.3	1249.1	2329.5	1.86	46.256	1789.3	540.2		
60	0.0840	12.3	12	3.1	1113.9	1195.1	2309.1	1.93	46.631	1752.1	557.0		
61	0.0867	12.7	12	3.2	1145.7	1146.2	2291.9	2.00	46.970	1719.1	572.9		
62	0.0895	12.9	12	3.3	1166.4	1105.5	2271.9	2.06	47.253	1688.7	583.2		
63	0.0921	13.1	12	3.4	1186.7	1063.3	2250.0	2.12	47.546	1656.7	593.3		
64	0.0948	13.4	13	3.5	1209.0	1025.1	2234.1	2.18	47.811	1629.6	604.5		
65	0.0979	13.4	13	3.6	1214.5	999.0	2213.5	2.22	47.993	1606.2	607.2		
66	0.1005	13.7	13	3.7	1236.9	970.3	2207.3	2.27	48.192	1588.8	618.5		
67	0.1034	13.7	13	3.8	1241.4	948.9	2190.2	2.31	48.341	1569.6	620.7		
68	0.1064	13.9	13	3.9	1257.5	921.3	2178.8	2.36	48.532	1550.1	628.8		
69	0.1085	14.0	13	4.0	1266.5	900.0	2166.5	2.41	48.680	1533.3	633.3		
70	0.1115	14.1	13	4.1	1273.1	886.1	2159.1	2.44	48.777	1522.6	636.5		
71	0.1137	14.3	14	4.1	1284.1	870.5	2154.5	2.48	48.885	1512.5	642.0		
72	0.1178	14.3	14	4.3	1290.7	856.0	2146.7	2.51	48.986	1501.3	645.4		
73	0.1196	14.4	14	4.4	1298.3	839.9	2138.2	2.55	49.098	1489.0	649.2		
-		•	-				· -						

Test Readings for Specimen No. 2											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
74	0.1224	14.5	14	4.5	1306.5	824.8	2131.3	2.58	49.202	1478.0	653.3
75	0.1254	14.6	14	4.6	1311.4	816.9	2128.3	2.61	49.257	1472.6	655.7
76	0.1287	14.7	14	4.7	1318.9	804.6	2123.4	2.64	49.343	1464.0	659.4
77	0.1312	14.8	14	4.8	1323.0	795.5	2118.5	2.66	49.406	1457.0	661.5
78	0.1338	14.8	14	4.9	1327.0	783.1	2110.1	2.69	49.492	1446.6	663.5
79	0.1364	14.9	14	5.0	1331.7	772.8	2104.5	2.72	49.564	1438.6	665.9
80	0.1392	14.9	14	5.1	1334.5	765.9	2100.4	2.74	49.611	1433.2	667.2
81	0.1463	15.1	14	5.3	1344.7	749.4	2094.0	2.79	49.726	1421.7	672.3
82	0.1541	15.2	14	5.6	1348.5	733.7	2082.2	2.84	49.835	1407.9	674.2
83	0.1607	15.3	15	5.9	1355.5	722.3	2077.8	2.88	49.914	1400.0	677.8
84	0.1678	15.4	15	6.1	1367.2	707.8	2075.0	2.93	50.015	1391.4	683.6
85	0.1749	15.5	15	6.4	1372.3	701.2	2073.4	2.96	50.061	1387.3	686.1
86	0.1816	15.6	15	6.6	1375.1	675.9	2050.9	3.03	50.236	1363.4	687.5
87	0.1888	15.7	15	6.9	1382.8	668.0	2050.8	3.07	50.291	1359.4	691.4
88	0.1954	15.8	15	7.1	1386.2	660.2	2046.4	3.10	50.345	1353.3	693.1
89	0.2021	15.9	15	7.4	1395.4	658.6	2054.0	3.12	50.357	1356.3	697.7
90	0.2095	16.0	15	7.6	1397.8	651.8	2049.6	3.14	50.404	1350.7	698.9
91	0.2169	16.1	15	7.9	1405.3	652.6	2057.8	3.15	50.398	1355.2	702.6
92	0.2235	16.2	16	8.2	1410.8	648.0	2058.8	3.18	50.430	1353.4	705.4
93	0.2307	16.3	16	8.4	1414.9	650.6	2065.5	3.17	50.412	1358.1	707.4
94	0.2378	16.4	16	8.7	1421.8	646.2	2068.0	3.20	50.442	1357.1	710.9
95	0.2453	16.6	16	8.9	1429.5	648.1	2077.6	3.21	50.429	1362.9	714.8
96	0.2517	16.7	16	9.2	1433.5	645.7	2079.3	3.22	50.446	1362.5	716.8
97	0.2593	16.7	16	9.5	1430.3	649.2	2079.6	3.20	50.421	1364.4	715.2
98	0.2659	16.8	16	9.7	1439.7	647.6	2087.3	3.22	50.433	1367.4	719.8
99	0.2735	16.9	16	10.0	1440.6	632.2	2072.7	3.28	50.540	1352.4	720.3
100	0.2800	17.0	16	10.2	1447.3	627.5	2074.8	3.31	50.572	1351.2	723.6
101	0.2873	17.1	16	10.5	1449.2	631.7	2080.9	3.29	50.543	1356.3	724.6
102	0.2937	17.2	16	10.7	1456.5	632.2	2088.7	3.30	50.540	1360.5	728.2
103	0.3003	17.3	17	11.0	1458.3	637.3	2095.5	3.29	50.505	1366.4	729.1
104	0.3076	17.3	17	11.2	1460.4	638.7	2099.1	3.29	50.495	1368.9	730.2
105	0.3146	17.5	17	11.5	1469.5	647.5	2117.0	3.27	50.434	1382.2	734.8
106	0.3214	17.5	17	11.7	1467.9	644.5	2112.4	3.28	50.454	1378.5	733.9
107	0.3285	17.6	17	12.0	1470.6	650.4	2121.0	3.26	50.413	1385.7	735.3
108	0.3354	17.8	17	12.2	1483.2	649.0	2132.2	3.29	50.423	1390.6	741.6
109	0.3423	17.8	17	12.5	1480.5	653.1	2133.6	3.27	50.395	1393.3	740.2
110	0.3502	18.0	17	12.8	1490.7	636.4	2127.2	3.34	50.510	1381.8	745.4
111	0.3568	18.0	17	13.0	1490.2	638.4	2128.5	3.33	50.497	1383.4	745.1
112	0.3638	18.2	17	13.3	1497.1	638.6	2135.7	3.34	50.496	1387.1	748.6
113	0.3709	18.3	18	13.5	1503.3	640.6	2143.9	3.35	50.481	1392.3	751.7
114	0.3785	18.4	18	13.8	1509.5	645.9	2155.4	3.34	50.445	1400.6	754.7
115	0.3851	18.5	18	14.0	1513.1	646.5	2159.6	3.34	50.440	1403.1	756.6
116	0.3914	18.5	18	14.3	1513.1	653.8	2165.9	3.31	50.390	1409.9	756.0
117	0.3988	18.6	18	14.5	1512.1	653.5	2169.0	3.31	50.390	1411.3	757.8
118	0.3988	18.8	18	14.8	1513.0	659.5	2182.8	3.32	50.352	1421.2	761.6
119	0.4126	18.9	18	15.1	1529.2	660.1	2182.8	3.32	50.336	1424.7	764.6
120	0.4120	19.0	18	15.1	1529.2	661.6	2196.1	3.32	50.346	1424.7	767.2
120	0.7174	19.0	10	15.5	1334.4	001.0	2190.1	5.54	50.555	1740.7	101.2

Test Re	adings fo	r Specime	n No.	2		
Deviator	Minor Eff.	Major Eff.		Pore	_	

Det. Dial	Load	Load	Load	Strain		Minor Eff. Stress			Pore Press.	Р	Q
No.	in.	Dial	lbs.	%	psf	psf	psf	Ratio	psi	psf	psf
121	0.4195	19.0	18	15.3	1535.1	663.3	2198.4	3.31	50.323	1430.9	767.5

F	Parameters	s for Specimen No. 3		
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	210.000			193.610
Moisture content: Dry soil+tare, gms.	176.380			167.670
Moisture content: Tare, gms.	38.250			60.270
Moisture, %	24.3	30.7	26.6	24.2
Moist specimen weight, gms.	135.30			
Diameter, in.	1.416	1.416	1.386	
Area, in. ²	1.575	1.575	1.509	
Height, in.	2.800	2.800	2.741	
Net decrease in height, in.		0.000	0.059	
Wet density, pcf	116.9	122.9	126.9	
Dry density, pcf	94.0	94.0	100.2	
Void ratio	0.8593	0.8593	0.7442	
Saturation, %	79.3	100.0	100.0	

Test Readings for Specimen No. 3

Consolidation cell pressure = 96.000 psi (13824.0 psf)

Consolidation back pressure = 70.000 psi (10080.0 psf)

Consolidation effective confining stress = 3744.0 psf

Strain rate, in./min. = 0.017

Fail. Stress = 2786.4 psf at reading no. 139

	Def. Dial	Load	Load	Strain	Deviator Stress	Minor Eff. Stress	Major Eff. Stress	1:3	Pore Press.	Р	Q
No.	in.	Dial	lbs.	%	psf	psf	psf	Ratio	psi	psf	psf
0	0.0000	1.4	0	0.0	0.0	3861.2	3861.2	1.00	69.186	3861.2	0.0
1	0.0007	1.9	0	0.0	47.1	3860.1	3907.2	1.01	69.194	3883.7	23.6
2	0.0014	2.5	1	0.1	98.4	3862.3	3960.8	1.03	69.178	3911.5	49.2
3	0.0019	2.5	1	0.1	106.0	3863.5	3969.6	1.03	69.170	3916.5	53.0
4	0.0027	3.1	2	0.1	159.3	3856.5	4015.7	1.04	69.219	3936.1	79.6
5	0.0032	4.5	3	0.1	293.8	3829.6	4123.4	1.08	69.405	3976.5	146.9
6	0.0038	5.8	4	0.1	420.4	3794.4	4214.8	1.11	69.650	4004.6	210.2
7	0.0043	7.2	6	0.2	545.5	3751.3	4296.8	1.15	69.949	4024.1	272.8
8	0.0055	8.4	7	0.2	662.6	3706.0	4368.6	1.18	70.264	4037.3	331.3
9	0.0061	9.5	8	0.2	766.5	3659.8	4426.3	1.21	70.585	4043.1	383.3
10	0.0069	10.4	9	0.3	856.1	3611.6	4467.6	1.24	70.920	4039.6	428.0
11	0.0078	11.5	10	0.3	954.2	3346.4	4300.7	1.29	72.761	3823.5	477.1
12	0.0082	12.3	11	0.3	1034.9	3269.8	4304.7	1.32	73.293	3787.3	517.4
13	0.0088	13.0	12	0.3	1100.3	3264.6	4364.8	1.34	73.329	3814.7	550.1
14	0.0096	13.7	12	0.3	1165.8	3222.7	4388.5	1.36	73.620	3805.6	582.9
15	0.0104	14.3	13	0.4	1226.2	3172.2	4398.4	1.39	73.971	3785.3	613.1
16	0.0110	14.9	13	0.4	1282.6	3119.0	4401.7	1.41	74.340	3760.4	641.3
17	0.0117	15.6	14	0.4	1342.6	3065.2	4407.8	1.44	74.714	3736.5	671.3
18	0.0121	16.1	15	0.4	1395.5	3009.5	4405.0	1.46	75.101	3707.2	697.7
19	0.0131	16.7	15	0.5	1447.2	2959.4	4406.6	1.49	75.449	3683.0	723.6
20	0.0139	17.2	16	0.5	1495.0	2907.6	4402.6	1.51	75.808	3655.1	747.5
21	0.0146	17.7	16	0.5	1539.5	2857.4	4396.9	1.54	76.157	3627.2	769.8
								_			

	Test Readings for Specimen No. 3											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf	
22	0.0150	18.1	17	0.5	1579.1	2808.1	4387.2	1.56	76.499	3597.7	789.6	
23	0.0156	18.5	17	0.6	1616.8	2759.2	4376.0	1.59	76.839	3567.6	808.4	
24	0.0161	18.8	17	0.6	1652.1	2711.7	4363.8	1.61	77.169	3537.7	826.0	
25	0.0167	19.2	18	0.6	1683.6	2667.7	4351.3	1.63	77.474	3509.5	841.8	
26	0.0172	19.5	18	0.6	1713.1	2622.9	4335.9	1.65	77.786	3479.4	856.5	
27	0.0181	19.8	18	0.7	1744.2	2582.3	4326.5	1.68	78.067	3454.4	872.1	
28	0.0189	20.1	19	0.7	1765.7	2541.1	4306.8	1.69	78.353	3424.0	882.8	
29	0.0197	20.3	19	0.7	1789.2	2501.4	4290.5	1.72	78.629	3395.9	894.6	
30	0.0204	20.6	19	0.7	1812.9	2464.0	4276.9	1.74	78.889	3370.4	906.5	
31	0.0208	20.8	19	0.8	1830.9	2429.4	4260.3	1.75	79.129	3344.9	915.4	
32	0.0212	21.0	20	0.8	1853.9	2391.1	4245.1	1.78	79.395	3318.1	927.0	
33	0.0220	21.2	20	0.8	1868.9	2356.7	4225.6	1.79	79.634	3291.1	934.4	
34	0.0232	21.4	20	0.8	1886.5	2326.6	4213.1	1.81	79.843	3269.8	943.3	
35	0.0243	21.6	20	0.9	1906.1	2293.4	4199.4	1.83	80.074	3246.4	953.0	
36	0.0251	21.7	20	0.9	1918.9	2264.1	4183.0	1.85	80.277	3223.6	959.4	
37	0.0260	21.9	20	0.9	1933.7	2230.6	4164.3	1.87	80.510	3197.4	966.9	
38	0.0264	22.0	21	1.0	1945.2	2203.9	4149.1	1.88	80.695	3176.5	972.6	
39	0.0269	22.1	21	1.0	1956.5	2177.9	4134.4	1.90	80.875	3156.2	978.2	
40	0.0275	22.3	21	1.0	1969.1	2153.3	4122.4	1.91	81.046	3137.9	984.5	
41	0.0302	22.8	21	1.1	2013.6	2063.9	4077.5	1.98	81.667	3070.7	1006.8	
42	0.0330	23.2	22	1.2	2051.1	1994.6	4045.6	2.03	82.149	3020.1	1025.5	
43	0.0360	23.5	22	1.3	2082.0	1934.9	4016.9	2.08	82.563	2975.9	1041.0	
44	0.0389	23.8	22	1.4	2106.8	1898.1	4004.9	2.11	82.819	2951.5	1053.4	
45	0.0414	24.0	23	1.5	2124.5	1897.0	4021.5	2.12	82.826	2959.3	1062.3	
46	0.0436	24.6	23	1.6	2176.0	1491.5	3667.5	2.46	85.643	2579.5	1088.0	
47	0.0467	24.8	23	1.7	2187.3	1482.3	3669.6	2.48	85.706	2576.0	1093.6	
48	0.0501	24.8	23	1.8	2192.9	1561.9	3754.8	2.40	85.153	2658.4	1096.4	
49	0.0521	25.1	24	1.9	2212.1	1549.2	3761.3	2.43	85.242	2655.3	1106.1	
50	0.0553	25.2	24	2.0	2223.1	1526.9	3750.0	2.46	85.396	2638.5	1111.5	
51	0.0583	25.3	24	2.1	2229.5	1505.8	3735.3	2.48	85.543	2620.6	1114.7	
52	0.0612	25.5	24	2.2	2240.8	1490.7	3731.5	2.50	85.648	2611.1	1120.4	
53	0.0639	25.6	24	2.3	2249.3	1479.6	3728.9	2.52	85.725	2604.3	1124.7	
54	0.0670	25.6	24	2.4	2252.1	1467.9	3720.0	2.53	85.806	2594.0	1126.1	
55	0.0694	25.7	24	2.5	2259.6	1483.2	3742.8	2.52	85.700	2613.0	1129.8	
56	0.0724	25.8	24	2.6	2266.2	1500.7	3766.9	2.51	85.579	2633.8	1133.1	
57	0.0754	26.2	25	2.7	2294.6	1202.3	3496.9	2.91	87.651	2349.6	1147.3	
58	0.0778	26.2	25	2.8	2300.5	1213.2	3513.7	2.90	87.575	2363.4	1150.3	
59	0.0809	26.3	25	2.9	2299.7	1306.5	3606.2	2.76	86.927	2456.4	1149.9	
60	0.0834	26.3	25	3.0	2300.0	1305.4	3605.4	2.76	86.935	2455.4	1150.0	
61	0.0861	26.4	25	3.1	2303.4	1305.3	3608.7	2.76	86.935	2457.0	1151.7	
62	0.0888	26.5	25	3.2	2310.2	1303.0	3613.1	2.77	86.952	2458.0	1155.1	
63	0.0919	26.6	25	3.4	2319.8	1302.4	3622.2	2.78	86.955	2462.3	1159.9	
64	0.0916	26.6	25	3.5	2323.2	1294.6	3617.8	2.79	87.010	2456.2	1161.6	
65	0.0940	26.7	25	3.6	2323.2	1294.0	3621.0	2.79	86.985	2459.6	1161.4	
66	0.0973	26.7	25	3.7	2327.5	1314.5	3642.0	2.77	86.872	2478.2	1161.4	
67	0.1003	26.7	25	3.8	2324.3	1462.2	3786.4	2.59	85.846	2624.3	1162.1	
68	0.1029	26.8	25	3.9	2327.7	1390.2	3717.9	2.67	86.346		1162.1	
00	0.1003	20.6	23	3.7	4341.1	1390.4	3111.7	2.07	00.540	233 4. 0	1105.0	

	Test Readings for Specimen No. 3												
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf		
69	0.1089	27.2	26	4.0	2359.5	1047.9	3407.5	3.25	88.723	2227.7	1179.8		
70	0.1108	27.2	26	4.0	2359.8	1180.5	3540.4	3.00	87.802	2360.5	1179.9		
71	0.1142	27.3	26	4.2	2362.5	1204.0	3566.5	2.96	87.639	2385.2	1181.2		
72	0.1168	27.3	26	4.3	2363.1	1204.8	3567.9	2.96	87.633	2386.4	1181.5		
73	0.1202	27.4	26	4.4	2372.6	1207.1	3579.6	2.97	87.618	2393.4	1186.3		
74	0.1228	27.5	26	4.5	2375.3	1207.0	3582.3	2.97	87.618	2394.7	1187.7		
75	0.1257	27.6	26	4.6	2382.5	1211.7	3594.2	2.97	87.585	2403.0	1191.2		
76	0.1284	27.6	26	4.7	2379.9	1217.4	3597.3	2.95	87.546	2407.3	1190.0		
77	0.1313	27.6	26	4.8	2379.6	1227.1	3606.7	2.94	87.479	2416.9	1189.8		
78	0.1347	27.7	26	4.9	2386.6	1250.7	3637.3	2.91	87.315	2444.0	1193.3		
79	0.1372	27.7	26	5.0	2381.8	1301.8	3683.6	2.83	86.960	2492.7	1190.9		
80	0.1395	27.7	26	5.1	2379.9	1386.4	3766.3	2.72	86.372	2576.4	1190.0		
81	0.1468	28.2	27	5.4	2415.7	1154.5	3570.2	3.09	87.983	2362.3	1207.9		
82	0.1542	28.3	27	5.6	2420.0	1159.7	3579.8	3.09	87.946	2369.8	1210.0		
83	0.1611	28.5	27	5.9	2427.7	1178.4	3606.2	3.06	87.816	2392.3	1213.9		
84	0.1680	28.6	27	6.1	2435.1	1232.3	3667.4	2.98	87.442	2449.8	1217.5		
85	0.1748	28.9	27	6.4	2456.8	1094.3	3551.1	3.25	88.400	2322.7	1228.4		
86	0.1824	29.1	28	6.7	2460.8	1128.8	3589.6	3.18	88.161	2359.2	1230.4		
87	0.1895	29.2	28	6.9	2466.7	1145.4	3612.1	3.15	88.046	2378.8	1233.4		
88	0.1964	29.4	28	7.2	2476.5	1181.1	3657.6	3.10	87.798	2419.3	1238.2		
89	0.2031	29.6	28	7.4	2488.5	1052.7	3541.2	3.36	88.690	2296.9	1244.3		
90	0.2090	29.7	28	7.6	2495.5	1129.5	3625.0	3.21	88.156	2377.3	1247.8		
91	0.2169	29.9	28	7.9	2504.1	1142.6	3646.7	3.19	88.065	2394.7	1252.0		
92	0.2237	30.1	29	8.2	2509.7	1165.4	3675.1	3.15	87.907	2420.3	1254.8		
93	0.2305	30.2	29	8,4	2510.4	1232.1	3742.5	3.04	87.444	2487.3	1255.2		
94	0.2374	30.5	29	8.7	2532.0	1096.2	3628.1	3.31	88.388	2362.2	1266.0		
95	0.2448	30.7	29	8.9	2540.8	1113.9	3654.8	3.28	88.264	2384.4	1270.4		
96	0.2516	30.7	29	9.2	2537.9	1138.2	3676.1	3.23	88.096	2407.1	1268.9		
97	0.2591	30.8	29	9.5	2540.5	1186.0	3726.5	3.14	87.764	2456.2	1270.3		
98	0.2659	31.2	30	9.7	2567.9	961.6	3529.4	3.67	89.322	2245.5	1283.9		
99	0.2731	31.3	30	10.0	2565.8	1112.8	3678.6	3.31	88.272	2395.7	1282.9		
100	0.2802	31.4	30	10.2	2571.0	1133.2	3704.2	3.27	88.131	2418.7	1285.5		
101	0.2875	31.6	30	10.5	2573.9	1192.7	3766.5	3.16	87.717	2479.6	1286.9		
102	0.2940	31.7	30	10.7	2580.0	1278.4	3858.4	3.02	87.122	2568.4	1290.0		
103	0.3008	32.0	31	11.0	2596.1	1120.7	3716.8	3.32	88.217	2418.8	1298.1		
104	0.3083	32.2	31	11.2	2602.5	1139.3	3741.9	3.28	88.088	2440.6	1301.3		
105	0.3151	32.3	31	11.5	2604.2	1167.5	3771.6	3.23	87.893	2469.5	1302.1		
106	0.3221	32.4	31	11.8	2611.9	1213.5	3825.5	3.15	87.573	2519.5	1306.0		
107	0.3285	32.8	31	12.0	2634.5	975.1	3609.6	3.70	89.228	2292.4	1317.3		
108	0.3362	32.9	31	12.3	2633.3	1129.8	3763.1	3.33	88.154	2446.5	1316.7		
109	0.3433	33.0	32	12.5	2632.4	1154.2	3786.6	3.28	87.985	2470.4	1316.2		
110	0.3501	33.2	32	12.8	2640.5	1180.2	3820.7	3.24	87.804	2500.5	1320.2		
111	0.3569	33.2	32	13.0	2638.4	1271.5	3909.9	3.07	87.170	2590.7	1319.2		
112	0.3644	33.5	32	13.3	2656.0	1115.7	3771.8	3.38	88.252	2443.7	1328.0		
113	0.3711	33.7	32	13.5	2659.1	1149.0	3808.1	3.31	88.021	2478.6	1329.5		
114	0.3785	33.8	32	13.8	2660.2	1165.2	3825.4	3.28	87.908	2495.3	1330.1		
115	0.3849	33.9	32	14.0	2659.4	1215.0	3874.4	3.19	87.562	2544.7	1329.7		
	0.5017	55.7	32	2 1.0	_557.1	1213.0	2071.1	5.17	0.1002	/	1027.1		

					Test Re	adings fo	r Specim	en No.	3		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
116	0.3923	34.3	33	14.3	2691.0	979.3	3670.3	3.75	89.199	2324.8	1345.5
117	0.3997	34.3	33	14.6	2678.9	1157.6	3836.5	3.31	87.961	2497.0	1339.5
118	0.4059	34.4	33	14.8	2683.9	1174.5	3858.4	3.29	87.844	2516.5	1341.9
119	0.4128	34.6	33	15.1	2687.9	1203.4	3891.3	3.23	87.643	2547.4	1344.0
120	0.4197	34.7	33	15.3	2686.7	1271.0	3957.6	3.11	87.174	2614.3	1343.3
121	0.4270	34.9	33	15.6	2698.1	1144.5	3842.6	3.36	88.052	2493.6	1349.1
122	0.4335	35.1	34	15.8	2701.9	1178.1	3880.1	3.29	87.818	2529.1	1351.0
123	0.4413	35.2	34	16.1	2705.5	1197.9	3903.4	3.26	87.681	2550.6	1352.7
124	0.4471	35.3	34	16.3	2706.2	1233.8	3940.0	3.19	87.432	2586.9	1353.1
125	0.4551	35.4	34	16.6	2704.4	1360.1	4064.5	2.99	86.555	2712.3	1352.2
126	0.4621	35.7	34	16.9	2718.9	1193.6	3912.6	3.28	87.711	2553.1	1359.5
127	0.4686	35.8	34	17.1	2718.0	1207.9	3925.9	3.25	87.612	2566.9	1359.0
128	0.4759	35.9	34	17.4	2720.1	1234.1	3954.1	3.20	87.430	2594.1	1360.0
129	0.4829	36.1	35	17.6	2723.0	1282.0	4005.0	3.12	87.097	2643.5	1361.5
130	0.4899	36.4	35	17.9	2742.3	998.9	3741.2	3.75	89.063	2370.1	1371.2
131	0.4966	36.4	35	18.1	2734.2	1183.3	3917.5	3.31	87.783	2550.4	1367.1
132	0.5038	36.5	35	18.4	2733.2	1218.1	3951.3	3.24	87.541	2584.7	1366.6
133	0.5112	36.7	35	18.6	2740.7	1251.6	3992.3	3.19	87.308	2622.0	1370.3
134	0.5180	36.8	35	18.9	2737.3	1346.0	4083.3	3.03	86.653	2714.7	1368.6
135	0.5252	37.1	36	19.2	2754.4	1208.5	3962.9	3.28	87.608	2585.7	1377.2
136	0.5321	37.3	36	19.4	2757.1	1226.9	3983.9	3.25	87.480	2605.4	1378.5
137	0.5396	37.4	36	19.7	2758.1	1248.8	4006.9	3.21	87.328	2627.8	1379.1
138	0.5461	37.6	36	19.9	2760.9	1307.9	4068.8	3.11	86.917	2688.3	1380.5
139	0.5535	38.0	37	20.2	2786.4	1069.2	3855.6	3.61	88.575	2462.4	1393.2

37.9

37.9

140 0.5603

141 0.5603

20.4

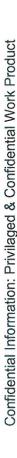
36 20.4

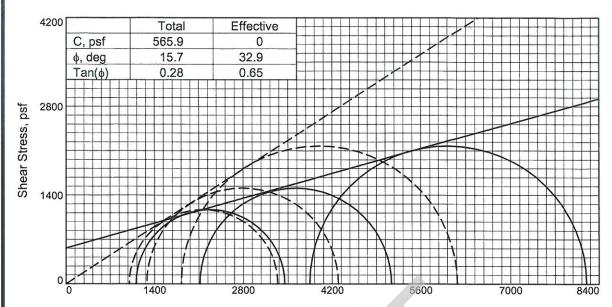
36

2767.8

2767.1

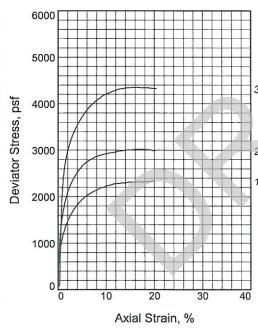
1232.6


1232.8


4000.4

3999.9

3.25 87.440 2616.5 1383.9


3.24 87.439 2616.3 1383.6

Total Normal Stress, psf

Effective Normal Stress, psf — –

Type of Test:	_
CII with Pore Pressures	

Sample Type: Undisturbed

Description: M, Gr Lean CLAY (CL6)

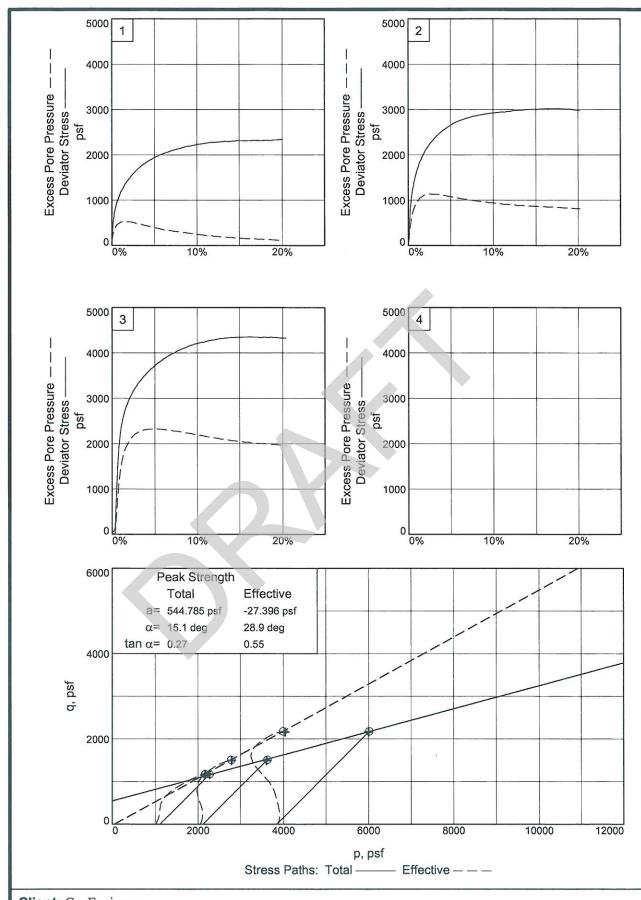
Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Bulge

	Sa	mple No.	1		2	3	
		Water Content, % Dry Density, pcf		.9		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	nitial	Saturation, %			97.9		
3	Til.	Void Ratio	0.88	66	0.8608		
		Diameter, in.	1.3	91	1.394	1.398	
		Height, in.	2.8	00	2.800	2.800	
		Water Content, %	32	.4	29.9	28.4	
2) jc	Dry Density, pcf	89	9.9	93.3	95.4	
	At Test	Saturation, %	100	0.0			
1	At	Void Ratio	0.87	59	0.8069	0.7672	
	`	Diameter, in.	1.3	88	1.380	1.372	
		Height, in.	2.7	95	2.773	2.749	
	Str	ain rate, in./min.	0.0	17	0.017	0.017	
	Eff	. Cell Pressure, psi	7.7	00	14.700	26.700	
	Fa	il. Stress, psf	2339	0.0	3020.2	4353.3	
	E	Excess Pore Pr., psf	107	7.7	838.9	2024.5	
	5	Strain, %	20).1	17.7	16.1	
	Ult	. Stress, psf					
	E	Excess Pore Pr., psf					
	5	Strain, %					
	$\overline{\sigma}_1$	Failure, psf	3340).1	4298.0	6173.6	
	$\overline{\sigma}_3$	Failure, psf	1001	.1	1277.9	1820.3	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: B-2A Depth: 7-8

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc.

Figure _____ "Confidential Information; Privileged & Confidential Bate Pr Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: B-2A Depth: 7-8

Project No.: B13-01& onfidential Information, Privileged & Confidential Southern Earth Sciences, Inc.

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

12/9/2013 11:26 AM

Date:

Client:

GeoEngineers

Project:

Mid Barataria Diversion

Project No.:

B13-018

Location:

B-2A

Depth:

7-8

Description:

M, Gr Lean CLAY (CL6) Type Failure:

Remarks:

Bulge

Type of Sample:

Undisturbed

Assumed Specific Gravity=2.70

LL=

PL=

PI=

Test Method:

COE uniform strain

	-										
Parameters for Specimen No. 1											
Specimen Parameter	Initial	Saturated	Consolidated	Final							
Moisture content: Moist soil+tare, gms.	171.900			168.660							
Moisture content: Dry soil+tare, gms.	139.670			137.200							
Moisture content: Tare, gms.	38.680			37.860							
Moisture, %	31.9	32.8	32.4	31.7							
Moist specimen weight, gms.	131.64										
Diameter, in.	1.391	1,391	1.388								
Area, in.²	1.520	1.520	1.514								
Height, in.	2.800	2.800	2.795								
Net decrease in height, in.		0.000	0.005								
Wet density, pcf	117.9	118.7	119.0								
Dry density, pcf	89.3	89.3	89.9								
Void ratio	0.8866	0.8866	0.8759								
Saturation, %	97.2	100.0	100.0								
	V Contract	C C . BI		STATE OF THE PARTY							

Test Readings for Specimen No. 1

Consolidation cell pressure = 77.700 psi (11188.8 psf)

Consolidation back pressure = 70.000 psi (10080.0 psf)

Consolidation effective confining stress = 1108.8 psf

Strain rate, in./min. = 0.017

Fail. Stress = 2339.0 psf at reading no. 140

		Test Readings for Specimen No. 1									
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	1.0	0	0.0	0.0	1019.8	1019.8	1.00	70.618	1019.8	0.0
1	0.0007	2.0	1	0.0	100.8	989.4	1090.2	1.10	70.829	1039.8	50.4
2	0.0013	3.1	2	0.0	200.7	959.0	1159.7	1.21	71.040	1059.4	100.3
3	0.0021	4.1	3	0.1	295.9	928.6	1224.5	1.32	71.251	1076.6	147.9
4	0.0030	4.9	4	0.1	372.3	901.5	1273.8	1.41	71.439	1087.7	186.2
5	0.0037	5.6	5	0.1	443.6	875.4	1319.0	1.51	71.621	1097.2	221.8
6	0.0045	6.2	5	0.2	497.8	853.0	1350.8	1.58	71.777	1101.9	248.9
7	0.0050	6.7	6	0.2	542.7	834.7	1377.4	1.65	71.903	1106.1	271.4
8	0.0060	7.1	6	0.2	583.9	814.5	1398.4	1.72	72.044	1106.5	291.9
9	0.0069	7.5	7	0.2	617.1	800.3	1417.4	1.77	72.142	1108.9	308.6
10	0.0073	7.8	7	0.3	651.2	786.3	1437.5	1.83	72.240	1111.9	325.6
11	0.0076	8.1	7	0.3	680.1	770.8	1450.8	1.88	72.348	1110.8	340.0
12	0.0081	8.4	7	0.3	706.2	757.5	1463.7	1.93	72.440	1110.6	353.1
13	0.0087	8.7	8	0.3	730.7	746.3	1476.9	1.98	72.517	1111.6	365.3
14	0.0095	9.0	8	0.3	757.9	737.0	1494.9	2.03	72.582	1115.9	378.9
15	0.0107	9.2	8	0.4	780.7	727.2	1507.9	2.07	72.650	1117.5	390.3
16	0.0111	9.4	8	0.4	797.4	720.3	1517.7	2.11	72.698	1119.0	398.7
17	0.0116	9.6	9	0.4	821.3	708.3	1529.6	2.16	72.781	1119.0	410.6
18	0.0124	9.9	9	0.4	841.1	699.2	1540.4	2.20	72.844	1119.8	420.6
19	0.0131	10.1	9	0.5	860.8	692.1	1552.9	2.24	72.893	1122.5	430.4
20	0.0139	10.2	9	0.5	876.8	681.0	1557.9	2.29	72.971	1119.4	438.4
21	0.0145	10.5	9	0.5	897.0	673.6	1570.7	2.33	73.022	1122.1	448.5
22	0.0148	10.6	10	0.5	915.2	669.1	1584.3	2.37	73.054	1126.7	457.6
23	0.0153	10.8	10	0.5	929.9	660.5	1590.4	2.41	73.113	1125.5	465.0
24	0.0163	11.0	10	0.6	947.0	656.5	1603.5	2.44	73.141	1130.0	473.5
25	0.0173	11.1	10	0.6	955.6	652.0	1607.7	2.47	73.172	1129.8	477.8
26	0.0181	11.3	10	0.6	971.9	648.0	1619.9	2.50	73.200	1134.0	486.0
27	0.0188	11.4	10	0.7	986.5	644.9	1631.4	2.53	73.221	1138.2	493.3
28	0.0197	11.6	11	0.7	1004.4	639.9	1644.2	2.57	73.256	1142.1	502.2
29	0.0205	11.7	11	0.7	1013.9	634.4	1648.4	2.60	73.294	1141.4	507.0
30	0.0209	11.9	11	0.7	1029.9	631.0	1660.9	2.63	73.318	1145.9	514.9
31	0.0215	12.0	11	0.8	1044.4	628.6	1673.0	2.66	73.335	1150.8	522.2
32	0.0225	12.2	11	0.8	1060.7	624.3	1685.0	2.70	73.365	1154.7	530.4
33	0.0235	12.3	11	0.8	1069.9	620.4	1690.3	2.72	73.392	1155.4	534.9
34	0.0240	12.5	12	0.9	1085.2	616.4	1701.7	2.76	73.419	1159.1	542.6
35	0.0246	12.6	12	0.9	1098.9	615.3	1714.2	2.79	73.427	1164.7	549.5
36	0.0252	12.7	12	0.9	1106.4	613.0	1719.4	2.80	73.443	1166.2	553.2
37	0.0259	12.8	12	0.9	1116.8	610.0	1726.8	2.83	73.464	1168.4	558.4
38	0.0267	13.0	12	1.0	1131.2	605.0	1736.3	2.87	73.498	1170.7	565.6
39	0.0272	13.1	12	1.0	1143.8	602.9	1746.7	2.90	73.513	1174.8	571.9
40	0.0277	13.2	12	1.0	1153.5	601.2	1754.7	2.92	73.525	1177.9	576.7
41	0.0302	13.7	13	1.1	1194.4	590.6	1785.0	3.02	73.599	1187.8	597.2
42	0.0338	14.0	13	1.2	1227.9	589.2	1817.2	3.08	73.608	1203.2	614.0
43	0.0366	14.4	13	1.3	1262.4	587.0	1849.4	3.15	73.624	1218.2	631.2
44	0.0391	14.8	14	1.4	1299.1	586.5	1885.6	3.22	73.627	1236.0	649.6
45	0.0419	15.2	14	1.5	1332.1	584.3	1916.4	3.28	73.642	1250.4	666.1
46	0.0450	15.6	15	1.6	1366.0	581.7	1947.7	3.35	73.660	1264.7	683.0
							ostdental s				303.0
 -					_ South	EIN Earth	Sciences	, 1110.			

Test Readings for Specimen No. 1												
	No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
	47	0.0478	15.9	15	1.7	1392.4	585.9	1978.3	3.38	73.631	1282.1	696.2
	48	0.0505	16.2	15	1.8	1419.5	587.4	2006.9	3.42	73.621	1297.2	709.8
	49	0.0536	16.5	16	1.9	1446.3	587.6	2033.9	3.46	73.619	1310.7	723.1
	50	0.0564	16.8	16	2.0	1472.4	590.5	2062.9	3.49	73.599	1326.7	736.2
	51	0.0595	17.0	16	2.1	1496.0	587.7	2083.7	3.55	73.619	1335.7	748.0
	52	0.0620	17.3	16	2.2	1520.0	592.6	2112.6	3.57	73.585	1352.6	760.0
	53	0.0647	17.6	17	2.3	1543.9	596.5	2140.4	3.59	73.557	1368.5	772.0
	54	0.0675	17.8	17	2.4	1564.7	602.1	2166.9	3.60	73.519	1384.5	782.4
	55	0.0705	18.1	17	2.5	1587.6	602.5	2190.0	3.64	73.516	1396.2	793.8
	56	0.0732	18.3	17	2.6	1607.9	605.9	2213.8	3.65	73.493	1409.8	804.0
	57	0.0761	18.5	18	2.7	1625.7	613.9	2239.6	3.65	73.437	1426.7	812.8
	58	0.0789	18.7	18	2.8	1642.5	622.7	2265.2	3.64	73.376	1443.9	821.3
	59	0.0818	19.0	18	2.9	1663.4	626.1	2289.6	3.66	73.352	1457.8	831.7
	60	0.0843	19.2	18	3.0	1681.6	625.3	2307.0	3.69	73.357	1466.2	840.8
	61	0.0873	19.4	18	3.1	1699.9	626.9	2326.8	3.71	73.347	1476.9	850.0
	62	0.0897	19.6	19	3.2	1716.1	633.3	2349.4	3.71	73.302	1491.3	858.0
	63	0.0929	19.8	19	3.3	1732.7	641.1	2373.8	3.70	73.248	1507.5	866.3
	64	0.0955	20.0	19	3.4	1747.8	643.2	2391.0	3.72	73.233	1517.1	873.9
	65	0.0981	20.2	19	3.5	1764.6	645.4	2409.9	3.73	73.218	1527.6	882.3
	66	0.1014	20.3	19	3.6	1776.1	650.7	2426.8	3.73	73.181	1538.8	888.0
	67	0.1036	20.6	20	3.7	1794.1	658.6	2452.7	3.72	73.126	1555.6	897.0
	68	0.1068	20.7	20	3.8	1800.8	666.6	2467.4	3.70	73.071	1567.0	900.4
	69	0.1095	20.9	20	3.9	1818.8	669.2	2487.9	3.72	73.053	1578.6	909.4
	70	0.1121	21.0	20	4.0	1830.4	672.5	2502.9	3.72	73.030	1587.7	915.2
	71	0.1153	21.2	20	4.1	1843.4	677.1	2520.5	3.72	72.998	1598.8	921.7
	72	0.1177	21.3	20	4.2	1855.5	681.4	2536.8	3.72	72.968	1609.1	927.7
	73	0.1209	21.5	21	4.3	1868.5	687.9	2556.4	3.72	72.923	1622.2	934.3
	74	0.1236	21.6	21	4.4	1877.7	687.4	2565.0	3.72	72.923	1626.2	938.8
	75	0.1264	21.8	21	4.5	1888.8	691.2	2580.0	3.73	72.900	1635.6	944.4
	76	0.1204	21.9	21	4.6	1894.3	697.3	2591.6	3.72	72.858		
	77	0.1230	22.0	21	4.7	1906.4	704.1	2610.6	3.71		1644.4	947.2
	78	0.1323		21						72.810	1657.3	953.2
			22.2		4.8	1920.0	709.8	2629.8	3.71	72.771	1669.8	960.0
	79	0.1373	22.3	21	4.9	1927.4	711.3	2638.7	3.71	72.761	1675.0	963.7
	80	0.1394	22.4	21	5.0	1940.6	714.6	2655.2	3.72	72.737	1684.9	970.3
	81	0.1470	22.7	22	5.3	1959.1	729.1	2688.2	3.69	72.637	1708.7	979.6
	82	0.1541	23.1	22	5.5	1985.7	733.2	2718.9	3.71	72.608	1726.1	992.9
	83	0.1613	23.4	22	5.8	2007.0	749.3	2756.3	3.68	72.497	1752.8	1003.5
	84	0.1684	23.6	23	6.0	2024.1	755.7	2779.9	3.68	72.452	1767.8	1012.1
	85	0.1752	23.8	23	6.3	2037.6	773.6	2811.2	3.63	72.328	1792.4	1018.8
	86	0.1821	24.1	23	6.5	2057.0	772.1	2829.2	3.66	72.338	1800.6	1028.5
	87	0.1895	24.4	23	6.8	2073.4	781.8	2855.2	3.65	72.271	1818.5	1036.7
	88	0.1960	24.6	24	7.0	2090.6	785.6	2876.1	3.66	72.245	1830.9	1045.3
	89	0.2036	24.8	24	7.3	2104.2	796.9	2901.1	3.64	72.166	1849.0	1052.1
	90	0.2101	25.0	24	7.5	2117.4	800.4	2917.8	3.65	72.142	1859.1	1058.7
	91	0.2172	25.2	24	7.8	2128.3	808.2	2936.6	3.63	72.087	1872.4	1064.2
	92	0.2245	25.5	24	8.0	2141.4	810.7	2952.0	3.64	72.070	1881.4	1070.7
	93	0.2313	25.7	25	8.3	2158.0	822.2	2980.2	3.62	71.990	1901.2	1079.0
			"(Confident	ial Infor	matis Bulth	wilepedanth	Strentials	Nork Pro	oduct"		

					Test Rea	adings for	Specime	n No. 1			
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	0.2382	25.9	25	8.5	2167.1	822.0	2989.1	3.64	71.992	1905.5	1083.5
95	0.2455	26.2	25	8.8	2184.5	835.2	3019.7	3.62	71.900	1927.5	1092.2
96	0.2525	26.3	25	9.0	2188.3	835.3	3023.6	3.62	71.899	1929.5	1094.2
97	0.2599	26.4	25	9.3	2194.5	848.2	3042.7	3.59	71.810	1945.4	1097.2
98	0.2663	26.6	26	9.5	2207.7	849.7	3057.4	3.60	71.799	1953.5	1103.9
99	0.2733	26.8	26	9.8	2214.5	860.3	3074.8	3.57	71.726	1967.6	1107.3
100	0.2805	27.0	26	10.0	2226.5	862.8	3089.3	3.58	71.708	1976.1	1113.3
101	0.2874	27.2	26	10.3	2233.8	869.6	3103.4	3.57	71.661	1986.5	1116.9
102	0.2944	27.3	26	10.5	2240.2	875.6	3115.8	3.56	71.619	1995.7	1120.1
103	0.3014	27.5	26	10.8	2247.3	881.0	3128.3	3.55	71.582	2004.6	1123.7
104	0.3089	27.6	27	11.1	2251.6	890.2	3141.9	3.53	71.518	2016.1	1125.8
105	0.3155	27.8	27	11.3	2261.9	889.5	3151.4	3.54	71.523	2020.4	1130.9
106	0.3223	28.0	27	11.5	2271.0	898.0	3168.9	3.53	71.464	2033.5	1135.5
107	0.3284	28.1	27	11.8	2274.7	896.5	3171.1	3.54	71.475	2033.8	1137.3
108	0.3359	28.2	27	12.0	2274.9	907.6	3182.5	3.51	71.397	2045.1	1137.4
109	0.3435	28.3	27	12.3	2277.4	910.4	3187.9	3.50	71.378	2049.1	1138.7
110	0.3498	28.4	27	12.5	2281.3	914.3	3195.6	3.50	71.351	2055.0	1140.6
111	0.3572	28.5	28	12.8	2284.7	919.7	3204.3	3.48	71.313	2062.0	1142.3
112	0.3643	28.6	28	13.0	2289.1	919.5	3208.6	3.49	71.315	2064.0	1144.6
113	0.3712	28.8	28	13.3	2296.3	926.6	3222.9	3.48	71.265	2074.8	1148.1
114	0.3779	28.9	28	13.5	2296.2	927.2	3223.5	3.48	71.261	2075.4	1148.1
115	0.3850	28.9	28	13.8	2289.9	933.1	3222.9	3.45	71.220	2078.0	1144.9
116	0.3928	29.1	28	14.1	2297.6	935.3	3232.9	3.46	71.205	2084.1	1148.8
117	0.3992	29.2	28	14.3	2300.8	937.3	3238.1	3.45	71.191	2087.7	1150.4
118	0.4062	29.3	28	14.5	2302.5	943.6	3246.0	3.44	71.147	2094.8	1151.2
119	0.4128	29.5	29	14.8	2313.4	943.2	3256.5	3.45	71.150	2099.9	1156.7
120	0.4201	29.6	29	15.0	2311.5	949.4	3260.9	3.43	71.107	2105.1	1155.7
121	0.4275	29.7	29	15.3	2312.7	953.2	3265.9	3.43	71.081	2109.6	1156.4
122	0.4343	29.7	29	15.5	2308.0	953.8	3261.8	3.42	71.076	2107.8	1154.0
123	0.4415	29.8	29	15.8	2309.2	960.2	3269.4	3.40	71.070	2114.8	1154.6
124	0.4484	30.0	29		2314.0	959.8	3273.8	3.41	71.032	2114.8	1157.0
125	0.4555	30.0	29	16.3	2312.0	963.3	3275.3	3.40	71.033	2110.8	
126	0.4533		29	16.6							1156.0
127		30.1			2315.6	966.8	3282.4	3.40	70.986	2124.6	1157.8
	0.4691	30.3	29	16.8	2318.4	962.8	3281.2	3.41	71.014	2122.0	1159.2
128	0.4763	30.3	29	17.0	2316.2	970.9	3287.1	3.39	70.958	2129.0	1158.1
129	0.4838	30.4	29	17.3	2316.2	973.7	3289.9	3.38	70.938	2131.8	1158.1
130	0.4907	30.5	30	17.6	2314.5	969.8	3284.2	3.39	70.965	2127.0	1157.2
131	0.4982	30.6	30	17.8	2315.8	974.7	3290.5	3.38	70.931	2132.6	1157.9
132	0.5043	30.7	30	18.0	2321.1	978.8	3299.9	3.37	70.903	2139.3	1160.6
133	0.5114	30.8	30	18.3	2318.7	976.8	3295.4	3.37	70.917	2136.1	1159.3
134	0.5189	30.8	30	18.6	2313.8	979.9	3293.7	3.36	70.895	2136.8	1156.9
135	0.5254	31.0	30	18.8	2320.3	987.4	3307.8	3.35	70.843	2147.6	1160.2
136	0.5323	31.2	30	19.0	2325.3	985.1	3310.4	3.36	70.859	2147.8	1162.6
137	0.5390	31.3	30	19.3	2326.0	989.5	3315.5	3.35	70.829	2152.5	1163.0
138	0.5464	31.4	30	19.6	2328.9	994.9	3323.9	3.34	70.791	2159.4	1164.5
139	0.5535	31.6	31	19.8	2337.8	997.3	3335.1	3.34	70.774	2166.2	1168.9
140	0.5605	31.7	31	20.1	2339.0	1001.1	3340.1	3.34	70.748	2170.6	1169.5
		"C	Confident	ial Inforn	nati s outh	Welfig Edarth	ostidential y	Vork Pro	duct"		-

Test Readings for Specimen No. 1

	Def.					Minor Eff.	Major Eff.		Pore		
	Dial	Load	Load	Strain	Stress	Stress	Stress	1:3	Press.	P	Q
No.	in.	Dial	lbs.	%	psf	psf	psf	Ratio	psi	psf	psf
141	0.5606	31.7	31	20.1	2338.0	1002.5	3340.5	3.33	70.738	2171.5	1169.0

Part of the second of the seco	arameters	for Specimen No. 2	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	169.800			169.520
Moisture content: Dry soil+tare, gms.	138.450			138.840
Moisture content: Tare, gms.	37.990			37.980
Moisture, %	31.2	31.9	29.9	30.4
Moist specimen weight, gms.	133.32			
Diameter, in.	1.394	1.394	1.380	
Area, in. ²	1.526	1.526	1.497	
Height, in.	2.800	2.800	2.773	
Net decrease in height, in.		0.000	0.027	
Wet density, pcf	118.9	119.5	121.2	
Dry density, pcf	90.6	90.6	93.3	
Void ratio	0.8608	0.8608	0.8069	
Saturation, %	97.9	100.0	100.0	

Test Readings for Specimen No. 2

Consolidation cell pressure = 79.700 psi (11476.8 psf)

Consolidation back pressure = 65.000 psi (9360.0 psf)

Consolidation effective confining stress = 2116.8 psf

Strain rate, in./min. = 0.017

Fail. Stress = 3020.2 psf at reading no. 130

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.6	0	0.0	0.0	2055.2	2055.2	1.00	65.428	2055.2	0.0
1	0.0001	1.0	0	0.0	41.9	2046.4	2088.3	1.02	65.489	2067.3	20.9
2	0.0017	1.9	1	0.1	129.2	2019.6	2148.9	1.06	65.675	2084.2	64.6
3	0.0024	3.0	2	0.1	233.7	1981.7	2215.4	1.12	65.938	2098.6	116.8
4	0.0032	4.1	3	0.1	334.8	1937.0	2271.8	1.17	66.249	2104.4	167.4
5	0.0035	5.0	4	0.1	427.3	1895.9	2323.2	1.23	66.534	2109.6	213.7
6	0.0037	5.8	5	0.1	505.5	1857.1	2362.6	1.27	66.803	2109.9	252.7
7	0.0046	6.6	6	0.2	578.5	1815.2	2393.7	1.32	67.094	2104.5	289.2
8	0.0055	7.4	7	0.2	650.3	1776.5	2426.9	1.37	67.363	2101.7	325.2
9	0.0059	8.1	8	0.2	720.3	1739.6	2459.9	1.41	67.619	2099.8	360.2
10	0.0065	8.8	8	0.2	784.5	1698.3	2482.8	1.46	67.906	2090.5	392.3
11	0.0070	9.4	9	0.3	845.0	1660.0	2505.0	1.51	68.172	2082.5	422.5
12	0.0078	9.9	9	0.3	891.0	1627.4	2518.3	1.55	68.399	2072.8	445.5
13	0.0088	10.4	10	0.3	941.1	1593.2	2534.3	1.59	68.636	2063.7	470.5
14	0.0096	10.9	10	0.3	984.4	1561.6	2546.0	1.63	68.856	2053.8	492.2
15	0.0100	11.3	11	0.4	1025.0	1536.3	2561.2	1.67	69.031	2048.8	512.5
16	0.0106	11.7	11	0.4	1064.2	1508.9	2573.1	1.71	69.221	2041.0	532.1
17	0.0112	12.1	11	0.4	1101.6	1481.4	2583.0	1.74	69.413	2032.2	550.8
18	0.0119	12.4	12	0.4	1132.4	1458.7	2591.1	1.78	69.570	2024.9	566.2
19	0.0128	12.8	12	0.5	1167.5	1436.4	2603.8	1.81	69.725	2020.1	583.7
20	0.0137	13.1	13	0.5	1199.1	1415.0	2614.2	1.85	69.873	2014.6	599.6
21	0.0143	13.4	13	0.5	1229.2	1396.2	2625.4	1.88	70.004	2010.8	614.6
		"C	Confident	tial Infor	mation ultri	vilepedanth	estitentials	Vork Pro	oduct"		

Def. Dial in. 22 0.014 23 0.015 24 0.016 25 0.017 26 0.018 27 0.018 28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 50 0.055 51 0.058 52 0.061 53 0.064 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081 60 0.084	al Load Dial 46	1bs. 7 13 0 13 3 14 6 14 9 14 1 15 3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	Strain % 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1	Deviator Stress psf 1259.1 1287.2 1311.1 1340.3 1364.0 1386.7 1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4 1641.7	Minor Eff. Stress psf 1377.4 1359.0 1344.3 1325.2 1311.6 1298.9 1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2 1177.4	Major Eff. Stress psf 2636.5 2646.2 2655.4 2665.5 2675.6 2685.7 2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1 2771.7	1:3 Ratio 1.91 1.95 1.98 2.01 2.04 2.07 2.10 2.13 2.15 2.21 2.24 2.26 2.29 2.31 2.33	Pore Press. psi 70.135 70.262 70.364 70.497 70.591 70.680 70.779 70.881 70.956 71.049 71.124 71.206 71.340 71.401	P psf 2006.9 2002.6 1999.9 1995.4 1993.6 1992.3 1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1	Q psf 629.6 643.6 655.5 670.1 682.0 693.4 704.2 715.1 726.7 735.9 746.5 756.2 765.6 774.2
23 0.015 24 0.016 25 0.017 26 0.018 27 0.018 28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	58 14. 67 14. 72 14. 80 14. 86 15. 93 15. 102 15. 111 15. 16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 60 17. 65 17. 76 17. 07 18.	0 13 3 14 6 14 9 14 1 15 3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1287.2 1311.1 1340.3 1364.0 1386.7 1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1359.0 1344.3 1325.2 1311.6 1298.9 1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2646.2 2655.4 2665.5 2675.6 2685.7 2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	1.95 1.98 2.01 2.04 2.07 2.10 2.13 2.15 2.21 2.24 2.26 2.29 2.31	70.262 70.364 70.497 70.591 70.680 70.779 70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	2002.6 1999.9 1995.4 1993.6 1992.3 1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	643.6 655.5 670.1 682.0 693.4 704.2 715.1 726.7 735.9 746.5 756.2 765.6
24 0.016 25 0.017 26 0.018 27 0.018 28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	67 14. 72 14. 80 14. 86 15. 93 15. 02 15. 11 15. 16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 65 17. 69 17. 76 17. 07 18.	3 14 6 14 9 14 1 15 3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1311.1 1340.3 1364.0 1386.7 1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1344.3 1325.2 1311.6 1298.9 1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2655.4 2665.5 2675.6 2685.7 2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	1.98 2.01 2.04 2.07 2.10 2.13 2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.364 70.497 70.591 70.680 70.779 70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	1999.9 1995.4 1993.6 1992.3 1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	655.5 670.1 682.0 693.4 704.2 715.1 726.7 735.9 746.5 756.2 765.6
25 0.017 26 0.018 27 0.018 28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	72 14. 80 14. 86 15. 93 15. 02 15. 11 15. 16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 65 17. 69 17. 76 17. 07 18.	6 14 9 14 1 15 3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.6 0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1340.3 1364.0 1386.7 1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1325.2 1311.6 1298.9 1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2665.5 2675.6 2685.7 2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.01 2.04 2.07 2.10 2.13 2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.497 70.591 70.680 70.779 70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	1995.4 1993.6 1992.3 1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	670.1 682.0 693.4 704.2 715.1 726.7 735.9 746.5 756.2 765.6
26 0.018 27 0.018 28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	80 14. 86 15. 93 15. 902 15. 111 15. 16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 60 17. 65 17. 76 17. 97 18.	9 14 1 15 3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.6 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1364.0 1386.7 1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1311.6 1298.9 1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2675.6 2685.7 2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.04 2.07 2.10 2.13 2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.591 70.680 70.779 70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	1993.6 1992.3 1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	682.0 693.4 704.2 715.1 726.7 735.9 746.5 756.2 765.6
27 0.018 28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	86 15. 93 15. 002 15. 111 15. 16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 66 17. 67 17. 07 18.	1 15 3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1386.7 1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1298.9 1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2685.7 2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.07 2.10 2.13 2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.680 70.779 70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	1992.3 1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	693.4 704.2 715.1 726.7 735.9 746.5 756.2 765.6
28 0.019 29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	93 15. 02 15. 11 15. 16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 60 17. 69 17. 76 17. 07 18.	3 15 6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1408.4 1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1284.6 1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2693.0 2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.10 2.13 2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.779 70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	1988.8 1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	704.2 715.1 726.7 735.9 746.5 756.2 765.6
29 0.020 30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	102 15. 111 15. 16 16. 120 16. 126 16. 136 16. 144 16. 150 17. 160 17. 165 17. 169 17. 176 17. 176 17. 176 17.	6 15 8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.7 0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1430.2 1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1270.0 1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2700.1 2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.13 2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.881 70.956 71.049 71.124 71.206 71.266 71.340 71.401	1985.0 1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	715.1 726.7 735.9 746.5 756.2 765.6
30 0.021 31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	11	8 15 0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.8 0.8 0.8 0.9 0.9 0.9 1.0 1.0	1453.4 1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1259.1 1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2712.5 2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.15 2.18 2.21 2.24 2.26 2.29 2.31	70.956 71.049 71.124 71.206 71.266 71.340 71.401	1985.8 1981.6 1981.4 1979.2 1980.1 1978.1	726.7 735.9 746.5 756.2 765.6
31 0.021 32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	16 16. 20 16. 26 16. 36 16. 44 16. 50 17. 60 17. 65 17. 76 17. 07 18.	0 15 2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.8 0.8 0.9 0.9 0.9 0.9 1.0 1.0	1471.8 1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1245.7 1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2717.5 2727.8 2735.4 2745.7 2752.3 2762.1	2.18 2.21 2.24 2.26 2.29 2.31	71.049 71.124 71.206 71.266 71.340 71.401	1981.6 1981.4 1979.2 1980.1 1978.1	735.9 746.5 756.2 765.6
32 0.022 33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	20 16. 26 16. 36 16. 44 16. 50 17. 60 17. 65 17. 76 17. 07 18.	2 16 4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.8 0.8 0.9 0.9 0.9 0.9 1.0 1.0	1492.9 1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1234.9 1223.1 1214.5 1203.9 1195.0 1187.2	2727.8 2735.4 2745.7 2752.3 2762.1	2.21 2.24 2.26 2.29 2.31	71.124 71.206 71.266 71.340 71.401	1981.4 1979.2 1980.1 1978.1	735.9 746.5 756.2 765.6
33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	26 16. 36 16. 44 16. 50 17. 60 17. 69 17. 76 17. 07 18.	4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.8 0.9 0.9 0.9 0.9 1.0 1.0	1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1223.1 1214.5 1203.9 1195.0 1187.2	2727.8 2735.4 2745.7 2752.3 2762.1	2.21 2.24 2.26 2.29 2.31	71.206 71.266 71.340 71.401	1981.4 1979.2 1980.1 1978.1	746.5 756.2 765.6
33 0.022 34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	26 16. 36 16. 44 16. 50 17. 60 17. 69 17. 76 17. 07 18.	4 16 6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.8 0.9 0.9 0.9 0.9 1.0 1.0	1512.3 1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1223.1 1214.5 1203.9 1195.0 1187.2	2745.7 2752.3 2762.1	2.24 2.26 2.29 2.31	71.206 71.266 71.340 71.401	1979.2 1980.1 1978.1	756.2 765.6
34 0.023 35 0.024 36 0.025 37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	36 16. 44 16. 50 17. 60 17. 65 17. 69 17. 76 17.	6 16 8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.9 0.9 0.9 0.9 1.0 1.0	1531.1 1548.4 1567.1 1584.4 1601.6 1622.4	1214.5 1203.9 1195.0 1187.2	2745.7 2752.3 2762.1	2.26 2.29 2.31	71.266 71.340 71.401	1980.1 1978.1	765.6
35 0.024 36 0.025 37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	144 16. 150 17. 160 17. 165 17. 169 17. 176 17. 18.	8 16 0 16 2 17 4 17 6 17 8 17 5 18	0.9 0.9 0.9 1.0 1.0	1548.4 1567.1 1584.4 1601.6 1622.4	1203.9 1195.0 1187.2	2752.3 2762.1	2.29 2.31	71.340 71.401	1978.1	
36 0.025 37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	50 17. 60 17. 65 17. 69 17. 76 17. 07 18.	0 16 2 17 4 17 6 17 8 17 5 18	0.9 0.9 1.0 1.0	1567.1 1584.4 1601.6 1622.4	1195.0 1187.2	2762.1	2.31	71.401		
37 0.026 38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	.60 17. .65 17. .69 17. .76 17. .07 18.	2 17 4 17 6 17 8 17 5 18	0.9 1.0 1.0 1.0	1584.4 1601.6 1622.4	1187.2				1978.5	783.5
38 0.026 39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.044 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	65 17. 69 17. 76 17. 07 18.	4 17 6 17 8 17 5 18	1.0 1.0 1.0	1601.6 1622.4		100000000000000000000000000000000000000		71.455	1979.4	792.2
39 0.026 40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	.69 17. .76 17. .07 18.	6 17 8 17 5 18	1.0 1.0	1622.4		2778.9	2.36	71.524	1978.1	800.8
40 0.027 41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	.76 17. 07 18.	8 17 5 18	1.0		1167.8	2790.2	2.39	71.590	1979.0	811.2
41 0.030 42 0.033 43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	07 18	5 18		1041./	1161.7	2803.4	2.41	71.633	1982.6	820.9
42 0.033 43 0.035 44 0.038 45 0.041 46 0.047 47 0.047 48 0.050 49 0.055 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081				1703.0	1131.1	2834.1	2.51	71.845	1982.6	851.5
43 0.035 44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081	74 19		1.2	1758.3	1107.8	2866.0	2.59	72.007	1986.9	879.1
44 0.038 45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			1.3	1812.7	1083.7	2896.4	2.67	72.174	1990.1	906.4
45 0.041 46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			1.4	1860.1	1067.9	2928.0	2.74	72.284	1997.9	930.1
46 0.044 47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081				1897.6	1053.6	2951.2	2.80	72.383	2002.4	948.8
47 0.047 48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			1.6	1938.4	1041.8	2980.2	2.86	72.465	2011.0	969.2
48 0.050 49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			1.7	1987.0	1041.8	3013.4	2.94	72.572	2011.0	993.5
49 0.052 50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			1.8	2024.5	1015.2	3039.8	2.99	72.650	2019.9	1012.3
50 0.055 51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			1.9	2055.3	1013.2	3063.4	3.04			
51 0.058 52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081					1008.1	3092.6		72.699	2035.8	1027.6
52 0.061 53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			2.0	2092.5			3.09	72.755	2046.3	1046.2
53 0.064 54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			2.1	2123.4	994.8	3118.2	3.13	72.792	2056.5	1061.7
54 0.066 55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			2.2	2154.4	989.5	3143.9	3.18	72.829	2066.7	1077.2
55 0.069 56 0.072 57 0.075 58 0.078 59 0.081			2.3	2180.6	986.6	3167.2	3.21	72.848	2076.9	1090.3
56 0.072 57 0.075 58 0.078 59 0.081			2.4	2207.3	984.9	3192.1	3.24	72.861	2088.5	1103.6
57 0.075 58 0.078 59 0.081			2.5	2233.4	984.1	3217.5	3.27	72.866	2100.8	1116.7
58 0.078 59 0.081			2.6	2263.8	982.9	3246.8	3.30	72.874	2114.9	1131.9
59 0.081			2.7	2283.3	984.4	3267.7	3.32	72.864	2126.1	1141.6
			2.8	2308.6	984.8	3293.4	3.34	72.861	2139.1	1154.3
60 0.084			2.9	2326.7	987.9	3314.6	3.36	72.840	2151.3	1163.4
			3.0	2349.4	989.2	3338.6	3.38	72.831	2163.9	1174.7
61 0.087			3.1	2373.3	986.9	3360.2	3.40	72.846	2173.6	1186.6
62 0.089	96 26.		3.2	2394.0	988.3	3382.2	3.42	72.837	2185.2	1197.0
63 0.092			3.3	2414.0	989.7	3403.6	3.44	72.827	2196.6	1207.0
64 0.095	25 26		3.4	2430.1	990.9	3421.0	3.45	72.819	2205.9	1215.0
65 0.098	25 26 51 26		3.5	2448.9	991.6	3440.5	3.47	72.814	2216.0	1224.5
66 0.100	25 26. 51 26. 83 27.			2468.6	994.2	3462.8	3.48	72.796	2228.5	1234.3
67 0.103	25 26 51 26 83 27 07 27	4 27		2481.9	997.9	3479.8	3.49	72.770	2238.9	1240.9
68 0.106	25 26. 51 26. 83 27. 07 27. 37 27.		3.8	2497.4	999.9	3497.2	3.50	72.756	2248.6	1248.7
	25 26. 51 26. 83 27. 07 27. 37 27.	6 27	tial Infori	matisp: Pr	vilepedarth	Sciences	Vork Pro	oduct"		

					Test Rea	adings for	Specime	n No. 2	2		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
69	0.1091	27.8	27	3.9	2518.1	1002.6	3520.8	3.51	72.737	2261.7	1259.1
70	0.1124	28.0	27	4.1	2528.5	1007.1	3535.6	3.51	72.706	2271.4	1264.3
71	0.1150	28.1	28	4.1	2541.9	1010.0	3551.9	3.52	72.686	2281.0	1271.0
72	0.1175	28.3	28	4.2	2556.4	1012.7	3569.1	3.52	72.667	2290.9	1278.2
73	0.1205	28.5	28	4.3	2573.1	1016.6	3589.7	3.53	72.640	2303.2	1286.6
74	0.1234	28.7	28	4.5	2586.1	1021.1	3607.2	3.53	72.609	2314.1	1293.0
75	0.1258	28.8	28	4.5	2595.7	1024.9	3620.6	3.53	72.583	2322.7	1297.8
76	0.1287	29.0	28	4.6	2607.8	1030.4	3638.1	3.53	72.545	2334.3	1303.9
77	0.1319	29.2	29	4.8	2620.9	1034.9	3655.8	3.53	72.513	2345.3	1310.5
78	0.1340	29.3	29	4.8	2629.7	1040.8	3670.5	3.53	72.472	2355.7	1314.8
79	0.1374	29.5	29	5.0	2646.5	1038.1	3684.7	3.55	72.491	2361.4	1323.3
80	0.1399	29.7	29	5.0	2659.7	1040.3	3700.0	3.56	72.475	2370.2	1329.8
81	0.1470	30.1	30	5.3	2691.1	1049.2	3740.3	3.56	72.414	2394.7	1345.5
82	0.1536	30.4	30	5.5	2710.2	1056.5	3766.7	3.57	72.363	2411.6	1355.1
83	0.1608	30.8	30	5.8	2734.0	1067.6	3801.6	3.56	72.286	2434.6	1367.0
84	0.1673	31.0	30	6.0	2752.5	1078.5	3830.9	3.55	72.211	2454.7	1376.2
85	0.1746	31.3	31	6.3	2768.8	1083.1	3851.9	3.56	72.179	2467.5	1384.4
86	0.1821	31.6	31	6.6	2784.9	1098.2	3883.0	3.54	72.074	2490.6	1392.4
87	0.1881	31.8	31	6.8	2802.2	1094.4	3896.6	3.56	72.100	2495.5	1401.1
88	0.1957	32.1	31	7.1	2813.8	1106.8	3920.6	3.54	72.014	2513.7	1406.9
89	0.2029	32.3	32	7.3	2825.5	1115.5	3940.9	3.53	71.954	2528.2	1412.7
90	0.2096	32.6	32	7.6	2845.2	1119.3	3964.5	3.54	71.927	2541.9	1422.6
91	0.2171	32.8	32	7.8	2856.9	1129.5	3986.3	3.53	71.856	2557.9	1428.4
92	0.2235	32.9	32	8.1	2859.8	1134.4	3994.1	3.52	71.822	2564.3	1429.9
93	0.2309	33.2	33	8.3	2874.4	1141.5	4015.8	3.52	71.773	2578.7	1437.2
94	0.2379	33.4	33	8.6	2882.1	1146.5	4028.6	3.51	71.738	2587.5	1441.0
95	0.2448	33.5	33	8.8	2889.4	1150.9	4040.3	3.51	71.708	2595.6	1444.7
96	0.2523	33.7	33	9.1	2897.8	1160.3	4058.1	3.50	71.643	2609.2	1448.9
97	0.2589	33.9	33	9.3	2906.5	1166.0	4072.5	3.49	71.603	2619.3	1453.3
98	0.2658	34.1	33	9.6	2914.1	1175.3	4089.4	3.48	71.538	2632.4	1457.1
99	0.2728	34.2	34	9.8	2917.9	1174.0	4091.9	3.49	71.547	2633.0	1458.9
100	0.2803	34.4	34	10.1	2923.4	1181.0	4104.5	3.48	71.498	2642.8	1461.7
101	0.2869	34.5	34	10.3	2929.2	1184.1	4113.3	3.47	71.477	2648.7	1464.6
102	0.2942	34.7	34	10.6	2934.4	1192.6	4127.1	3.46	71.418	2659.9	1467.2
103	0.3004	34.9	34	10.8	2940.2	1195.4	4135.7	3.46	71.398	2665.5	1470.1
104	0.3077	35.0	34	11.1	2943.5	1203.4	4146.9	3.45	71.343	2675.1	1471.8
105	0.3149	35.1	34	11.4	2942.3	1210.1	4152.4	3.43	71.297	2681.2	1471.2
106	0.3221	35.3	35	11.6	2954.6	1209.8	4164.4	3.44	71.298	2687.1	1477.3
107	0.3294	35.4	35	11.9	2955.7	1215.5	4171.2	3.43	71.259	2693.3	1477.8
108	0.3362	35.6	35	12.1	2961.8	1217.4	4179.2	3.43	71.246	2698.3	1480.9
109	0.3427	35.9	35	12.4	2974.1	1226.2	4200.3	3.43	71.185	2713.3	1487.1
110	0.3497	36.0	35	12.6	2978.0	1225.9	4203.9	3.43	71.187	2714.9	1489.0
111	0.3567	36.1	36	12.9	2978.4	1237.1	4215.5	3.41	71.109	2726.3	1489.2
112	0.3636	36.3	36	13.1	2983.8	1235.5	4219.3	3.42	71.120	2727.4	1491.9
113	0.3711	36.4	36		2984.0	1237.6	4221.5	3.41	71.106	2729.5	1492.0
114	0.3780	36.6	36	13.6	2991.2	1239.5	4230.7	3.41	71.092	2735.1	1495.6
115	0.3845	36.8	36	13.9	2996.9	1242.6	4239.6	3.41	71.071		1498.5
						vilogod 8 G					

"Confidential Information Priviled of the Sidential Work Product"

			A SERVICE		Test Rea	adings for	Specime	n No. 2	2		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
116	0.3914	36.9	36	14.1	2999.1	1245.3	4244.5	3.41	71.052	2744.9	1499.6
117	0.3986	37.0	36	14.4	3001.7	1247.7	4249.4	3.41	71.035	2748.6	1500.8
118	0.4060	37.2	37	14.6	3005.7	1252.0	4257.7	3.40	71.005	2754.9	1502.8
119	0.4125	37.2	37	14.9	3002.5	1252.6	4255.1	3.40	71.001	2753.9	1501.3
120	0.4199	37.3	37	15.1	3000.2	1253.8	4254.0	3.39	70.993	2753.9	1500.1
121	0.4269	37.5	37	15.4	3007.6	1256.0	4263.6	3.39	70.978	2759.8	1503.8
122	0.4334	37.7	37	15.6	3009.9	1259.3	4269.2	3.39	70.955	2764.3	1504.9
123	0.4405	37.8	37	15.9	3013.1	1262.5	4275.6	3.39	70.932	2769.1	1506.5
124	0.4480	38.0	37	16.2	3016.7	1263.7	4280.4	3.39	70.924	2772.1	1508.3
125	0.4549	38.1	37	16.4	3015.0	1270.1	4285.1	3.37	70.880	2777.6	1507.5
126	0.4621	38.2	38	16.7	3018.5	1269.9	4288.5	3.38	70.881	2779.2	1509.3
127	0.4689	38.3	38	16.9	3018.2	1269.6	4287.8	3.38	70.883	2778.7	1509.1
128	0.4760	38.5	38	17.2	3017.8	1272.7	4290.5	3.37	70.862	2781.6	1508.9
129	0.4833	38.6	38	17.4	3018.6	1276.7	4295.3	3.36	70.834	2786.0	1509.3
130	0.4900	38.7	38	17.7	3020.2	1277.9	4298.0	3.36	70.826	2788.0	1510.1
131	0.4972	38.8	38	17.9	3016.0	1283.7	4299.7	3.35	70.785	2791.7	1508.0
132	0.5043	38.9	38	18.2	3016.1	1286.4	4302.4	3.34	70.767	2794.4	1508.0
133	0.5115	39.0	38	18.4	3012.1	1288.0	4300.1	3.34	70.755	2794.1	1506.1
134	0.5184	39.0	38	18.7	3007.3	1289.1	4296.4	3.33	70.748	2792.8	1503.7
135	0.5253	39.2	39	18.9	3010.5	1292.1	4302.6	3.33	70.727	2797.3	1505.2
136	0.5324	39.2	39	19.2	3003.2	1295.3	4298.5	3.32	70.705	2796.9	1501.6
137	0.5390	39.3	39	19.4	2998.7	1298.1	4296.8	3.31	70.685	2797.5	1499.3
138	0.5465	39.3	39	19.7	2989.3	1301.8	4291.1	3.30	70.660	2796.4	1494.7
139	0.5531	39.4	39	19.9	2988.0	1303.3	4291.3	3.29	70.649	2797.3	1494.0
140	0.5602	39.5	39	20.2	2985.3	1303.5	4288.9	3.29	70.648	2796.2	1492.7
141	0.5603	39.4	39	20.2	2983.5	1305.7	4289.2	3.29	70.633	2797.4	1491.8

Parameters for Specimen No. 3												
Specimen Parameter	Initial	Saturated	Consolidated	Final								
Moisture content: Moist soil+tare, gms.	195.520			169.420								
Moisture content: Dry soil+tare, gms.	157.240			169.620								
Moisture content: Tare, gms.	38.240			38.580								
Moisture, %	32.2	32.2	28.4									
Moist specimen weight, gms.	134.50											
Diameter, in.	1.398	1.398	1.372									
Area, in. ²	1.535	1.535	1.479									
Height, in.	2.800	2.800	2.749									
Net decrease in height, in.		0.000	0.051									
Wet density, pcf	119.2	119.2	122.5									
Dry density, pcf	90.2	90.2	95.4									
Void ratio	0.8687	0.8687	0.7672									
Saturation, %	100.0	100.0	100.0									

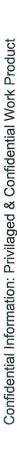
Test Readings for Specimen No. 3

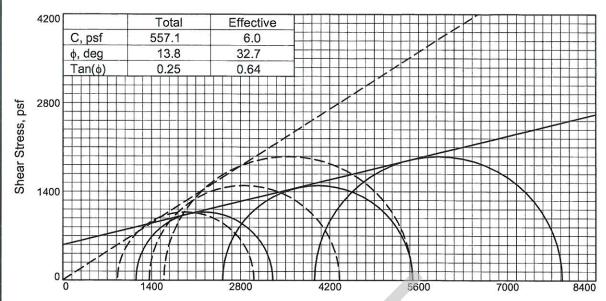
Consolidation cell pressure = 91.700 psi (13204.8 psf)

Consolidation back pressure = 65.000 psi (9360.0 psf)

Consolidation effective confining stress = 3844.8 psf

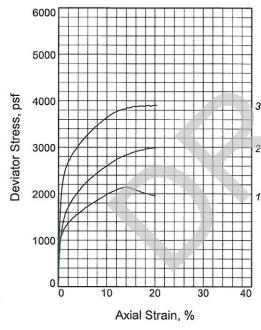
Strain rate, in./min. = 0.017


Fail. Stress = 4353.3 psf at reading no. 125


No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.8	0	0.0	0.0	3839.8	3839.8	1.00	65.035	3839.8	0.0
1	0.0008	1.3	1	0.0	51.2	3838.1	3889.3	1.01	65.046	3863.7	25.6
2	0.0014	1.5	1	0.1	71.1	3836.7	3907.8	1.02	65.056	3872.3	35.5
3	0.0020	1.4	1.	0.1	67.3	3837.6	3905.0	1.02	65.050	3871.3	33.7
4	0.0027	1.5	1	0.1	68.3	3836.0	3904.3	1.02	65.061	3870.2	34.1
5	0.0034	1.5	1	0.1	68.2	3835.5	3903.7	1.02	65.064	3869.6	34.1
6	0.0040	1.4	1	0.1	65.6	3838.2	3903.7	1.02	65.046	3870.9	32.8
7	0.0051	1.4	1	0.2	65.4	3833.9	3899.3	1.02	65.075	3866.6	32.7
8	0.0058	1.4	1	0.2	64.4	3834.4	3898.7	1.02	65.073	3866.5	32.2
9	0.0058	1.4	1	0.2	61.7	3835.2	3896.9	1.02	65.067	3866.1	30.8
10	0.0093	2.0	1	0.3	121.8	3825.9	3947.7	1.03	65.131	3886.8	60.9
11	0.0103	2.9	2	0.4	207.9	3798.4	4006.3	1.05	65.322	3902.3	103.9
12	0.0106	3.8	3	0.4	298.9	3761.8	4060.7	1.08	65.577	3911.2	149.5
13	0.0112	4.8	4	0.4	387.7	3717.4	4105.1	1.10	65.885	3911.2	193.9
14	0.0116	5.8	5	0.4	487.1	3666.5	4153.6	1.13	66.238	3910.0	243.5
15	0.0123	6.8	6	0.4	589.1	3610.0	4199.1	1.16	66.631	3904.5	294.6
16	0.0132	7.9	7	0.5	689.6	3551.2	4240.8	1.19	67.039	3896.0	344.8
17	0.0139	9.0	8	0.5	796.7	3488.9	4285.6	1.23	67.471	3887.2	398.3
18	0.0145	10.1	9	0.5	906.3	3421.9	4328.3	1.26	67.937	3875.1	453.2
19	0.0152	11.2	10	0.6	1014.6	3355.1	4369.7	1.30	68.401	3862.4	507.3
20	0.0158	12.3	12	0.6	1117.2	3288.9	4406.2	1.34	68.860	3847.6	558.6
21	0.0165	13.4	13	0.6	1227.5	3220.6	4448.1	1.38	69.335	3834.3	613.7
22	0.0168	14.5	14	0.6	1331.7	3154.7	4486.3	1.42	69.793	3820.5	665.8
23	0.0173	15.5	15	0.6	1429.6	3090.2	4519.8	1.46	70.240	3805.0	714.8
24	0.0183	16.5	16	0.7	1527.0	3026.9	4553.9	1.50	70.680	3790.4	763.5
25	0.0190	17.4	17	0.7	1610.6	2967.2	4577.8	1.54	71.094	3772.5	805.3
26	0.0197	18.2	17	0.7	1686.1	2910.1	4596.1	1.58	71.491	3753.1	843.0
		"(Confident	ial Inforr	nation Pri	einedarth	Stidential V	Vork Pro	duct"		

Test Readings for Specimen No. 3											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
27	0.0206	19.0	18	0.8	1759.3	2855.0	4614.3	1.62	71.874	3734.6	879.7
28	0.0211	19.6	19	0.8	1824.3	2803.3	4627.7	1.65	72.233	3715.5	912.2
29	0.0214	20.3	19	0.8	1884.0	2753.5	4637.5	1.68	72.578	3695.5	942.0
30	0.0224	20.9	20	0.8	1942.5	2707.1	4649.6	1.72	72.901	3678.4	971.3
31	0.0232	21.4	21	0.8	1995.6	2662.6	4658.2	1.75	73.210	3660.4	997.8
32	0.0240	21.9	21	0.9	2043.7	2619.7	4663.3	1.78	73.508	3641.5	1021.8
33	0.0245	22.4	22	0.9	2089.0	2570.9	4659.9	1.81	73.847	3615.4	1044.5
34	0.0253	22.9	22	0.9	2132.8	2530.2	4663.0	1.84	74.129	3596.6	1066.4
35	0.0257	23.3	23	0.9	2173.2	2490.7	4663.9	1.87	74.403	3577.3	1086.6
36	0.0264	23.7	23	1.0	2215.6	2455.0	4670.6	1.90	74.651	3562.8	1107.8
37	0.0270	24.1	23	1.0	2248.0	2421.8	4669.8	1.93	74.882	3545.8	1124.0
38	0.0279	24.4	24	1.0	2283.0	2389.0	4672.0	1.96	75.110	3530.5	1141.5
39	0.0286	24.8	24	1.0	2315.3	2359.3	4674.6	1.98	75.316	3517.0	1157.7
40	0.0290	25.1	24	1.1	2344.0	2331.5	4675.5	2.01	75.509	3503.5	1172.0
41	0.0294	25.4	25	1.1	2373.8	2301.9	4675.7	2.03	75.714	3488.8	1186.9
42	0.0305	25.7	25	1.1	2404.9	2276.5	4681.4	2.06	75.891	3479.0	1202.5
43	0.0334	26.8	26	1.2	2503.0	2183.6	4686.6	2.15	76.536	3435.1	1251.5
44	0.0361	27.8	27	1.3	2594.2	2103.5	4697.7	2.23	77.092	3400.6	1297.1
45	0.0392	28.5	28	1.4	2663.6	2037.2	4700.8	2.31	77.553	3369.0	1331.8
46	0.0413	29.2	28	1.5	2731.7	1975.6	4707.4	2.38	77.980	3341.5	1365.9
47	0.0445	30.0	29	1.6	2803.7	1923.8	4727.5	2.46	78.341	3325.6	1401.9
48	0.0443	30.6	30	1.8	2853.6	1880.6	4734.2	2.52	78.640	3307.4	1426.8
49	0.0506	31.1	30	1.8	2901.8	1843.7	4745.5	2.57	78.896	3294.6	1450.9
50	0.0528	31.6	31	1.9	2949.4	1807.3	4756.7	2.63	79.149	3282.0	1474.7
51	0.0558	32.1	31	2.0	2993.7	1779.0	4772.7	2.68	79.149	3275.9	1496.8
52	0.0587	32.6	32	2.1	3031.5	1773.5	4772.7	2.73	79.523	3269.2	1515.8
53	0.0587	33.1	32	2.3	3031.3	1733.3	4795.8	2.79	79.744		
54	0.0645	33.5	33	2.3	3109.9				79.744	3258.7	1537.1
55	0.0673	33.9	33		3146.0	1698.8	4808.6	2.83		3253.7	1554.9
				2.4		1676.4	4822.4	2.88	80.059	3249.4	1573.0
56	0.0700	34.2	33	2.5	3177.9	1659.4	4837.3	2.92	80.177	3248.3	1589.0
57	0.0726	34.6	34	2.6	3211.3	1643.5	4854.7	2.95	80.287	3249.1	1605.6
58	0.0758	35.0	34	2.8	3242.1	1630.0	4872.1	2.99	80.381	3251.0	1621.1
59	0.0789	35.3	35	2.9	3265.0	1616.8	4881.9	3.02	80.472	3249.4	1632.5
60	0.0807	35.6	35	2.9	3297.1	1604.7	4901.8	3.05	80.556	3253.3	1648.5
61	0.0835	35.9	35	3.0	3321.7	1595.9	4917.5	3.08	80.618	3256.7	1660.8
62	0.0866	36.3	36	3.2	3350.3	1587.5	4937.8	3.11	80.676	3262.6	1675.2
63	0.0895	36.6	36	3.3	3374.7	1580.5	4955.2	3.14	80.724	3267.9	1687.3
64	0.0926	36.9	36	3.4	3396.5	1571.8	4968.3	3.16	80.785	3270.0	1698.3
65	0.0951	37.2	36	3.5	3423.6	1566.5	4990.1	3.19	80.821	3278.3	1711.8
66	0.0978	37.5	37	3.6	3446.5	1566.4	5012.9	3.20	80.822	3289.6	1723.2
67	0.1004	37.7	37	3.7	3468.2	1548.8	5017.0	3.24	80.945	3282.9	1734.1
68	0.1031	38.0	37	3.7	3494.4	1544.8	5039.2	3.26	80.972	3292.0	1747.2
69	0.1064	38.2	37	3.9	3507.2	1540.8	5048.0	3.28	81.000	3294.4	1753.6
70	0.1090	38.6	38	4.0	3535.0	1535.1	5070.1	3.30	81.039	3302.6	1767.5
71	0.1116	38.8	38	4.1	3556.4	1533.2	5089.6	3.32	81.053	3311.4	1778.2
72	0.1147	39.1	38	4.2	3573.8	1532.2	5106.0	3.33	81.059	3319.1	1786.9
73	0.1174	39.3	39	4.3	3594.0	1530.6	5124.6	3.35	81.071	3327.6	1797.0
		"(Confident	ial Inforr			ostidentials	Nork Pro			
								,		C 10 1 man	

						Test Rea	adings for	Specime	n No. 3	3		100
	No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
	74	0.1203	39.6	39	4.4	3612.8	1527.3	5140.1	3.37	81.094	3333.7	1806.4
	75	0.1233	39.8	39	4.5	3632.5	1525.0	5157.5	3.38	81.110	3341.3	1816.3
	76	0.1263	40.0	39	4.6	3650.4	1527.5	5177.9	3.39	81.093	3352.7	1825.2
	77	0.1294	40.3	40	4.7	3667.4	1527.5	5194.9	3.40	81.093	3361.2	1833.7
	78	0.1325	40.5	40	4.8	3680.7	1530.2	5210.8	3.41	81.074	3370.5	1840.3
	79	0.1347	40.7	40	4.9	3700.8	1524.3	5225.1	3.43	81.114	3374.7	1850.4
	80	0.1375	40.9	40	5.0	3715.8	1521.5	5237.3	3.44	81.134	3379.4	1857.9
	81	0.1403	41.2	40	5.1	3733.2	1522.4	5255.6	3.45	81.128	3389.0	1866.6
	82	0.1434	41.4	41	5.2	3750.5	1522.3	5272.8	3.46	81.128	3397.5	1875.2
	83	0.1502	41.9	41	5.5	3788.2	1525.2	5313.4	3.48	81.108	3419.3	1894.1
	84	0.1576	42.4	42	5.7	3822.4	1531.1	5353.5	3.50	81.067	3442.3	1911.2
	85	0.1639	42.9	42	6.0	3856.8	1536.6	5393.4	3.51	81.029	3465.0	1928.4
	86	0.1708	43.3	43	6.2	3889.9	1540.1	5430.0	3.53	81.005	3485.1	1945.0
	87	0.1784	43.8	43	6.5	3920.9	1543.3	5464.1	3.54	80.983	3503.7	1960.4
	88	0.1853	44.3	44	6.7	3952.4	1548.6	5501.0	3.55	80.946	3524.8	1976.2
	89	0.1922	44.7	44	7.0	3977.8	1558.2	5535.9	3.55	80.879	3547.1	1988.9
	90	0.1991	45.0	44	7.2	3997.9	1567.6	5565.5	3.55	80.814	3566.5	1998.9
	91	0.2061	45.4	45	7.5	4025.5	1568.5	5594.0	3.57	80.808	3581.2	2012.8
	92	0.2122	45.8	45	7.7	4050.6	1575.3	5625.9	3.57	80.760	3600.6	2025.3
	93	0.2201	46.2	45	8.0	4068.7	1585.7	5654.5	3.57	80.688	3620.1	2034.4
	94	0.2271	46.6	46	8.3	4091.5	1594.2	5685.7	3.57	80.629	3640.0	2045.7
	95	0.2338	46.9	46	8.5	4110.1	1605.4	5715.4	3.56	80.552	3660.4	2055.0
	96	0.2409	47.2	46	8.8	4126.3	1609.2	5735.5	3.56	80.525	3672.3	2063.1
	97	0.2482	47.6	47	9.0	4151.3	1618.2	5769.5	3.57	80.462	3693.9	2075.6
	98	0.2547	47.9	47	9.3	4168.3	1626.7	5795.0	3.56	80.403	3710.9	2084.1
	99	0.2622	48.2	47	9.5	4181.9	1635.8	5817.7	3.56	80.340	3726.7	2091.0
	100	0.2688	48.5	48	9.8	4198.4	1646.8	5845.2	3.55	80.264	3746.0	2099.2
	101	0.2761	48.8	48	10.0	4205.4	1660.1	5865.6	3.53	80.171	3762.9	2102.7
	102	0.2828	49.1	48	10.3	4222.7	1659.7	5882.4	3.54	80.174	3771.0	2111.4
	103	0.2901	49.3	49	10.6	4230.5	1668.0	5898.5	3.54	80.117	3783.2	2115.2
	104	0.2977	49.6	49	10.8	4237.4	1678.1	5915.5	3.53	80.047	3796.8	2118.7
	105	0.3043	49.9	49	11.1	4252.0	1687.6	5939.6	3.52	79.980	3813.6	2126.0
	106	0.3111	50.1	49	11.3	4265.0	1699.5	5964.5	3.51	79.898	3832.0	2132.5
	107	0.3183	50.4	50	11.6	4275.0	1702.0	5977.0	3.51	79.881	3839.5	2137.5
	108	0.3258	50.6	50	11.9	4282.7	1710.6	5993.3	3.50	79.821	3851.9	2141.3
	109	0.3326	50.8	50	12.1	4286.6	1719.6	6006.2	3.49	79.758	3862.9	2143.3
	110	0.3396	51.1	50	12.4	4299.7	1729.0	6028.6	3.49	79.693	3878.8	2149.8
	111	0.3459	51.4	51	12.6	4307.7	1736.0	6043.7	3.48	79.644	3889.8	2153.8
	112	0.3532	51.6	51	12.9	4317.1	1749.2	6066.4	3.47	79.553	3907.8	2158.6
	113	0.3603	51.8	51	13.1	4319.7	1747.9	6067.6	3.47	79.562	3907.7	2159.8
	114	0.3675	52.0	51	13.4	4324.1	1757.5	6081.6	3.46	79.495	3919.5	2162.1
	115	0.3744	52.2	51	13.6	4329.7	1764.2	6093.9	3.45	79.449	3929.1	2164.9
	116	0.3817	52.4	52	13.9	4332.2	1772.9	6105.1	3.44	79.388	3939.0	2166.1
	117	0.3882	52.4	52	14.1	4337.8	1782.5	6120.3	3.43	79.322	3951.4	2168.9
	117	0.3951	52.8	52	14.1	4340.0	1782.3	6120.3	3.44	79.324	3952.1	
	119	0.3931	53.0	52	14.4	4342.2	1782.1	6131.1				2170.0
	120	0.4013	53.0	52	14.0	4342.2	1788.9	6137.8	3.43 3.42	79.277 79.234	3960.0	2171.1
	120	0.7000									3966.5	2171.3
- 100				Johnaem	iai iiiiUII	- South	elfoedath	Scrences	, Mic.	Juuci		


					Test Rea	dings for	Specime	n No. 3	3	1 14 1	
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
121	0.4166	53.3	53	15.2	4342.2	1800.7	6142.9	3.41	79.195	3971.8	2171.1
122	0.4233	53.5	53	15.4	4346.5	1808.0	6154.5	3.40	79.145	3981.2	2173.3
123	0.4299	53.7	53	15.6	4346.4	1815.1	6161.5	3.39	79.095	3988.3	2173.2
124	0.4369	53.8	53	15.9	4346.5	1813.1	6159.6	3.40	79.109	3986.4	2173.2
125	0.4438	54.1	53	16.1	4353.3	1820.3	6173.6	3.39	79.059	3996.9	2176.7
126	0.4511	54.2	53	16.4	4352.0	1825.3	6177.3	3.38	79.024	4001.3	2176.0
127	0.4577	54.3	54	16.7	4347.2	1832.7	6179.9	3.37	78.973	4006.3	2173.6
128	0.4654	54.5	54	16.9	4346.2	1836.4	6182.6	3.37	78.947	4009.5	2173.1
129	0.4723	54.6	54	17.2	4345.6	1843.5	6189.1	3.36	78.898	4016.3	2172.8
130	0.4787	54.7	54	17.4	4337.1	1840.6	6177.6	3.36	78.918	4009.1	2168.5
131	0.4858	54.9	54	17.7	4343.8	1845.1	6188.9	3.35	78.886	4017.0	2171.9
132	0.4931	55.1	54	17.9	4346.4	1847.8	6194.2	3.35	78.868	4021.0	2173.2
133	0.5003	55.2	54	18.2	4339.4	1853.9	6193.3	3.34	78.826	4023.6	2169.7
134	0.5072	55.4	55	18.5	4339.9	1858.4	6198.3	3.34	78.794	4028.3	2169.9
135	0.5143	55.7	55	18.7	4349.9	1865.7	6215.5	3.33	78.744	4040.6	2174.9
136	0.5214	55.7	55	19.0	4334.0	1861.5	6195.6	3.33	78.773	4028.5	2167.0
137	0.5285	55.9	55	19.2	4334.9	1867.2	6202.0	3.32	78.733	4034.6	2167.4
138	0.5354	56.0	55	19.5	4333.2	1871.0	6204.2	3.32	78.707	4037.6	2166.6
139	0.5421	56.1	55	19.7	4330.2	1875.5	6205.8	3.31	78.676	4040.6	2165.1
140	0.5496	56.3	56	20.0	4327.6	1878.4	6206.0	3.30	78.656	4042.2	2163.8
141	0.5569	56.5	56	20.3	4328.3	1877.7	6206.0	3.31	78.660	4041.9	2164.1
142	0.5602	56.5	56	20.4	4321.7	1880.0	6201.7	3.30	78.644	4040.8	2160.8

Total Normal Stress, psf

Effective Normal Stress, psf — —

Type o	f Test:
--------	---------

CU with Pore Pressures

Sample Type: Undisturbed

Description: Gray Fat CLAY with sandy silt

pockets (CH)

Assumed Specific Gravity= 2.80

Remarks: Type Failure:

Bulge

	Sa	mple No.	1	2	3	
		Water Content, %	32.0	33.2	32.8	
1		Dry Density, pcf	89.5	88.6	89.3	
	Initial	Saturation, %	93.9	95.6	96.1	
	In:	Void Ratio	0.9530	0.9723	0.9571	
3		Diameter, in.	1.394	1.402	1.389	
J		Height, in.	2.800	2.800	2.800	
		Water Content, %	32.9	31.7	29.8	
2	to	Dry Density, pcf	91.0	92.6	95.3	
	At Test	Saturation, %	100.0	100.0	100.0	
	7	Void Ratio	0.9201	0.8882	0.8334	
1	1	Diameter, in.	1.386	1.382	1.359	
		Height, in.	2.784	2.760	2.740	
	Str	ain rate, in./min.	0.017	0.017	0.017	
	Eff	. Cell Pressure, psi	8.000	17.500	27.500	
	Fa	il. Stress, psf	2149.5	2989.4	3909.8	
	E	Excess Pore Pr., psf	291.6	1157.0	2366.3	
	5	Strain, %	14.0	20.2	20.1	
	Ult	. Stress, psf				
	E	Excess Pore Pr., psf				
		Strain, %				
	$\overline{\sigma}_1$	Failure, psf	3009.9	4352.4	5503.6	
	$\overline{\sigma}_3$	Failure, psf	860.4	1363.0	1593.7	
	_					

Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: B-2A Depth: 9-10

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc.

Figure _____ "Confidential Information; Privileged & Confidential Bator Bouge, LA

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

12/30/2013 9:11 AM

Date:

Client:

GeoEngineers

Project:

Mid Barataria Diversion

Project No.: Location: B13-018 B-2A

Depth:

9-10

Description:

Gray Fat CLAY with sandy silt pockets (CH)

Remarks:

Type Failure:

Bulge

Type of Sample:

Undisturbed

Assumed Specific Gravity=2.80

LL=

PL=

PI=

Test Method:

COE uniform strain

Parameters for Specimen No. 1													
Specimen Parameter	Initial	Saturated	Consolidated	Final									
Moisture content: Moist soil+tare, gms.	168.070			168.890									
Moisture content: Dry soil+tare, gms.	136.600			138.690									
Moisture content: Tare, gms.	38.120		•	38.470									
Moisture, %	32.0	34.0	32.9	30.1									
Moist specimen weight, gms.	132.48												
Diameter, in.	1.394	1,394	1.386										
Area, in. ²	1.526	1.526	1.509										
Height, in.	2.800	2.800	2.784										
Net decrease in height, in.		0.000	0.016										
Wet density, pcf	118.1	120.0	121.0										
Dry density, pcf	89.5	89.5	91.0										
Void ratio	0.9530	0.9530	0.9201										
Saturation, %	93.9	100.0	100.0										

Test Readings for Specimen No. 1

Consolidation cell pressure = 83.000 psi (11952.0 psf)

Consolidation back pressure = 75.000 psi (10800.0 psf)

Consolidation effective confining stress = 1152.0 psf

Strain rate, in./min. = 0.017

Fail. Stress = 2149.5 psf at reading no. 116

					Test Rea	adings for	Specime	n No. 1			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	1.1	0	0.0	0.0	1002.0	1002.0	1.00	76.042	1002.0	0.0
1	0.0008	2.6	1	0.0	140.7	979.4	1120.1	1.14	76.199	1049.7	70.3
2	0.0014	4.0	3	0.1	283.1	962.8	1245.9	1.29	76.314	1104.3	141.5
3	0.0022	5.3	4	0.1	401.7	950.7	1352.4	1.42	76.398	1151.5	200.9
4	0.0028	6.2	5	0.1	484.4	958.5	1442.9	1.51	76.344	1200.7	242.2
5	0.0036	7.2	6	0.1	584.5	631.9	1216.5	1.93	78.612	924.2	292.3
6	0.0039	8.0	7	0.1	655.0	616.3	1271.4	2.06	78.720	943.8	327.5
7	0.0042	8.6	7	0.2	714.3	635.8	1350.0	2.12	78.585	992.9	357.1
8	0.0054	9.1	8	0.2	760.4	699.4	1459.8	2.09	78.143	1079.6	380.2
9	0.0061	9.5	8	0.2	800.1	746.2	1546.2	2.07	77.818	1146.2	400.0
10	0.0068	9.8	9	0.2	833.5	749.0	1582.4	2.11	77.799	1165.7	416.7
11	0.0075	10.2	9	0.3	867.7	739.3	1607.0	2.17	77.866	1173.1	433.9
12	0.0079	10.5	9	0.3	892.8	729.6	1622.4	2.22	77.933	1176.0	446.4
13	0.0082	10.7	10	0.3	914.8	725.2	1640.0	2.26	77.964	1182.6	457.4
14	0.0090	10.9	10	0.3	933.2	716.8	1650.0	2.30	78.022	1183.4	466.6
15	0.0098	11.1	10	0.4	950.2	710.6	1660.9	2.34	78.065	1185.7	475.1
16	0.0107	11.3	10	0.4	967.2	707.7	1674.9	2.37	78.085	1191.3	483.6
17	0.0114	11.4	10	0.4	979.0	706.6	1685.5	2.39	78.093	1196.1	489.5
18	0.0120	11.5	10	0.4	993.4	705.8	1699.2	2.41	78.099	1202.5	496.7
19	0.0125	11.6	11	0.4	1001.4	709.5	1710.9	2.41	78.073	1210.2	500.7
20	0.0132	11.8	11	0.5	1015.9	714.1	1730.0	2.42	78.041	1222.0	507.9
21	0.0141	11.9	11	0.5	1029.0	730.9	1760.0	2.41	77.924	1245.5	514.5
22	0.0151	12.2	11	0.5	1054.1	440.6	1494.7	3.39	79.940	967.6	527.0
23	0.0159	12.3	11	0.6	1068.2	430.2	1498.4	3.48	80.013	964.3	534.1
24	0.0163	12.5	11	0.6	1080.0	428.0	1508.0	3.52	80.028	968.0	540.0
25	0.0168	12.5	11	0.6	1085.0	497.0	1582.1	3.18	79.548	1039.5	542.5
26	0.0178	12.6	11	0.6	1088.9	564.6	1653.5	2.93	79.079	1109.1	544.4
27	0.0184	12.6	12	0.7	1095.7	597.6	1693.2	2.83	78.850	1145.4	547.8
28	0.0190	12.7	12	0.7	1101.7	607.1	1708.8	2.81	78.784	1158.0	550.9
29	0.0198	12.8	12	0.7	1111.5	606.0	1717.5	2.83	78.792	1161.7	555.7
30	0.0211	12.9	12	0.8	1119.0	607.7	1726.6	2.84	78.780	1167.1	559.5
31	0.0217	13.0	12	0.8	1127.0	609.9	1736.9	2.85	78.765	1173.4	563.5
32	0.0220	13.1	12	0.8	1135.5	610.2	1745.7	2.86	78.763	1177.9	567.7
33	0.0227	13.2	12	0.8	1142.6	610.8	1753.4	2.87	78.759	1182.1	571.3
34	0.0233	13.2	12	0.8	1150.5	610.9	1761.4	2.88	78.758	1186.2	575.2
35	0.0241	13.3	12	0.9	1159.3	614.8	1774.1	2.89	78.730	1194.5	579.7
36	0.0249	13.4	12	0.9	1165.6	618.7	1784.4	2.88	78.703	1201.5	582.8
37	0.0259	13.5	12	0.9	1171.0	623.7	1794.6	2.88	78.669	1209.2	585.5
38	0.0264	13.6	12	0.9	1178.9	634.2	1813.1	2.86	78.596	1223.6	589.4
39	0.0272	13.6	13	1.0	1181.7	653.3	1835.0	2.81	78.463	1244.2	590.9
40	0.0274	13.9	13	1.0	1207.1	356.3	1563.4	4.39	80.526	959.8	603.5
41	0.0305	14.1	13	1.1	1227.8	505.3	1733.1	3.43	79.491	1119.2	613.9
42	0.0338	14.3	13	1.2	1245.1	549.6	1794.8	3.27	79.183	1172.2	622.6
43	0.0359	14.5	13	1.3	1262.8	555.7	1818.5	3.27	79.141	1187.1	631.4
44	0.0385	14.6	14	1.4	1272.0	580.4	1852.4	3.19	78.969	1216.4	636.0
45	0.0418	15.0	14	1.5	1306.2	312.6	1618.8	5.18	80.829	965.7	653.1
46	0.0442	15.0	14	1.6	1306.0	506.8	1812.8	3.58	79.481	1159.8	653.0
		"(Confident	ial Infor	mation: Pr	igileped arth	Stidential /	Nork Pro	oduct"		

					Test Rea	adings for	Specime	n No. 1			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
47	0.0471	15.1	14	1.7	1319.2	527.3	1846.5	3.50	79.339	1186.9	659.6
48	0.0504	15.3	14	1.8	1333.8	543.5	1877.4	3.45	79.225	1210.5	666.9
49	0.0531	15.7	15	1.9	1367.8	289.2	1657.0	5.73	80.992	973.1	683.9
50	0.0552	15.7	15	2.0	1367.3	476.9	1844.2	3.87	79.688	1160.6	683.6
51	0.0588	15.9	15	2.1	1382.6	484.2	1866.8	3.86	79.638	1175.5	691.3
52	0.0614	16.0	15	2.2	1390.7	495.3	1885.9	3.81	79.561	1190.6	695.3
53	0.0641	15.9	15	2.3	1386.2	237.1	1623.3	6.85	81.353	930.2	693.1
54	0.0668	16.3	15	2.4	1418.7	492.0	1910.7	3.88	79.583	1201.3	709.3
55	0.0696	16.4	15	2.5	1428.2	539.4	1967.6	3.65	79.254	1253.5	714.1
56	0.0724	16.4	15	2.6	1425.5	653.4	2078.9	3.18	78.463	1366.1	712.7
57	0.0745	16.7	16	2.7	1449.4	466.8	1916.2	4.11	79.758	1191.5	724.7
58	0.0779	16.7	16	2.8	1450.4	482.7	1933.0	4.01	79.648	1207.8	725.2
59	0.0804	16.9	16	2.9	1468.7	491.0	1959.6	3.99	79.591	1225.3	734.3
60	0.0833	17.1	16	3.0	1481.5	507.8	1989.2	3.92	79.474	1248.5	740.7
61	0.0859	17.3	16	3.1	1496.4	520.3	2016.7	3.88	79.387	1268.5	748.2
62	0.0888	17.3	16	3.2	1502.1	545.1	2047.3	3.76	79.214	1296.2	751.1
63	0.0915	17.4	16	3.3	1501.8	646.5	2148.3	3.32	78.510	1397.4	750.9
64	0.0945	17.5	16	3.4	1517.5	517.7	2035.2	3.93	79.405	1276.4	758.7
65	0.0969	17.7	17	3.5	1529.9	574.9	2104.8	3.66	79.008	1339.9	765.0
66	0.0999	17.9	17	3.6	1549.4	482.7	2032.1	4.21	79.648	1257.4	774.7
67	0.1026	18.0	17	3.7	1551.7	489.0	2040.7	4.17	79.604	1264.8	775.9
68	0.1048	18.0	17	3.8	1549.2	495.0	2044.2	4.13	79.563	1269.6	774.6
69	0.1079	18.1	17	3.9	1558.8	499.7	2058.6	4.12	79.530	1279.2	779.4
70	0.1117	18.2	17	4.0	1566.9	502.9	2069.8	4.12	79.507	1286.4	783.4
71	0.1141	18.3	17	4.1	1571.7	504.1	2075.8	4.12	79.499	1290.0	785.8
72	0.1170	18.3	17	4.2	1578.5	508.2	2086.8	4.11	79.470	1297.5	789.3
73	0.1198	18.5	17	4.3	1590.2	511.6	2101.8	4.11	79.447	1306.7	795.1
74	0.1221	18.6	17	4.4	1596.5	517.0	2113.5	4.09	79.410	1315.2	798.2
75	0.1252	18.7	18	4.5	1603.9	523.7	2127.6	4.06	79.363	1325.7	801.9
76	0.1279	18.8	18	4.6	1612.9	532.4	2145.3	4.03	79.303	1338.9	806.4
77	0.1311	18.9	18	4.7	1623.0	536.7	2159.7	4.02	79.273	1348.2	811.5
78	0.1334	19.0	18	4.8	1629.4	542.8	2172.2	4.00	79.231	1357.5	814.7
79	0.1366	19.1	18	4.9	1637.1	549.3	2186.4	3.98	79.186	1367.8	818.6
80	0.1389	19.2	18	5.0	1646.6	554.9	2201.5	3.97	79.146	1378.2	823.3
81	0.1463	19.4	18	5.3	1660.6	580.4	2241.0	3.86	78.969	1410.7	830.3
82	0.1531	19.9	19	5.5	1695.8	345.2	2041.0	5.91	80.603	1193.1	847.9
83	0.1607	20.0	19	5.8	1704.2	529.8	2234.0	4.22	79.321		
84	0.1670	20.3	19	6.0	1704.2		2265.3			1381.9	852.1
85	0.1741	20.5	19	6.3		543.3		4.17	79.227	1404.3	861.0
					1741.0	550.5	2291.4	4.16	79.177	1421.0	870.5
86	0.1811	20.8	20	6.5	1757.1	567.5	2324.6	4.10	79.059	1446.1	878.5
87	0.1883	21.0	20	6.8	1776.2	579.3	2355.4	4.07	78.977	1467.4	888.1
88	0.1948	21.3	20	7.0	1792.0	588.2	2380.2	4.05	78.915	1484.2	896.0
89	0.2023	21.5	20	7.3	1810.4	607.9	2418.3	3.98	78.779	1513.1	905.2
90	0.2091	21.8	21	7.5	1825.3	636.0	2461.4	3.87	78.583	1548.7	912.7
91	0.2165	22.1	21	7.8	1845.9	570.4	2416.3	4.24	79.039	1493.4	923.0
92	0.2235	22.3	21	8.0	1859.3	580.3	2439.6	4.20	78.970	1510.0	929.7
93	0.2299	22.5	21	8.3	1876.1	596.7	2472.7	4.14	78.857	1534.7	938.0
		"C	ontident	iai inforn	natise uth	erif Earth	Sciences	vork Pro	oduct"		

					Test Rea	adings for	Specime	n No.			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	0.2370	22.8	22	8.5	1893.4	606.9	2500.3	4.12	78.785	1553.6	946.7
95	0.2441	23.0	22	8.8	1905.4	616.5	2521.9	4.09	78.719	1569.2	952.7
96	0.2516	23.2	22	9.0	1918.1	632.7	2550.8	4.03	78.606	1591.8	959.0
97	0.2583	23.4	22	9.3	1934.6	646.5	2581.1	3.99	78.510	1613.8	967.3
98	0.2650	23.6	23	9.5	1948.6	664.1	2612.7	3.93	78.388	1638.4	974.3
99	0.2721	23.9	23	9.8	1968.3	615.0	2583.3	4.20	78.729	1599.2	984.1
100	0.2787	24.1	23	10.0	1980.2	622.6	2602.8	4.18	78.676	1612.7	990.1
101	0.2860	24.4	23	10.3	1997.9	639.8	2637.7	4.12	78.557	1638.8	998.9
102	0.2924	24.7	24	10.5	2015.9	648.6	2664.5	4.11	78.496	1656.5	1007.9
103	0.2996	24.8	24	10.8	2021.9	662.9	2684.8	4.05	78.397	1673.8	1011.0
104	0.3069	25.1	24	11.0	2040.0	677.2	2717.2	4.01	78.297	1697.2	1020.0
105	0.3139	25.2	24	11.3	2044.5	685.6	2730.0	3.98	78.239	1707.8	1022.2
106	0.3209	25.5	24	11.5	2057.7	706.6	2764.3	3.91	78.093	1735.5	1028.8
107	0.3274	25.7	25	11.8	2072.3	644.6	2716.8	4.22	78.524	1680.7	1036.1
108	0.3347	25.9	25	12.0	2082.3	670.4	2752.7	4.11	78.345	1711.5	1041.2
109	0.3415	26.1	25	12.3	2095.2	679.3	2774.5	4.08	78.283	1726.9	1047.6
110	0.3488	26.3	25	12.5	2102.3	691.9	2794.2	4.04	78.195	1743.0	1051.1
111	0.3562	26.5	25	12.8	2112.9	708.2	2821.2	3.98	78.082	1764.7	1056.5
112	0.3630	26.6	26	13.0	2119.7	716.7	2836.4	3.96	78.023	1776.6	1059.8
113	0.3697	26.8	26	13.3	2130.5	732.5	2863.0	3.91	77.913	1797.7	1065.2
114	0.3762	27.0	26	13.5	2137.1	743.9	2881.0	3.87	77.834	1812.5	1068.6
115	0.3833	27.1	26	13.8	2142.1	774.0	2916.1	3.77	77.625	1845.1	1071.1
116	0.3904	27.3	26	14.0	2149.5	860.4	3009.9	3.50	77.025	1935.1	1074.8
117	0.3971	27.2	26	14.3	2137.8	1063.3	3201.1	3.01	75.616	2132.2	1068.9
118	0.4044	27.2	26	14.5	2129.1	1285.4	3414.5	2.66	74.073	2350.0	1064.5
119	0.4109	27.2	26	14.8	2126.5	1495.7	3622.1	2.42	72.614	2558.9	1063.2
120	0.4182	27.2	26	15.0	2117.8	1715.6	3833.4	2.23	71.086	2774.5	1058.9
121	0.4255	27.2	26	15.3	2111.2	1923.0	4034.2	2.10	69.645	2978.6	1055.6
122	0.4321	27.1	26	15.5	2096.3	2134.2	4230.5	1.98	68.179	3182.3	1048.1
123	0.4394	27.1	26	15.8	2091.1	2354.6	4445.7	1.89	66.649	3400.1	1045.5
124	0.4466	27.1	26	16.0	2083.9	2567.7	4651.6	1.81	65.169	3609.7	1042.0
125	0.4533	26.9	26	16.3	2066.0	2783.5	4849.5	1.74	63.670	3816.5	1033.0
126	0.4607	27.0	26	16.5	2060.5	2990.5	5051.0	1.69	62.232	4020.8	1030.3
127	0.4671	27.0	26	16.8	2054.7	3190.1	5244.8	1.64	60.846	4217.5	1027.3
128	0.4738	26.9	26	17.0	2041.7	3388.5	5430.2	1.60	59.469	4409.3	1020.9
129	0.4818	26.8	26	17.3	2029.2	3577.5	5606.8	1.57	58.156	4592.1	1014.6
130	0.4880	26.8	26	17.5	2026.3	3758.7	5785.0	1.54	56.898	4771.9	1013.1
131	0.4955	26.8	26	17.8	2014.0	3943.1	5957.1	1.51	55.617	4950.1	1007.0
132	0.5025	26.7	26	18.0	2006.8	4122.0	6128.9	1.49	54.375	5125.4	1003.4
133	0.5088	26.8	26	18.3	2001.9	4289.9	6291.8	1.47	53.209	5290.8	1001.0
134	0.5165	26.7	26	18.6	1994.7	4467.9	6462.6	1.45	51.973	5465.2	997.4
135	0.5235	26.8	26	18.8	1994.3	4631.4	6625.7	1.43	50.838	5628.5	997.2
136	0.5306	26.8	26	19.1	1987.0	4787.2	6774.2	1.42	49.756	5780.7	993.5
137	0.5372	26.7	26	19.3	1971.3	4953.8	6925.1	1.40	48.599	5939.4	985.7
138	0.5445	26.7	26	19.6	1968.5	5103.1	7071.7	1.39	47.562	6087.4	984.3
139	0.5515	26.8	26	19.8	1967.3	5251.9	7219.2	1.37	46.529	6235.6	983.7
140	0.5583	26.7	26	20.1	1951.0	5406.2	7357.3	1.36	45.457	6381.8	975.5
							Stidentials				
						Jiii Editil	301011003	,			and the second

	Test Rea	adings for	Specime:	n No.	1		
Strain	Deviator Stress	Minor Eff. Stress	Major Eff. Stress	1:3	Pore Press.	Р	Q

Dial Load Load Dial No. in. lbs. % psf psf psf Ratio psi psf psf 26.7 141 0.5585 26 20.1 1950.9 5413.8 7364.7 45.404 975.4 1.36 6389.2

	arameter	s for Specimen No. 2	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	194.470			168.250
Moisture content: Dry soil+tare, gms.	155.380			138.590
Moisture content: Tare, gms.	37.690			38.310
Moisture, %	33.2	34.7	31.7	29.6
Moist specimen weight, gms.	133.96			
Diameter, in.	1.402	1.402	1.382	
Area, in. ²	1.544	1.544	1.499	
Height, in.	2.800	2.800	2.760	
Net decrease in height, in.		0.000	0.040	
Wet density, pcf	118.1	119.4	121.9	
Dry density, pcf	88.6	88.6	92.6	
Void ratio	0.9723	0.9723	0.8882	
Saturation, %	95.6	100.0	100.0	

Test Readings for Specimen No. 2

Consolidation cell pressure = 82.500 psi (11880.0 psf)

Consolidation back pressure = 65.000 psi (9360.0 psf)

Consolidation effective confining stress = 2520.0 psf

Strain rate, in./min. = 0.017

Def.

Fail. Stress = 2989.4 psf at reading no. 141

No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.8	0	0.0	0.0	2392.2	2392.2	1.00	65.887	2392.2	0.0
1	0.0010	1.8	1	0.0	96.4	2326.1	2422.5	1.04	66.347	2374.3	48.2
2	0.0014	3.0	2	0.0	205.2	2260.5	2465.7	1.09	66.802	2363.1	102.6
3	0.0022	4.0	3	0.1	304.2	2196.3	2500.6	1.14	67.248	2348.5	152.1
4	0.0025	4.9	4	0.1	392.0	2131.7	2523.7	1.18	67.697	2327.7	196.0
5	0.0032	5.7	5	0.1	467.0	2073.3	2540.3	1.23	68.102	2306.8	233.5
6	0.0038	6.4	6	0.1	529.6	2020.5	2550.1	1.26	68.469	2285.3	264.8
7	0.0050	6.9	6	0.2	585.4	1970.1	2555.5	1.30	68.819	2262.8	292.7
8	0.0056	7.7	7	0.2	654.0	1921.3	2575.3	1.34	69.157	2248.3	327.0
9	0.0061	8.2	7	0.2	706.0	1877.4	2583.4	1.38	69.462	2230.4	353.0
10	0.0073	8.7	8	0.3	755.9	1835.6	2591.4	1.41	69.753	2213.5	377.9
11	0.0082	9.1	8	0.3	793.9	1799.2	2593.2	1.44	70.006	2196.2	397.0
12	0.0090	9.5	9	0.3	830.6	1765.3	2596.0	1.47	70.241	2180.7	415.3
13	0.0096	9.9	9	0.3	868.5	1751.2	2619.7	1.50	70.339	2185.5	434.2
14	0.0104	10.2	9	0.4	899.1	1755.6	2654.7	1.51	70.309	2205.1	449.5
15	0.0109	10.6	10	0.4	933.4	1672.3	2605.7	1.56	70.887	2139.0	466.7
16	0.0111	10.9	10	0.4	967.4	1641.9	2609.3	1.59	71.098	2125.6	483.7
17	0.0116	11.2	10	0.4	990.7	1615.1	2605.8	1.61	71.284	2110.4	495.4
18	0.0129	11.5	11	0.5	1017.1	1591.0	2608.1	1.64	71.452	2099.5	508.6
19	0.0134	11.8	11	0.5	1046.0	1565.6	2611.6	1.67	71.628	2088.6	523.0
20	0.0139	12.0	11	0.5	1070.5	1540.7	2611.2	1.69	71.801	2075.9	535.3
21	0.0146	12.2	11	0.5	1088.7	1522.7	2611.4	1.71	71.926	2067.1	544.3
		"0	Confident	ial Inforr	matisouRri	elep ed arth	edidential V	Vork Pro	duct"		

					Test Rea	adings for	Specime	n No. 2	2		
No	Def. Dial . in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
22	0.0153	12.4	12	0.6	1107.2	1500.3	2607.5	1.74	72.081	2053.9	553.6
23	0.0162	12.7	12	0.6	1131.2	1481.2	2612.5	1.76	72.214	2046.9	565.6
24	0.0171	12.9	12	0.6	1149.0	1467.0	2616.0	1.78	72.313	2041.5	574.5
25	0.0176	13.1	12	0.6	1168.1	1447.0	2615.1	1.81	72.452	2031.0	584.1
26	0.0182	13.3	12	0.7	1186.1	1431.1	2617.1	1.83	72.562	2024.1	593.0
27	0.0187	13.4	13	0.7	1201.5	1417.3	2618.7	1.85	72.658	2018.0	600.7
28	0.0195	13.6	13	0.7	1220.3	1401.1	2621.4	1.87	72.770	2011.3	610.1
29	0.0203	13.8	13	0.7	1239.5	1385.9	2625.4	1.89	72.875	2005.7	619.7
30	0.0214	14.0	13	0.8	1251.9	1373.4	2625.2	1.91	72.963	1999.3	625.9
31	0.0218	14.2	13	0.8	1270.0	1359.1	2629.1	1.93	73.061	1994.1	635.0
32	0.0222	14.4	14	0.8	1288.7	1346.4	2635.1	1.96	73.150	1990.8	644.4
33	0.0231	14.5	14	0.8	1304.0	1333.3	2637.4	1.98	73.241	1985.4	652.0
34	0.0241	14.6	14	0.9	1313.6	1320.9	2634.6	1.99	73.327	1977.7	656.8
35	0.0246	14.8	14	0.9	1332.6	1310.5	2643.0	2.02	73.400	1976.7	666.3
36	0.0255	15.0	14	0.9	1343.3	1298.8	2642.0	2.03	73.481	1970.4	671.6
37	0.0259	15.2	14	0.9	1362.2	1287.2	2649.4	2.06	73.561	1968.3	681.1
38	0.0267	15.3	14	1.0	1377.6	1278.2	2655.8	2.08	73.623	1967.0	688.8
39	0.0276	15.4	15	1.0	1386.5	1269.7	2656.2	2.09	73.683	1962.9	693.3
40	0.0283	15.6	15	1.0	1400.5	1258.8	2659.3	2.11	73.758	1959.1	700.2
41	0.0307	16.1	15	1.1	1448.9	1223.2	2672.1	2.18	74.005	1947.7	724.5
42	0.0337	16.6	16	1.2	1491.3	1191.7	2683.1	2.25	74.224	1937.4	745.7
43	0.0364	17.0	16	1.3	1528.6	1165.4	2694.0	2.31	74.407	1929.7	764.3
44		17.3	16	1.4	1560.2	1143.5	2703.8	2.36	74.559	1923.6	780.1
45		17.6	17	1.5	1590.2	1121.0	2711.2	2.42	74.715	1916.1	795.1
46		18.0	17	1.6	1622.4	1097.7	2720.1	2.48	74.877	1908.9	811.2
47		18.3	17	1.7	1647.4	1085.1	2732.4	2.52	74.965	1908.7	823.7
48		18.6	18	1.8	1672.5	1069.2	2741.7	2.56	75.075	1905.5	836.3
49		18.8	18	1.9	1692.6	1060.0	2752.5	2.60	75.139	1906.3	846.3
50		19.1	18	2.0	1717.1	1048.4	2765.5	2.64	75.219	1907.0	858.5
51		19.3	18	2.1	1735.1	1039.4	2774.5	2.67	75.282	1907.0	867.5
52		19.5	19	2.2	1753.1	1029.9	2782.9	2.70	75.348	1906.4	876.5
53		19.7	19	2.3	1773.1	1022.7	2795.8	2.73	75.398	1909.2	886.6
54		20.0	19	2.4	1792.1	1019.1	2811.2	2.76	75.423	1915.2	896.0
55		20.2	19	2.5	1813.4	1010.0	2823.4	2.80	75.486	1916.7	906.7
56		20.4	20	2.6	1832.3	1004.7	2837.0	2.82	75.523	1920.8	916.1
57		20.6	20	2.7	1847.8	1000.6	2848.4	2.85	75.552	1924.5	923.9
58		20.8	20	2.8	1866.8	996.1	2863.0	2.87	75.582	1929.5	933.4
59		21.0	20	2.9	1884.0	991.9	2875.9	2.90	75.612	1933.9	942.0
60		21.3	20	3.0	1904.9	985.8	2890.7	2.93	75.654	1938.3	952.5
61	0.0865	21.5	21	3.1	1920.5	982.1	2902.7	2.96	75.680	1938.3	960.3
62		21.6	21	3.2	1920.3	977.9	2902.7	2.97	75.709	1942.4	965.4
63		21.8	21	3.3	1930.8	977.9					
64		21.8	21	3.4	1943.3		2919.1	2.99	75.725	1947.4	971.8
						975.5	2931.5	3.01	75.726	1953.5	978.0
65		22.1	21	3.5	1967.3	975.9	2943.1	3.02	75.723	1959.5	983.6
66		22.3	21	3.6	1988.2	977.8	2966.0	3.03	75.710	1971.9	994.1
67		22.5	22	3.7	2002.3	976.7	2979.0	3.05	75.717	1977.9	1001.2
68	0.1061	22.7	22 Confident	3.8	2018.4	976.2	2994.6	3.07 Nork Pro	75.721	1985.4	1009.2
			Joinnaeill	iai IIIIUII	South	em Earth	Sciences	, the .	Juuci		

					Test Rea	adings for	Specime	n No.	2		3
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
69	0.1084	22.9	22	3.9	2031.9	972.0	3003.9	3.09	75.750	1988.0	1016.0
70	0.1116	23.0	22	4.0	2041.6	974.8	3016.4	3.09	75.731	1995.6	1020.8
71	0.1142	23.2	22	4.1	2059.2	978.0	3037.3	3.11	75.708	2007.7	1029.6
72	0.1170	23.4	23	4.2	2071.0	975.5	3046.5	3.12	75.726	2011.0	1035.5
73	0.1203	23.5	23	4.4	2080.2	975.9	3056.0	3.13	75.723	2015.9	1040.1
74	0.1229	23.6	23	4.5	2092.1	977.9	3070.1	3.14	75.709	2024.0	1046.1
75	0.1255	23.8	23	4.5	2102.4	1018.0	3120.4	3.07	75.430	2069.2	1051.2
76	0.1283	24.0	23	4.6	2117.3	982.8	3100.1	3.15	75.675	2041.5	1058.6
77	0.1315	24.2	23	4.8	2134.7	982.8	3117.5	3.17	75.675	2050.2	1067.3
78	0.1336	24.3	24	4.8	2148.1	981.8	3129.9	3.19	75.682	2055.8	1074.1
79	0.1365	24.5	24	4.9	2159.0	983.6	3142.6	3.19	75.669	2063.1	1079.5
80	0.1397	24.6	24	5.1	2167.5	989.0	3156.5	3.19	75.632	2072.7	1083.8
31	0.1463	25.0	24	5.3	2198.0	991.3	3189.3	3.22	75.616	2090.3	1099.0
32	0.1536	25.4	25	5.6	2225.2	1000.2	3225.4	3.22	75.554	2112.8	1112.6
3	0.1605	25.7	25	5.8	2249.8	998.4	3248.2	3.25	75.566	2123.3	1124.9
34	0.1676	26.0	25	6.1	2271.8	1008.1	3280.0	3.25	75.499	2144.1	1135.9
35	0.1737	26.3	26	6.3	2295.4	1009.6	3305.1	3.27	75.489	2157.4	1147.7
36	0.1810	26.7	26	6.6	2321.3	1018.8	3340.1	3.28	75.425	2179.5	1160.7
37	0.1883	27.0	26	6.8	2344.7	1026.7	3371.4	3.28	75.370	2199.0	1172.3
8	0.1952	27.4	27	7.1	2368.8	1031.8	3400.6	3.30	75.335	2216.2	1184.4
9	0.2026	27.6	27	7.3	2384.3	1037.2	3421.4	3.30	75.298	2229.3	1192.1
0	0.2094	28.0	27	7.6	2408.5	1045.7	3454.2	3.30	75.238	2250.0	1204.3
1	0.2165	28.3	28	7.8	2434.3	1053.5	3487.8	3.31	75.184	2270.6	1217.1
2	0.2237	28.6	28	8.1	2446.5	1058.4	3504.8	3.31	75.150	2281.6	1223.2
3	0.2302	29.0	28	8.3	2475.6	1067.2	3542.8	3.32	75.089	2305.0	1237.8
4	0.2375	29.2	28	8.6	2492.8	1072.2	3565.1	3.32	75.059	2318.6	1246.4
5	0.2445	29.6	29	8.9	2514.8	1083.1	3597.9	3.32	74.979	2340.5	1257.4
96	0.2511	29.9	29	9.1	2538.9	1083.1	3626.4	3.33	74.948	2356.9	1269.4
97	0.2511	30.1	29	9.4	2551.2	1110.9	3662.1	3.30	74.785		
98	0.2650	30.5	30	9.6	2574.7	1110.9	3678.5				
99	0.2723	30.7	30	9.9	2587.9	1103.8		3.33	74.835	2391.1 2403.7	1287.3
0	0.2723	31.0	30	10.1			3697.7	3.33	74.793		1294.0
					2599.3	1113.2	3712.5	3.33	74.770	2412.8	1299.6
)1	0.2869	31.3	30	10.4	2623.2	1121.9	3745.1	3.34	74.709	2433.5	1311.6
)2	0.2934	31.7	31	10.6	2645.4	1129.3	3774.7	3.34	74.658	2452.0	1322.7
)3	0.3007	31.9	31	10.9	2657.8	1140.5	3798.3	3.33	74.580	2469.4	1328.9
)4	0.3074	32.3	31	11.1	2685.0	1148.0	3833.0	3.34	74.528	2490.5	1342.5
)5	0.3144	32.5	32	11.4	2692.6	1154.0	3846.5	3.33	74.486	2500.3	1346.3
)6	0.3212	32.9	32	11.6	2717.7	1165.7	3883.4	3.33	74.405	2524.6	1358.9
)7	0.3282	33.1	32	11.9	2726.6	1167.6	3894.2	3.34	74.391	2530.9	1363.3
8	0.3354	33.5	33	12.2	2752.9	1179.3	3932.2	3.33	74.311	2555.7	1376.5
19	0.3426	33.7	33	12.4	2761.0	1182.6	3943.7	3.33	74.287	2563.1	1380.5
0	0.3496	33.9	33	12.7	2772.4	1195.9	3968.3	3.32	74.195	2582.1	1386.2
1	0.3562	34.1	33	12.9	2785.6	1195.9	3981.6	3.33	74.195	2588.8	1392.8
2	0.3626	34.4	34	13.1	2800.8	1207.5	4008.3	3.32	74.115	2607.9	1400.4
3	0.3697	34.6	34	13.4	2805.0	1209.7	4014.8	3.32	74.099	2612.3	1402.5
4	0.3773	34.9	34	13.7	2821.7	1220.1	4041.7	3.31	74.027	2630.9	1410.8
15	0.3838	35.1	34	13.9	2831.7	1222.6	4054.3	3.32	74.010	2638.5	1415.9
		"(Confiden	tial Infor	mation: Pr	igilaged & if	Sciences	Nork Pr	oduct"		

					Test Rea	adings for	Specime	n No. 2	2		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
116	0.3911	35.3	34	14.2	2839.1	1230.7	4069.8	3.31	73.954	2650.2	1419.6
117	0.3980	35.5	35	14.4	2846.1	1234.1	4080.1	3.31	73.930	2657.1	1423.0
118	0.4052	35.7	35	14.7	2854.6	1244.4	4099.0	3.29	73.858	2671.7	1427.3
119	0.4119	36.0	35	14.9	2875.1	1248.1	4123.2	3.30	73.833	2685.7	1437.6
120	0.4190	36.1	35	15.2	2876.3	1257.7	4134.0	3.29	73.766	2695.9	1438.2
121	0.4262	36.5	36	15.4	2896.1	1262.6	4158.8	3.29	73.732	2710.7	1448.1
122	0.4330	36.6	36	15.7	2897.6	1267.7	4165.3	3.29	73.696	2716.5	1448.8
123	0.4402	36.8	36	16.0	2901.3	1276.4	4177.7	3.27	73.636	2727.1	1450.7
124	0.4468	37.0	36	16.2	2913.2	1277.6	4190.8	3.28	73.628	2734.2	1456.6
125	0.4539	37.2	36	16.4	2920.5	1288.6	4209.1	3.27	73.551	2748.9	1460.2
126	0.4611	37.5	37	16.7	2929.3	1289.9	4219.2	3.27	73.542	2754.6	1464.6
127	0.4679	37.7	37	17.0	2936.7	1300.2	4236.9	3.26	73.471	2768.6	1468.4
128	0.4748	37.8	37	17.2	2938.1	1299.7	4237.8	3.26	73.475	2768.7	1469.1
129	0.4814	37.9	37	17.4	2941.6	1309.9	4251.5	3.25	73.403	2780.7	1470.8
130	0.4887	38.2	37	17.7	2949.6	1314.9	4264.5	3.24	73.369	2789.7	1474.8
131	0.4963	38.4	38	18.0	2958.5	1322.6	4281.1	3.24	73.315	2801.9	1479.3
132	0.5025	38.6	38	18.2	2967.5	1325.4	4292.9	3.24	73.296	2809.2	1483.8
133	0.5094	38.7	38	18.5	2966.2	1331.7	4297.9	3.23	73.252	2814.8	1483.1
134	0.5172	39.0	38	18.7	2976.7	1335.9	4312.7	3.23	73.223	2824.3	1488.4
135	0.5238	39.1	38	19.0	2975.1	1340.0	4315.0	3.22	73.195	2827.5	1487.5
136	0.5312	39.2	38	19.2	2977.4	1346.2	4323.7	3.21	73.151	2834.9	1488.7
137	0.5374	39.4	39	19.5	2981.9	1346.6	4328.5	3.21	73.149	2837.5	1490.9
138	0.5450	39.6	39	19.7	2988.8	1354.0	4342.9	3.21	73.097	2848.4	1494.4
139	0.5522	39.7	39	20.0	2987.9	1354.0	4341.9	3.21	73.097	2847.9	1494.0
140	0.5584	39.9	39	20.2	2989.1	1365.4	4354.5	3.19	73.018	2859.9	1494.5
141	0.5585	39.9	39	20.2	2989.4	1363.0	4352.4	3.19	73.035	2857.7	1494.7

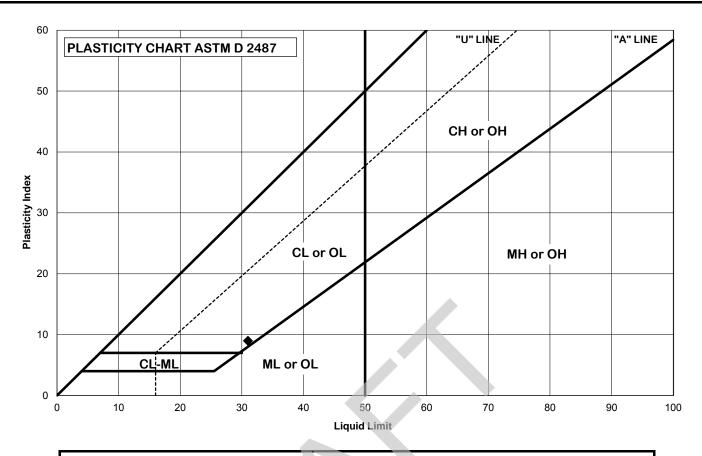
	arameters	for Specimen No. 3		
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	212.000			165.810
Moisture content: Dry soil+tare, gms.	169.050			136.940
Moisture content: Tare, gms.	38.300			38.660
Moisture, %	32.8	34.2	29.8	29.4
Moist specimen weight, gms.	132.15			
Diameter, in.	1.389	1.389	1.359	
Area, in. ²	1.515	1.515	1.451	
Height, in.	2.800	2.800	2.740	
Net decrease in height, in.		0.000	0.060	
Wet density, pcf	118.7	119.8	123.7	
Dry density, pcf	89.3	89.3	95.3	
Void ratio	0.9571	0.9571	0.8334	
Saturation, %	96.1	100.0	100.0	
	of Ponding	s for Specimen No.	2	

Test Readings for Specimen No. 3
Consolidation cell pressure = 92.500 psi (13320.0 psf)

Consolidation back pressure = 65.000 psi (9360.0 psf)

Consolidation effective confining stress = 3960.0 psf

Strain rate, in./min. = 0.017


Fail. Stress = 3909.8 psf at reading no. 139

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	0.0000	0.7	0	0.0	0.0	3976.1	3976.1	1.00	64.888	3976.1	0.0
1	0.0008	1.5	1	0.0	76.0	3852.0	3928.0	1.02	65.750	3890.0	38.0
2	0.0018	2.3	2	0.1	150.0	3840.2	3990.2	1.04	65.832	3915.2	75.0
3	0.0023	3.1	2	0.1	235.5	3813.2	4048.7	1.06	66.019	3930.9	117.7
4	0.0029	4.5	4	0.1	375.2	3762.9	4138.1	1.10	66.369	3950.5	187.6
5	0.0039	6.1	5	0.1	526.1	3700.2	4226.3	1.14	66.804	3963.3	263.0
6	0.0048	7.7	7	0.2	688.0	3626.1	4314.2	1.19	67.319	3970.1	344.0
7	0.0056	9.2	8	0.2	835.7	3539.5	4375.2	1.24	67.920	3957.4	417.9
8	0.0062	10.5	10	0.2	966.2	3453.9	4420.1	1.28	68.514	3937.0	483.1
9	0.0068	11.7	11	0.2	1081.5	3371.4	4452.8	1.32	69.088	3912.1	540.7
10	0.0076	12.7	12	0.3	1186.5	3290.3	4476.7	1.36	69.651	3883.5	593.2
11	0.0077	13.7	13	0.3	1285.9	3213.5	4499.4	1.40	70.184	3856.4	642.9
12	0.0079	14.6	14	0.3	1373.3	3138.5	4511.8	1.44	70.705	3825.1	686.7
13	0.0090	15.5	15	0.3	1456.6	3066.3	4523.0	1.48	71.206	3794.7	728.3
14	0.0099	16.2	15	0.4	1527.5	2999.4	4527.0	1.51	71.671	3763.2	763.8
15	0.0103	16.8	16	0.4	1592.1	2935.0	4527.0	1.54	72.118	3731.0	796.0
16	0.0109	17.5	17	0.4	1657.2	2871.9	4529.1	1.58	72.556	3700.5	828.6
17	0.0116	18.0	17	0.4	1709.7	2812.9	4522.7	1.61	72.966	3667.8	854.9
18	0.0126	18.6	18	0.5	1761.4	2758.7	4520.1	1.64	73.342	3639.4	880.7
19	0.0135	19.1	18	0.5	1808.1	2704.0	4512.1	1.67	73.722	3608.0	904.1
20	0.0141	19.5	19	0.5	1849.4	2650.3	4499.7	1.70	74.095	3575.0	924.7
21	0.0146	19.9	19	0.5	1887.6	2606.9	4494.6	1.72	74.396	3550.8	943.8
22	0.0152	20.3	20	0.6	1926.2	2559.7	4485.9	1.75	74.724	3522.8	963.1
23	0.0159	20.6	20	0.6	1959.0	2515.9	4474.9	1.78	75.028	3495.4	979.5
24	0.0167	21.0	20	0.6	1994.8	2473.2	4468.0	1.81	75.325	3470.6	997.4
25	0.0177	21.3	21	0.6	2026.2	2431.9	4458.1	1.83	75.612	3445.0	1013.1
26	0.0183	21.6	21	0.7	2058.0	2392.7	4450.7	1.86	75.884	3421.7	1029.0
		"C	confidenti	al Inforr	nation: Pri	vileged & C	onfidential V Sciences	Vork Pro	oduct"		

					Test Rea	adings for	Specime	n No.	3		
No	Def. Dial . in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
27	0.0187	21.9	21	0.7	2084.0	2356.2	4440.3	1.88	76.137	3398.3	1042.0
28	0.0194	22.2	21	0.7	2111.3	2319.7	4431.0	1.91	76.391	3375.4	1055.6
29	0.0203	22.4	22	0.7	2136.4	2285.0	4421.5	1.93	76.632	3353.2	1068.2
30	0.0210	22.7	22	0.8	2160.2	2257.8	4418.0	1.96	76.821	3337.9	1080.1
31	0.0216	22.9	22	0.8	2179.9	2226.4	4406.3	1.98	77.039	3316.4	1089.9
32	0.0224	23.1	22	0.8	2203.2	2202.6	4405.8	2.00	77.204	3304.2	1101.6
33	0.0231	23.3	23	0.8	2219.1	2180.5	4399.6	2.02	77.358	3290.0	1109.5
34	0.0238	23.5	23	0.9	2241.2	2157.9	4399.0	2.04	77.515	3278.4	1120.6
35	0.0247	23.7	23	0.9	2259.2	2139.2	4398.3	2.06	77.645	3268.8	1129.6
36	0.0254	23.9	23	0.9	2272.4	2123.7	4396.1	2.07	77.752	3259.9	1136.2
37	0.0261	24.0	23	1.0	2288.9	2105.7	4394.6	2.09	77.877	3250.2	1144.4
38	0.0266	24.2	23	1.0	2307.2	2091.6	4398.7	2.10	77.975	3245.1	1153.6
39	0.0270	24.4	24	1.0	2321.3	2079.4	4400.7	2.12	78.060	3240.0	1160.6
40	0.0281	24.5	24	1.0	2337.1	2064.6	4401.7	2.13	78.163	3233.1	1168.6
41	0.0308	25.1	24	1.1	2389.4	2036.6	4426.0	2.17	78.357	3231.3	1194.7
42	0.0335	25.6	25	1.2	2441.5	1845.9	4287.4	2.32	79.681	3066.7	1220.8
43	0.0361	26.1	25	1.3	2479.3	1786.0	4265.3	2.39	80.097	3025.7	1239.6
44	0.0388	26.5	26	1.4	2520.3	1736.3	4256.5	2.45	80.443	2996.4	1260.1
45	0.0419	26.9	26	1.5	2554.5	1691.9	4246.5	2.51	80.751	2969.2	1277.3
46	0.0450	27.2	26	1.6	2581.7	1652.0	4233.7	2.56	81.028	2942.9	1290.9
47	0.0471	27.5	27	1.7	2612.7	1615.6	4228.2	2.62	81.281	2921.9	1306.3
48	0.0503	27.8	27	1.8	2640.2	1602.0	4242.2	2.65	81.375	2922.1	1320.1
49	0.0527	28.1	27	1.9	2664.9	1569.1	4234.0	2.70	81.603	2901.6	1332.4
50	0.0558	28.3	28	2.0	2681.3	1550.1	4231.4	2.73	81.735	2890.7	1340.6
51	0.0586	28.6	28	2.1	2709.3	1542.6	4251.9	2.76	81.787	2897.3	1354.6
52	0.0617	28.8	28	2.3	2725.1	1544.7	4269.8	2.76	81.773	2907.3	1362.5
53	0.0645	29.1	28	2.4	2748.5	1561.3	4309.8	2.76	81.658	2935.5	1374.3
54	0.0674	29.3	29	2.5	2765.8	1539.6	4305.4	2.80	81.809	2922.5	1382.9
55	0.0696	29.6	29	2.5	2795.0	1439.6	4234.6	2.94	82.503	2837.1	1397.5
56	0.0724	29.9	29	2.6	2814.8	1423.8	4238.6	2.98	82.613	2831.2	1407.4
57	0.0753	30.1	29	2.7	2834.2	1412.8	4247.0	3.01	82.689	2829.9	1417.1
58	0.0777	30.3	30	2.8	2850.0	1400.6	4250.6	3.03	82.774	2825.6	1425.0
59	0.0807	30.5	30	2.9	2870.9	1391.4	4262.3	3.06	82.837	2826.9	1435.4
60	0.0840	30.7	30	3.1	2887.2	1380.2	4267.3	3.09	82.915	2823.8	1443.6
61	0.0863	30.9	30	3.1	2900.8	1365.6	4266.5	3.12	83.017	2816.0	1450.4
62	0.0891	31.1	30	3.3	2917.4	1357.8	4275.2	3.15	83.071	2816.5	1458.7
63	0.0918	31.3	31	3.4	2933.6	1352.5	4286.1	3.17	83.108	2819.3	1466.8
64	0.0944	31.5	31	3.4	2948.8	1352.6	4301.4	3.18	83.107	2827.0	1474.4
65	0.0975	31.6	31	3.6	2958.3	1361.4	4319.7	3.17	83.046	2840.6	1479.1
66	0.1001	31.9	31	3.7	2978.1	1375.7	4353.8	3.16	82.947	2864.7	1489.0
67	0.1030	32.0	31	3.8	2989.3	1402.6	4391.9	3.13	82.760	2897.3	1494.7
68		32.2	31	3.8	3005.3	1306.0	4311.3	3.30	83.430	2808.7	1502.6
69		32.4	32	4.0	3022.4	1305.3	4327.8	3.32	83.435	2816.5	1511.2
70		32.6	32	4.1	3034.6	1305.5	4340.1	3.32	83.434	2822.8	1517.3
71		32.8	32	4.2	3053.8	1300.6	4354.5	3.35	83.468	2827.6	1526.9
72		33.0	32	4.3	3063.9	1292.0	4356.0	3.37	83.527	2824.0	1532.0
73		33.1	32	4.4	3075.2	1287.2	4362.5	3.39	83.561	2824.9	1537.6
							Sciences				1007.0
	A COLUMN TO SERVICE				_ Jouth	eni Laith	ociences,	, IIIG			

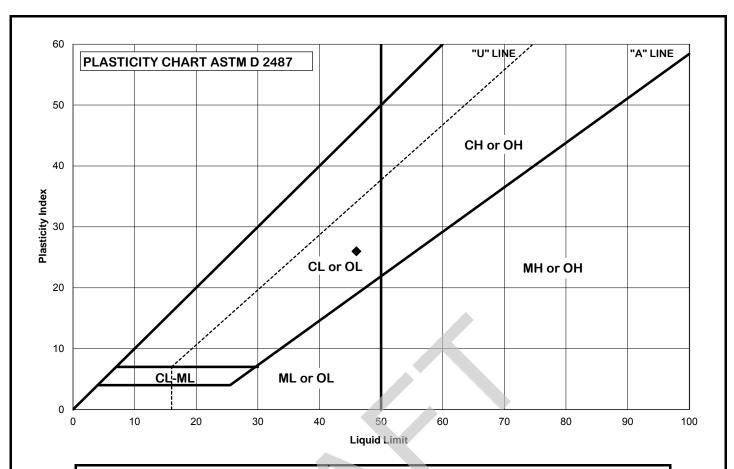
					Test Rea	adings for	Specime	n No. 3	3		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
74	0.1223	33.3	33	4.5	3087.7	1290.2	4377.8	3.39	83.541	2834.0	1543.8
75	0.1252	33.5	33	4.6	3100.5	1287.6	4388.1	3.41	83.559	2837.8	1550.3
76	0.1285	33.7	33	4.7	3118.0	1285.9	4403.9	3.42	83.570	2844.9	1559.0
77	0.1306	33.9	33	4.8	3131.7	1286.5	4418.2	3.43	83.566	2852.4	1565.9
78	0.1332	34.0	33	4.9	3140.6	1288.5	4429.1	3.44	83.552	2858.8	1570.3
79	0.1366	34.2	33	5.0	3151.0	1305.6	4456.6	3.41	83.434	2881.1	1575.5
80	0.1388	34.3	34	5.1	3160.3	1330.1	4490.4	3.38	83.263	2910.3	1580.1
81	0.1464	34.7	34	5.3	3193.5	1265.5	4459.0	3.52	83.712	2862.2	1596.7
82	0.1530	35.1	34	5.6	3220.6	1268.8	4489.4	3.54	83.689	2879.1	1610.3
83	0.1603	35.5	35	5.8	3252.8	1271.3	4524.1	3.56	83.672	2897.7	1626.4
84	0.1667	35.9	35	6.1	3279.3	1272.7	4551.9	3.58	83.662	2912.3	1639.6
85	0.1746	36.3	36	6.4	3307.0	1286.4	4593.4	3.57	83.567	2939.9	1653.5
86	0.1810	36.7	36	6.6	3331.5	1345.0	4676.5	3.48	83.160	3010.7	1665.7
87	0.1884	37.1	36	6.9	3362.9	1273.4	4636.3	3.64	83.657	2954.8	1681.4
88	0.1954	37.5	37	7.1	3386.1	1273.1	4659.1	3.66	83.659	2966.1	1693.0
89	0.2017	38.0	37	7.4	3421.5	1282.5	4704.0	3.67	83.594	2993.2	1710.7
90	0.2088	38.3	38	7.6	3440.4	1282.4	4722.8	3.68	83.594	3002.6	1720.2
91	0.2162	38.6	38	7.9	3456.8	1307.0	4763.8	3.64	83.424	3035.4	1728.4
92	0.2237	38.9	38	8.2	3477.4	1378.1	4855.5	3.52	82.930	3116.8	1738.7
93	0.2303	39.3	39	8.4	3503.1	1297.3	4800.4	3.70	83.491	3048.8	1751.5
94	0.2369	39.7	39	8.6	3529.8	1304.2	4834.0	3.71	83.443	3069.1	1764.9
95	0.2438	39.9	39	8.9	3544.8	1308.8	4853.6	3.71	83.411	3081.2	1772.4
96	0.2511	40.4	40	9.2	3574.6	1321.9	4896.5	3.70	83.320	3109.2	1787.3
97	0.2581	40.7	40	9.4	3591.1	1352.9	4944.0	3.65	83.105	3148.5	1795.5
98	0.2648	41.1	40	9.7	3615.7	1326.3	4942.0	3.73	83.290	3134.2	1807.9
99	0.2719	41.5	41	9.9	3640.8	1330.7	4971.4	3.74	83.259	3151.1	1820.4
100	0.2792	41.7	41	10.2	3650.5	1339.9	4990.4	3.72	83.195	3165.2	1825.3
101	0.2862	42.1	41	10.4	3675.9	1346.0	5021.9	3.73	83.153	3183.9	1838.0
102	0.2931	42.4	42	10.7	3693.3	1365.9	5059.1	3.70	83.015	3212.5	1846.6
103	0.2995	42.7	42	10.9	3708.6	1442.7	5151.3	3.57	82.482	3297.0	1854.3
104	0.3068	43.0	42	11.2	3726.4	1367.2	5093.6	3.73	83.006	3230.4	1863.2
105	0.3143	43.3	43	11.5	3739.7	1378.6	5118.2	3.71	82.927	3248.4	1869.8
106	0.3209	43.6	43	11.7	3754.6	1382.4	5137.0	3.72	82.900	3259.7	1877.3
107	0.3285	43.8	43	12.0	3761.3	1394.5	5155.8	3.70	82.816	3275.1	1880.6
108	0.3352	44.1	43	12.2	3773.8	1442.3	5216.1	3.62	82.484	3329.2	1886.9
109	0.3416	44.4	44	12.5	3791.0	1396.7	5187.8	3.71	82.800	3292.3	1895.5
110	0.3488	44.6	44	12.7	3797.4	1406.9	5204.4	3.70	82.730	3305.6	1898.7
111	0.3552	44.8	44	13.0	3802.5	1411.2	5213.7	3.69	82.700	3312.5	1901.3
112	0.3625	45.0	44	13.2	3814.0	1424.9	5238.8	3.68	82.605	3331.8	1907.0
113	0.3693	45.2	44	13.5	3821.3	1454.7	5276.0	3.63	82.398	3365.4	1910.7
114	0.3765	45.3	45	13.7	3819.0	1551.3	5370.3	3.46	81.727	3460.8	1909.5
115	0.3832	45.7	45	14.0	3841.4	1439.7	5281.1	3.67	82.502	3360.4	1920.7
116	0.3901	46.0	45	14.2	3851.4	1443.4	5294.8	3.67	82.476	3369.1	1925.7
117	0.3976	46.0	45	14.5	3844.2	1456.6	5300.9	3.64	82.384	3378.8	1922.1
118	0.4045	46.3	46	14.8	3856.6	1479.2	5335.8	3.61	82.228	3407.5	1928.3
119	0.4113	46.5	46	15.0	3857.4	1549.6	5407.0	3.49	81.739	3478.3	1928.7
120	0.4187	46.8	46	15.3	3869.1	1472.7	5341.8	3.63	82.273	3407.3	1934.6
		"(Confident	ial Inforn	nation: Pri	wilepedath		Vork Pro			

					Test Rea	adings for	Specime	n No. 3	3		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
121	0.4255	47.0	46	15.5	3880.6	1479.2	5359.7	3.62	82.228	3419.4	1940.3
122	0.4330	47.1	46	15.8	3878.0	1485.2	5363.2	3.61	82.186	3424.2	1939.0
123	0.4394	47.3	47	16.0	3877.5	1497.3	5374.8	3.59	82.102	3436.1	1938.8
124	0.4463	47.4	47	16.3	3880.7	1552.6	5433.3	3.50	81.718	3492.9	1940.4
125	0.4541	47.6	47	16.6	3883.7	1495.3	5378.9	3.60	82.116	3437.1	1941.8
126	0.4607	47.8	47	16.8	3885.2	1505.9	5391.0	3.58	82.043	3448.4	1942.6
127	0.4677	48.0	47	17.1	3889.6	1508.2	5397.8	3.58	82.026	3453.0	1944.8
128	0.4748	48.1	47	17.3	3889.0	1523.8	5412.8	3.55	81.918	3468.3	1944.5
129	0.4812	48.2	48	17.6	3887.6	1571.8	5459.4	3.47	81.584	3515.6	1943.8
130	0.4890	48.3	48	17.8	3878.3	1728.4	5606.7	3.24	80.497	3667.5	1939.1
131	0.4960	48.6	48	18.1	3891.5	1530.4	5421.9	3.54	81.872	3476.1	1945.8
132	0.5028	48.8	48	18.3	3896.8	1532.2	5429.0	3.54	81.860	3480.6	1948.4
133	0.5095	49.0	48	18.6	3902.6	1544.5	5447.1	3.53	81.775	3495.8	1951.3
134	0.5167	49.2	48	18.9	3901.2	1586.9	5488.1	3.46	81.480	3537.5	1950.6
135	0.5237	49.1	48	19.1	3880.3	1708.3	5588.6	3.27	80.637	3648.5	1940.2
136	0.5303	49.4	49	19.4	3896.5	1548.2	5444.6	3.52	81.749	3496.4	1948.2
137	0.5379	49.7	49	19.6	3903.2	1554.7	5457.9	3.51	81.703	3506.3	1951.6
138	0.5440	49.8	49	19.9	3903.2	1556.8	5460.0	3.51	81.689	3508.4	1951.6
139	0.5513	50.1	49	20.1	3909.8	1593.7	5503.6	3.45	81.432	3548.7	1954.9
140	0.5582	50.1	49	20.4	3903.3	1695.5	5598.9	3.30	80.725	3647.2	1951.7
141	0.5583	50.1	49	20.4	3901.3	1696.3	5597.6	3.30	80.720	3646.9	1950.7

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90												
Project	Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA											
Project No. 18274-001-00												
Boring No.	B-4A				Natural WC:	#DIV/0!						
Depth, ft.	6.1 - 7				Preparation:	Wet (as-received)						
Cup No.	1077				No. Points:							
Percent Retained o	on No. 40	Estimated or Tested 0.0										
Original sample de	escription:	Very stiff brown and gray clay with sand lenses, pockets and seams (CL4)										

I	Classification (fraction passing No. 40	Liquid Limit =	31	Date:	10/1/2013
	sieve)	Plastic Limit =	22	Tested By:	SLB
	CL	Plasticity Index =	9	Checked By:	SLC
		·		-	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

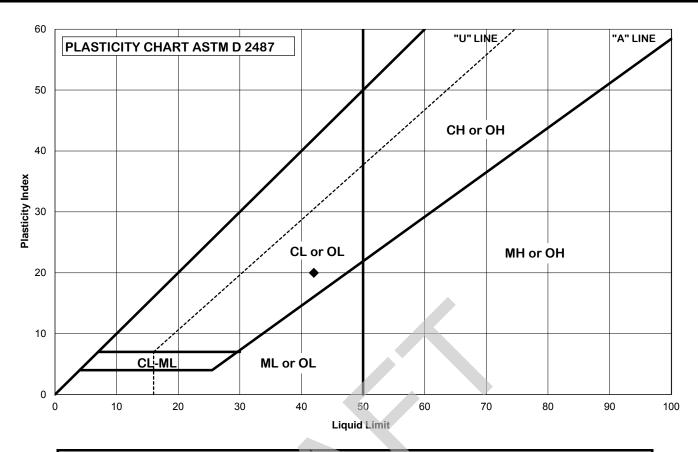
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	roject LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	18274-001-00					
Boring No.	B-4A				Natural WC:	#DIV/0!
Depth, ft.	7 - 8				Preparation:	Wet (as-received)
Cup No.	1355				No. Points:	
Percent Retained on No. 40		0		Estimated or Tested		0.0
Original sample descrip	Stiff brown and gray clay with 3" laminated silt and clay layers and sand lenses, pockets and seams (CL6)					

Classification (fraction passing No. 40	Liquid Limit =	46	Date:	9/30/2013
sieve)	Plastic Limit =	20	Tested By:	ВН
CL	Plasticity Index =	26	Checked By:	SLC
	•		-	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00					
Boring No.	B-4A				Natural WC:	#DIV/0!	
Depth, ft.	10 - 11				Preparation:	Wet (as-received)	
Cup No.	1355				No. Points:		
Percent Retained on No. 40		0		Estimate	d or Tested	0.0	
Original sample d	Stiff gray	Stiff gray clay with sand lenses, pockets and seams and 2" silt layer (CL4)					

		_	_	
Classification (fraction passing No. 40	Liquid Limit =	42	Date:	10/3/2013
sieve)	Plastic Limit =	22	Tested By:	ВН
CL	Plasticity Index =	20	Checked By:	SLC
			_	*

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

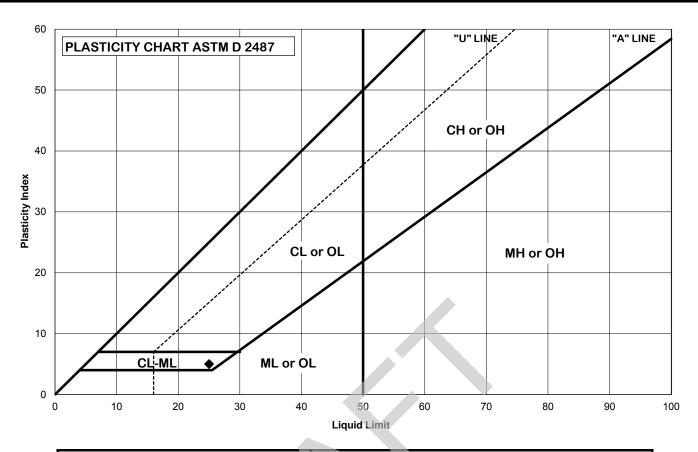
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	18274-00	18274-001-00					
Boring No.	B-4A	B-4A			Natural WC:	#DIV/0!	
Depth, ft.	<u>15 - 16</u>	15 - 16			Preparation:	Wet (as-received)	
Cup No.	1356		Y				
Percent Retained on No. 40		0	Estimated or Tested		0.0		
Original sample des	Very soft gray	Very soft gray clay with sand lenses and 2x 2 1/2" clayey silt layers (CL4)					

Classification					
(fraction passing No. 40					
sieve)					
CL					

Date:	10/2/2013
Tested By:	SLC
Checked By:	SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

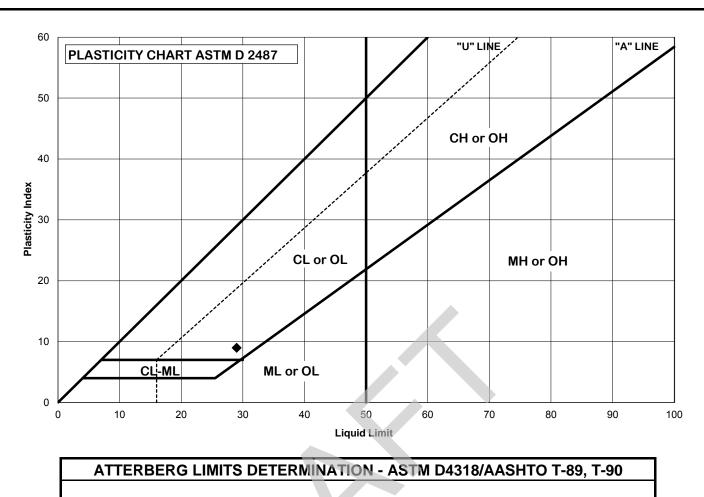
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00					
Boring No.	B-4A					Natural WC:	#DIV/0!
Depth, ft.	<mark>45 - 46</mark>	45 - 46				Preparation:	Wet (as-received)
Cup No.	1355					No. Points:	
Percent Retained on No. 40		0		E	Estimated or Tested		0.0
Original sample description:		Medium	Medium dense gray clayey silt (ML)				

Date:
d By:
d By:
ł

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/2/2013 MSM SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

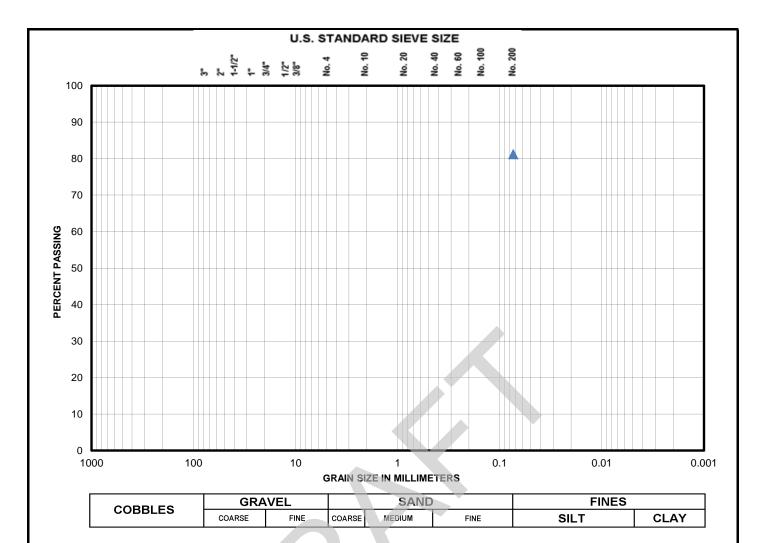
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00					
Boring No.	B-4A				Natural WC:	#DIV/0!	
Depth, ft.	50 - 51	50 - 51			Preparation:	Wet (as-received)	
Cup No.	<mark>1355</mark>				No. Points:		
Percent Retained on No. 40		0		Estimated	or Tested	0.0	
Original sample description:		Medium q	Medium gray clay (CL4)				

Classification	Liquid Limit =	29	Date:
(fraction passing No. 40 sieve)	Plastic Limit =	20	Tested By:
CL	Plasticity Index =	9	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/2/2013 MSM SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

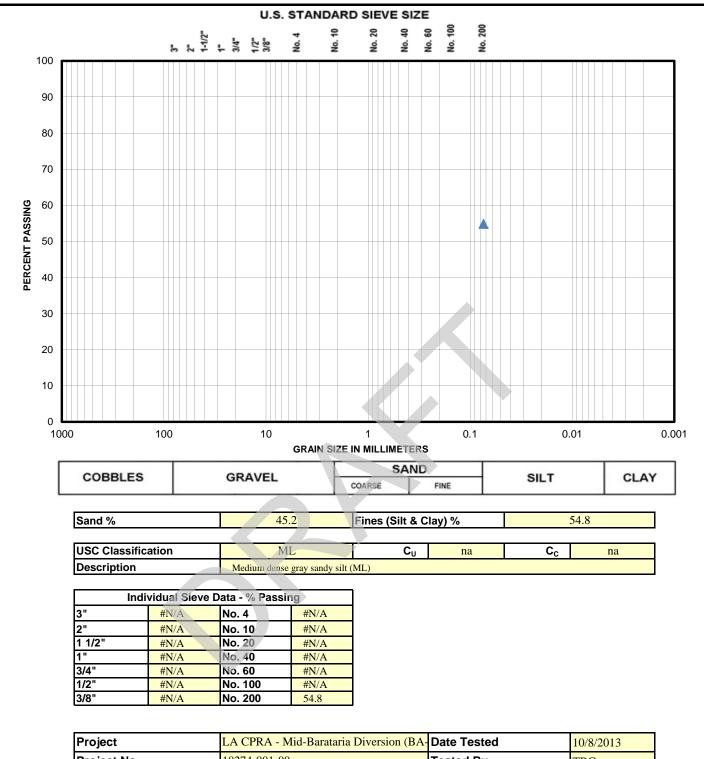
Sand %		18.8	18.8 Fines (Silt & Clay) %		81.2	
USC Classification		CL4	Cu	na	C _c	na
Description (D 2488)	Soft gray clay with 3 inch clayey silt layer (CL4)					

Individual Sieve Data - % Passing				
3"	#N/A	No. 4	#N/A	
2"	#N/A	No. 10	#N/A	
1 1/2"	#N/A	No. 20	#N/A	
1"	#N/A	No. 40	#N/A	
3/4"	#N/A	No. 60	#N/A	
1/2"	#N/A	No. 100	#N/A	
3/8"	#N/A	No. 200	81.2	

Project	LA CPRA - M	fid-Barataria Diversion (BA-153), Plaqu	<mark>len</mark> Date Tested	10/8/2013
Project No.	18274-001-00		Tested By	TRC
Boring No.	B-4A		Checked By	TRC
Source/Depth (feet)		51 - 52	Sieve Type	200 Wash

Method A was used for the 200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.



ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

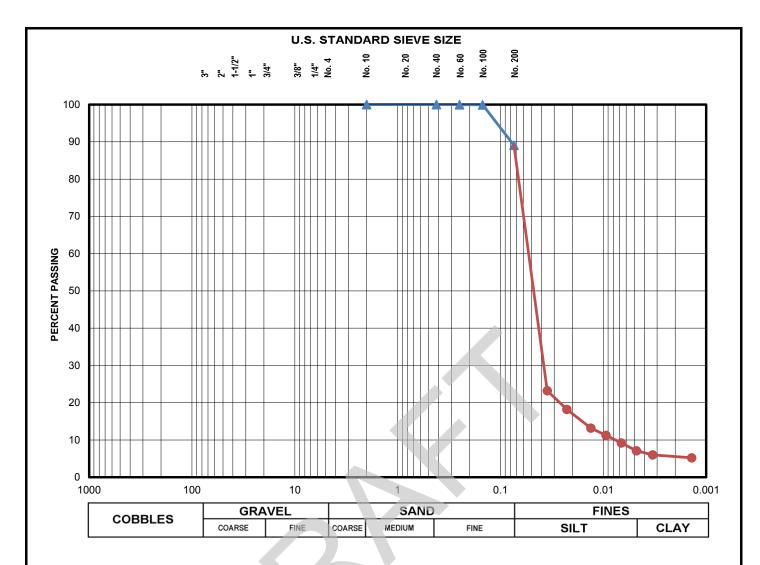
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

Project	LA CPRA - Mid-Barataria Diversion (BA-	Date Tested	10/8/2013
Project No.	18274-001-00	Tested By	TRC
Boring No.	B-4A	Checked By	TRC
Source/Depth (feet)	55 - 56	Sieve Type	200 Wash

Method A was used for the 200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

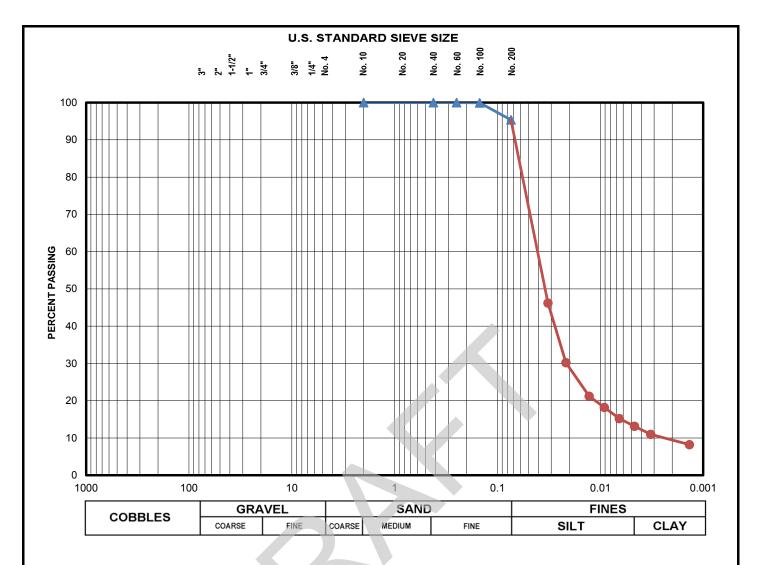
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

AASHTO T 11 (No. 200) SIEVE ANALYSIS OF FINE AGGREGATES

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488) Media	m dense	gray sandy silt with 1 1/2" clay layer (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.9
1/4"	100.0	No. 200	89.1


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	0

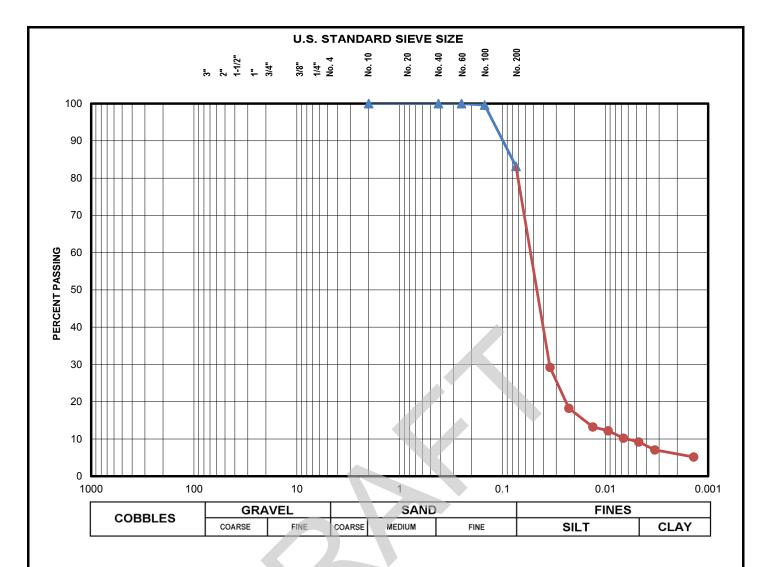
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/11/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	13 - 14		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	e gray clayey silt (ML)	

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.9
1/4"	100.0	No. 200	95.4


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	0

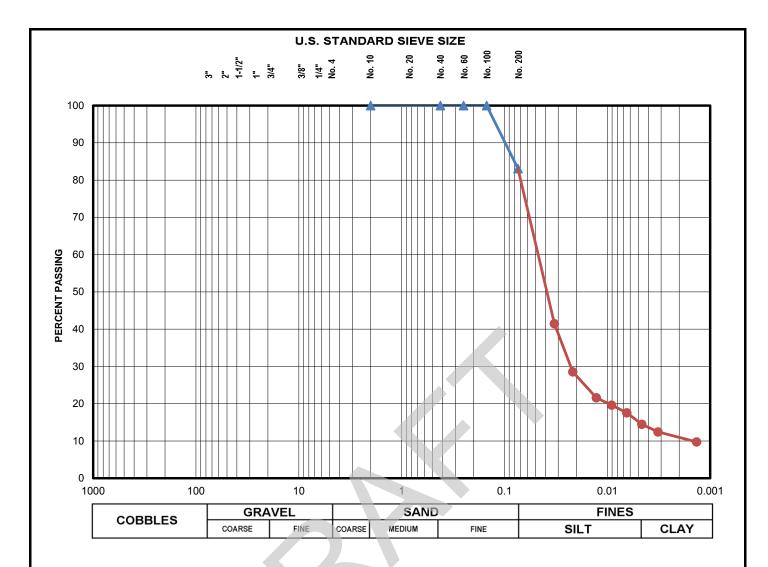
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/11/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	17 - 18		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488) Me	dium dense g	gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.6
1/4"	100.0	No. 200	83.2


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1354

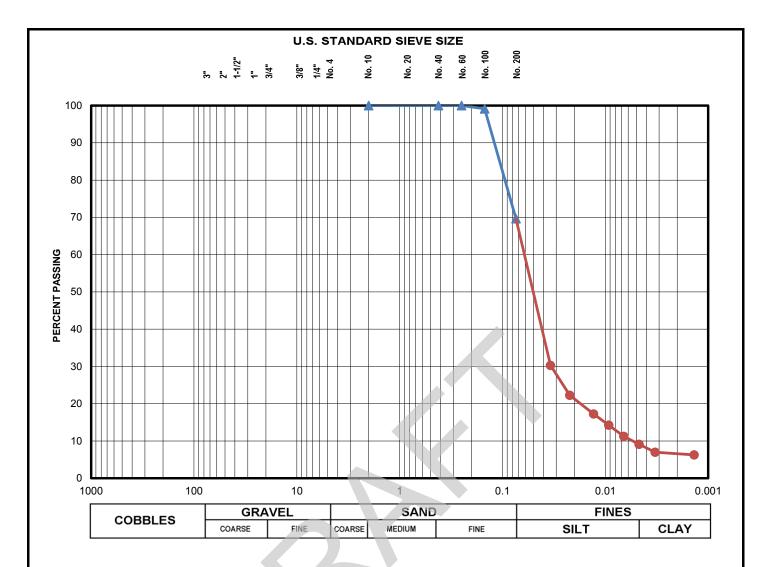
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/10/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SLC
Source/Depth (feet)	21 - 22		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Very loose gray s	sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	83.1


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1150

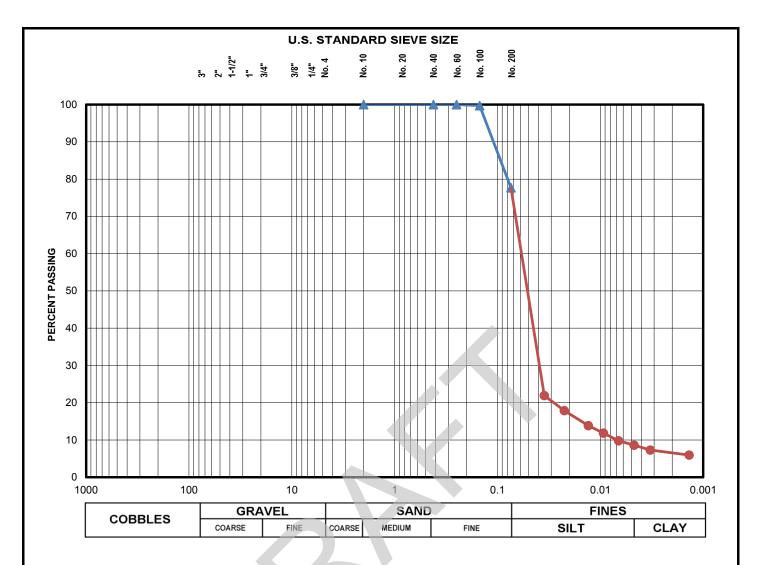
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SLC
Source/Depth (feet)	38 - 39.5		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	dium dense gray sa	ndy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.2
1/4"	100.0	No. 200	69.7


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1143
Hydro jar ID:	0

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/11/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	53 - 54		

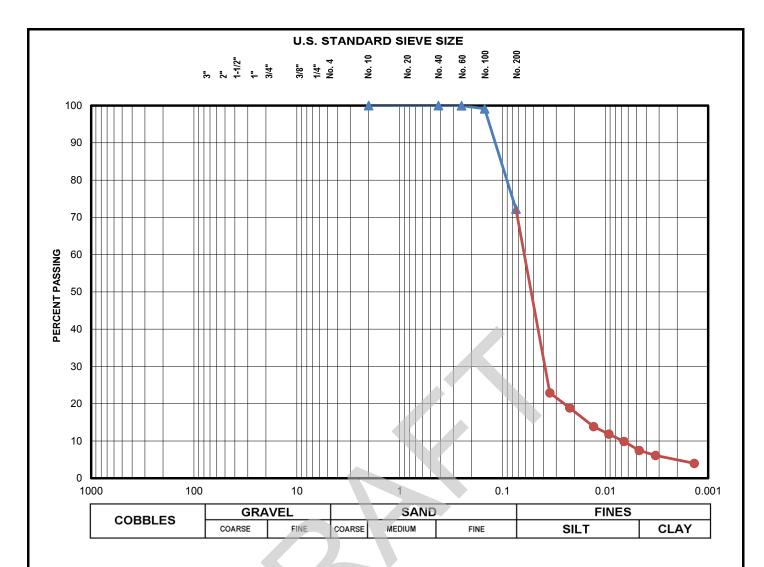
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

		· · · · · · · · · · · · · · · · · · ·
Description (D 2488)	Medium dense	gray sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.7
1/4"	100.0	No. 200	77.7

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	0

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/11/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	57 - 58		

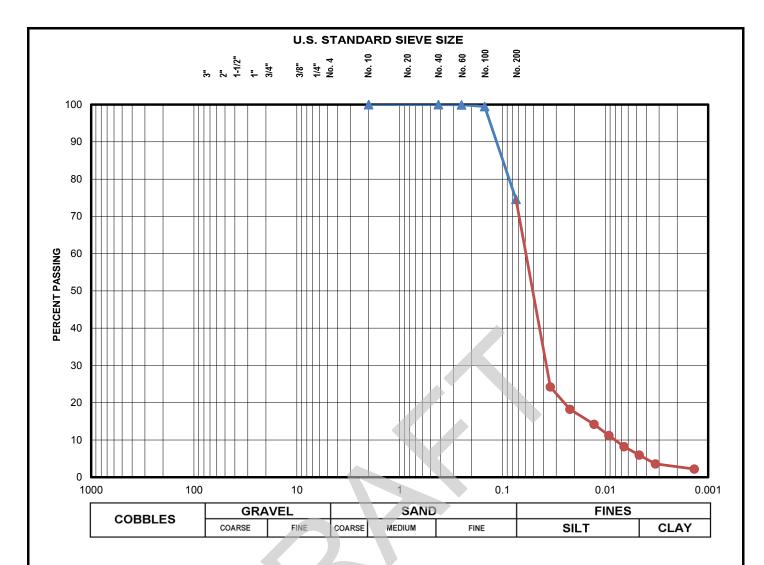
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

Description (D 2488)	Medium dense	gray sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.2
1/4"	100.0	No. 200	72.2


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	0

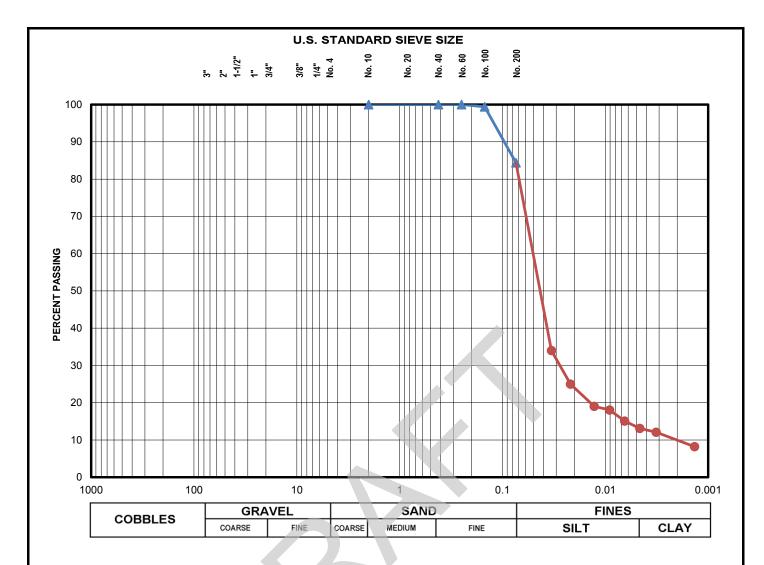
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/11/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	61 - 62		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	dium dense gray sa	ndy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.5
1/4"	100.0	No. 200	74.6


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	0

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/11/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	67 - 68		

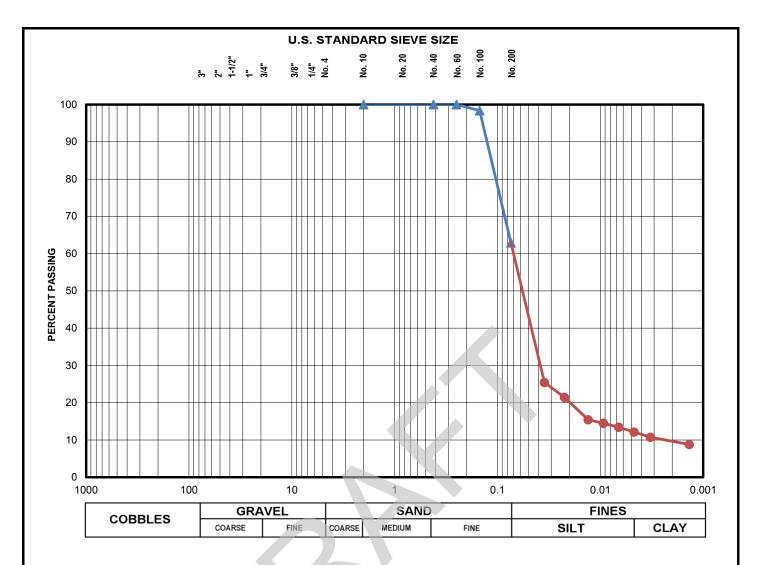
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	e gray clayey sandy silt (ML)	

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.4
1/4"	100.0	No. 200	84.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1156

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SLC
Source/Depth (feet)	70.5 - 72		

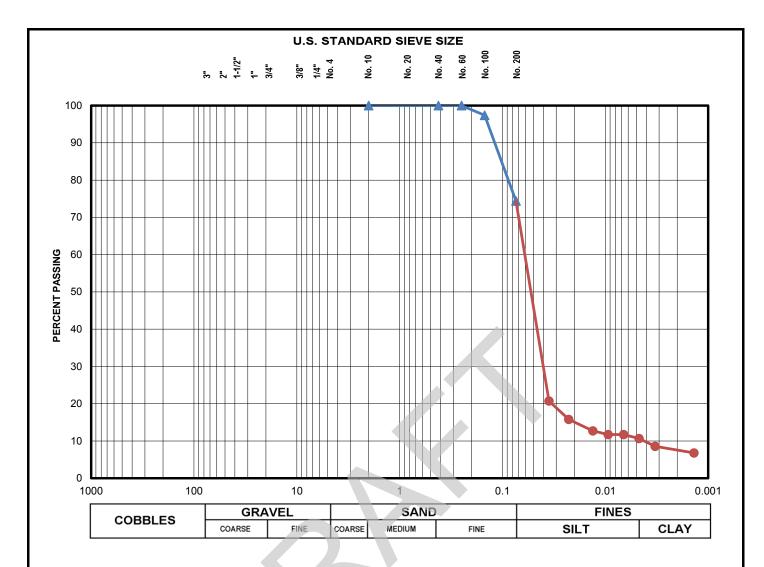
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

		· · · · · · · · · · · · · · · · · · ·
Description (D 2488)	Medium gray cl	ayey sandy silt (ML)

Individual Sieve Data - % Passing						
3"	100.0	No. 4	100.0			
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	100.0			
3/8"	100.0	No. 100	98.4			
1/4"	100.0	No. 200	62.9			


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	0

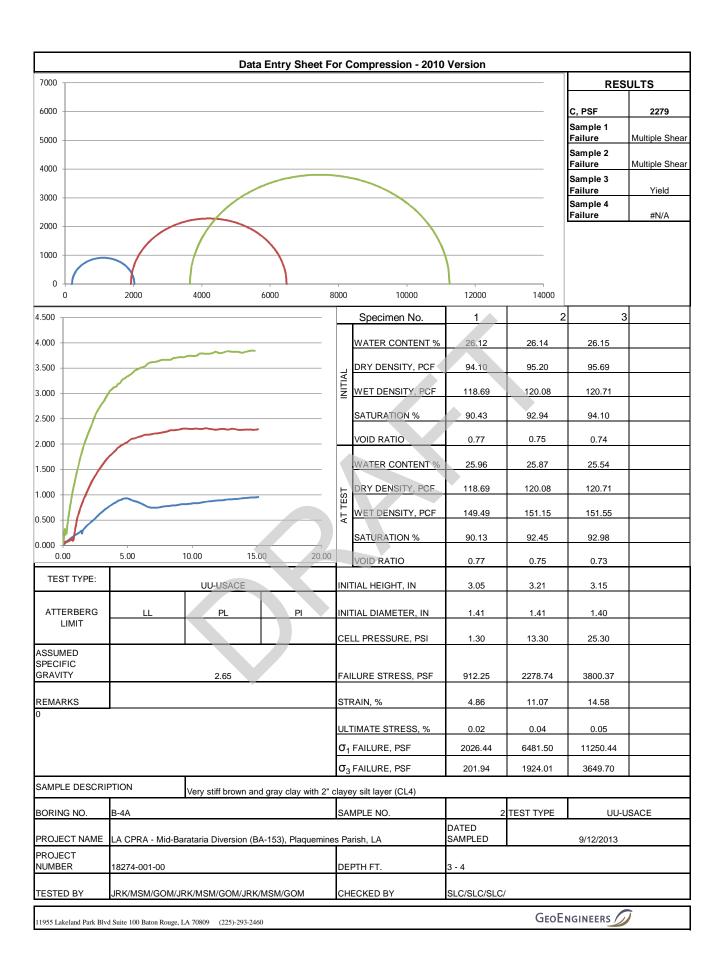
^{*}assumed unless noted

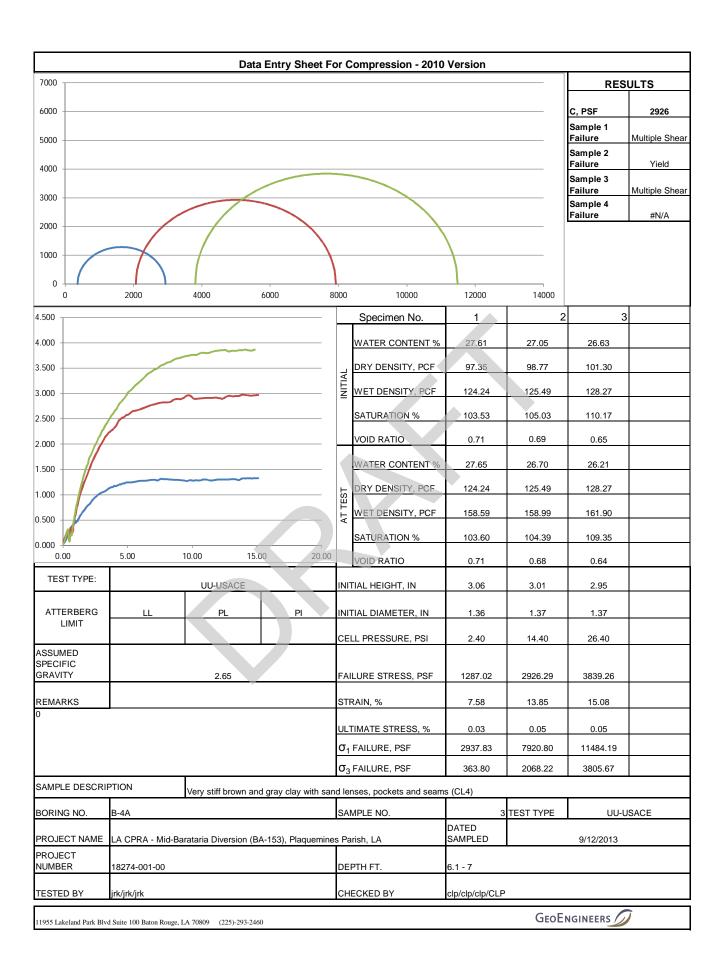
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/10/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SEF
Source/Depth (feet)	80.5 - 82		

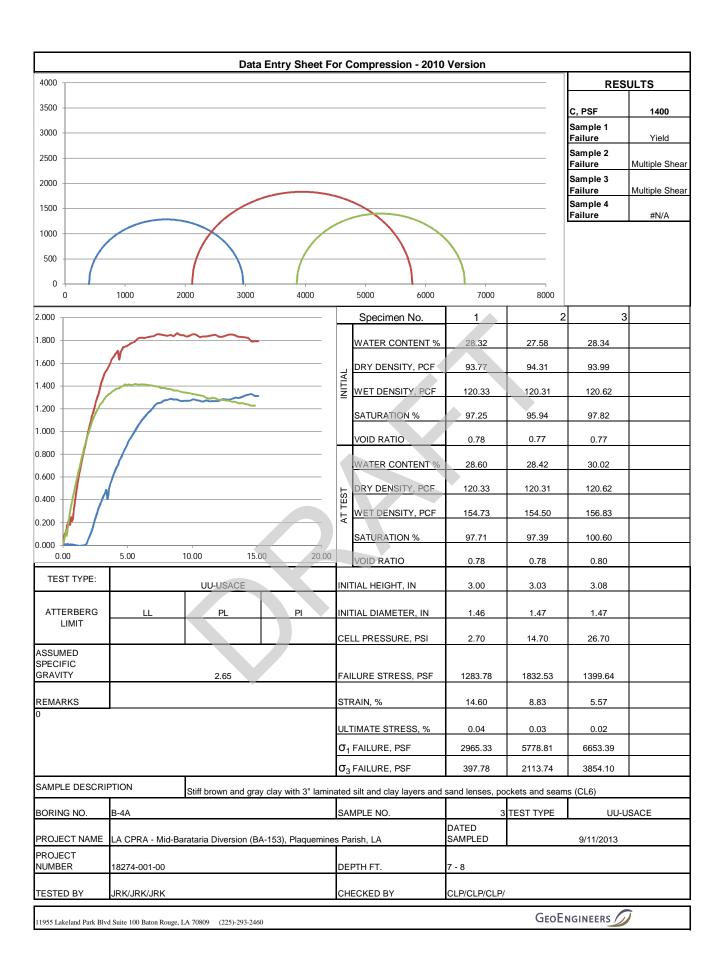
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

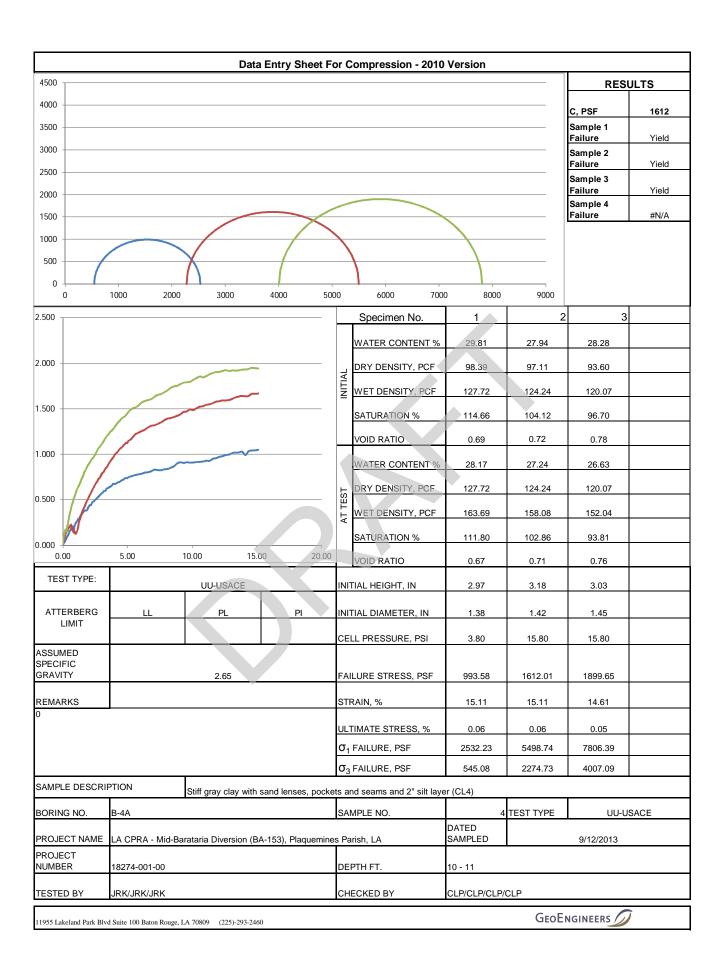
Description (D 2488)	e gray clayey sandy silt (ML)	

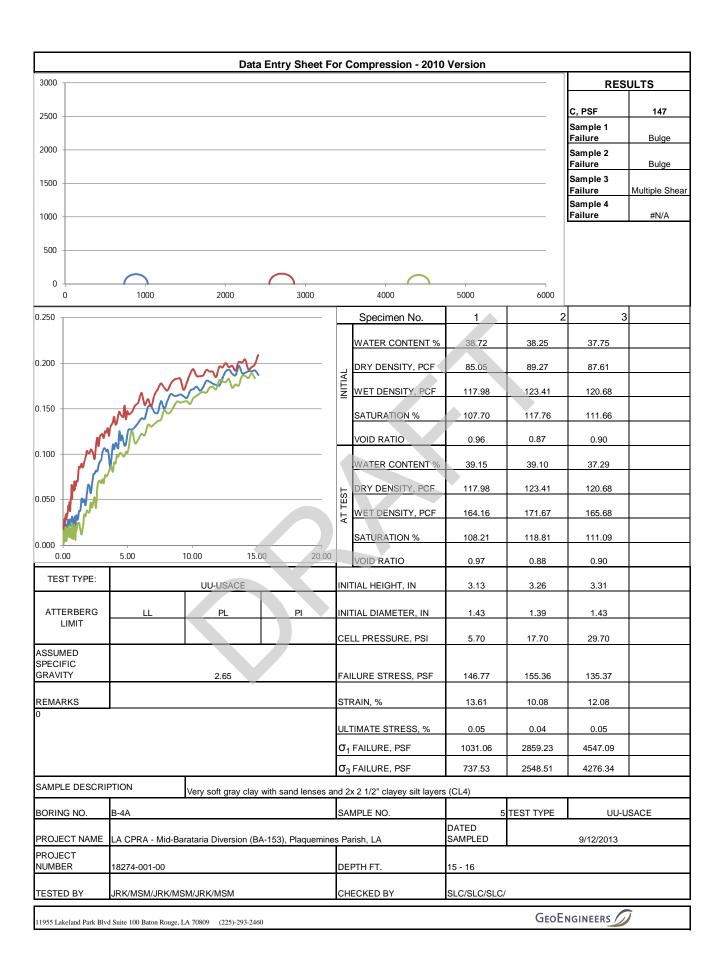
Individual Sieve Data - % Passing						
3"	100.0 No. 4					
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	100.0			
3/8"	100.0	No. 100	97.4			
1/4"	100.0	No. 200	74.4			

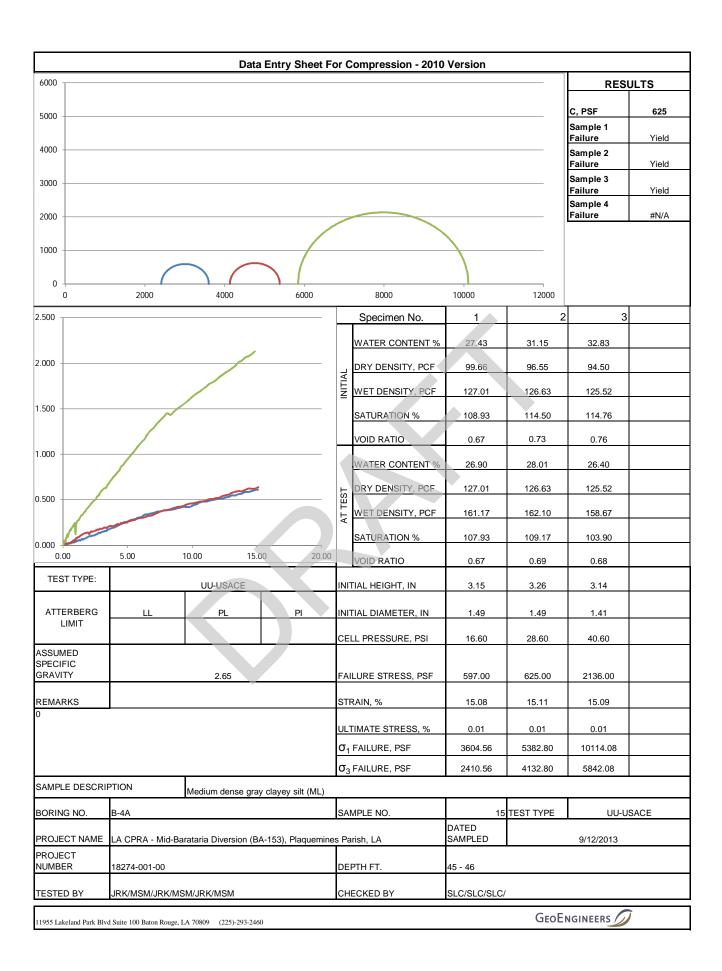

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1156

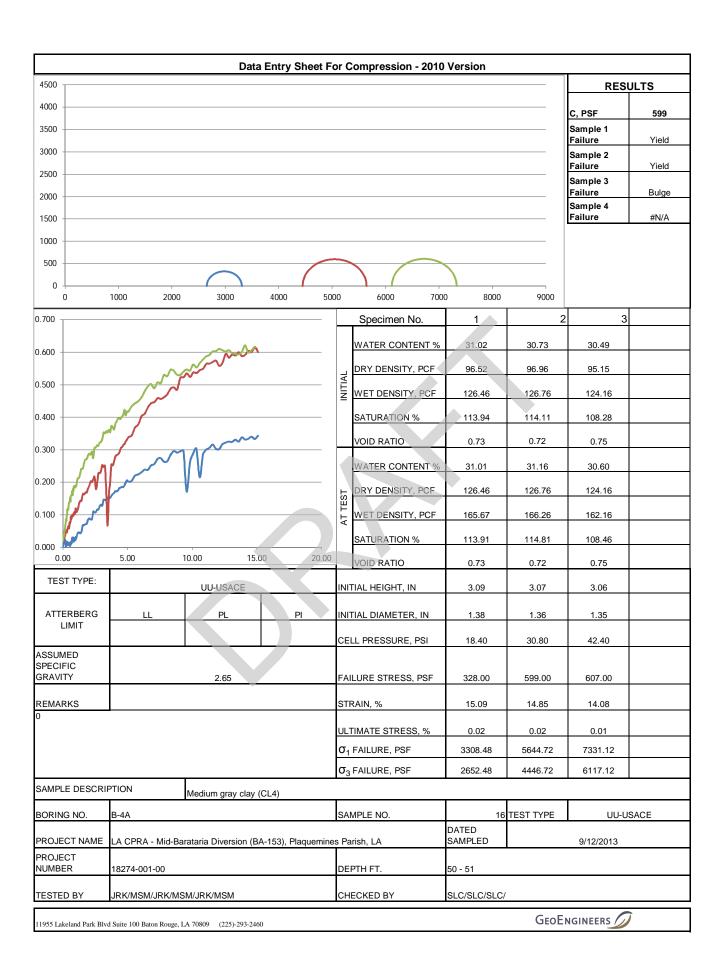

^{*}assumed unless noted

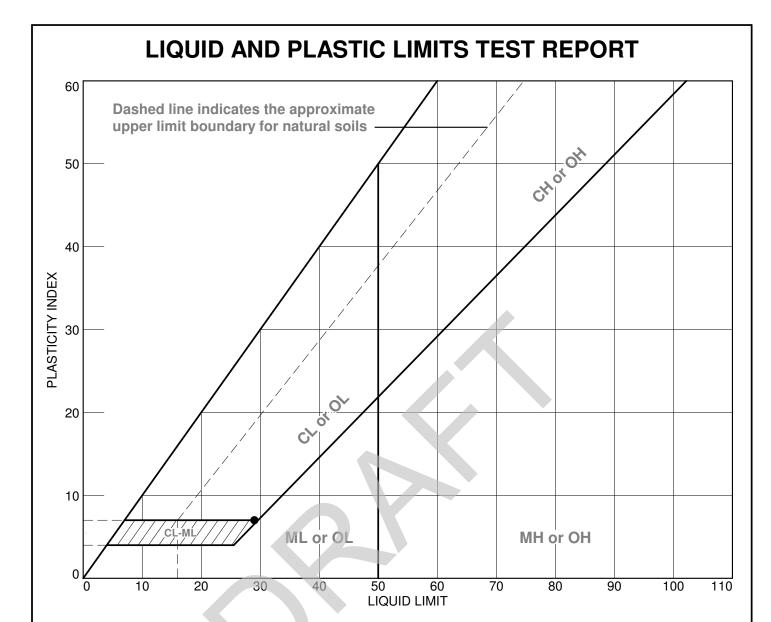

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	B-4A	Checked By	SLC
Source/Depth (feet)	85.5 - 87		




ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

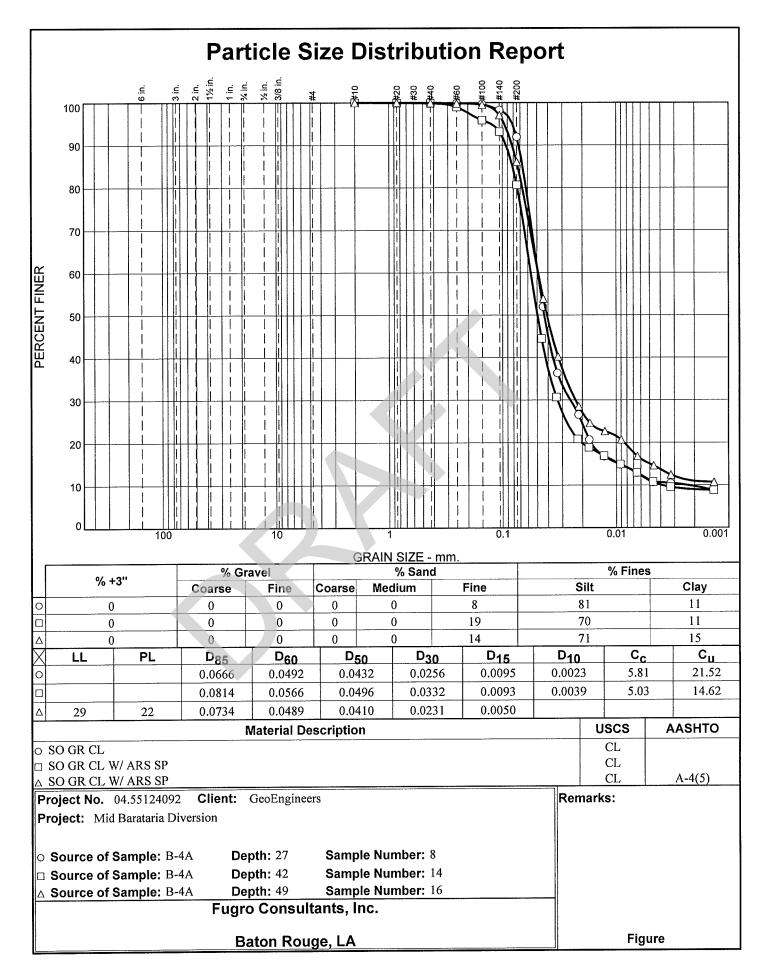


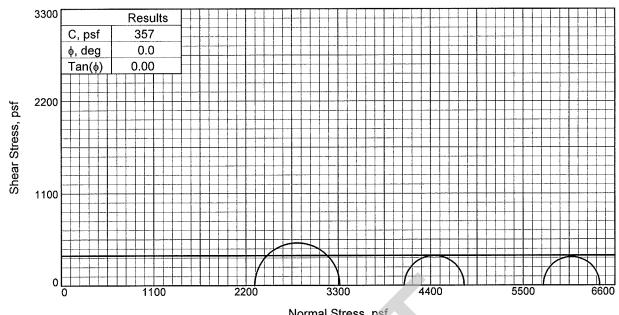




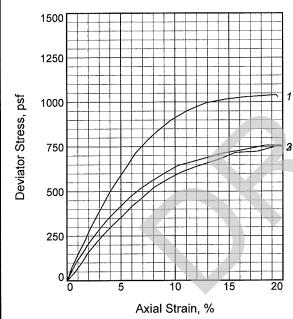
SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	B-4A	16	49		22	29	7	ML

Fugro Consultants, Inc.


Client: GeoEngineers


Project: Mid Barataria Diversion

Baton Rouge, LA


Project No.: 04.55124092

Figure

Normal Stress, psf

	Saı	mple No.		1	2	3	
		Water Content, % Dry Density, pcf		31.2 89.2	32.5 89.2	31.8 89.6	
	nitial	Saturation, %		95.3	99.6	98.2	
1	-	Void Ratio Diameter, in.		0.8761 1.42	0.8758 1.42	1.48	
		Height, in.		2.88	2.77	2.82	
		Water Content, %		31.2	32.5	31.8	
3	**	Dry Density, pcf		89.2	89.2	89.6	
	Test	Saturation, %		95.3	99.6		
	¥	Void Ratio		0.8761	0.8758		
	1	Diameter, in.		1.42	1.42		
		Height, in.		2.88	2.77	2.82	
	Str	Strain rate, in./min.		1.00	1.00	1.00	
	Ba	ck Pressure, psi		0.00	0.00	0.00	
	Се	Il Pressure, psi		15.99	28.38	39.85	
	Fai	Fail. Stress, psf Strain, %		1016	712	680	
	5			14.6	14.3	14.1	
	Ult. Stress, psf			1016	712	680	
	5	Strain, %		14.6	14.3	14.1	
_	σ ₁	Failure, psf		3318	4799	6418	
	σ_3	Failure, psf		2303	4087	5738	

Type of Test:

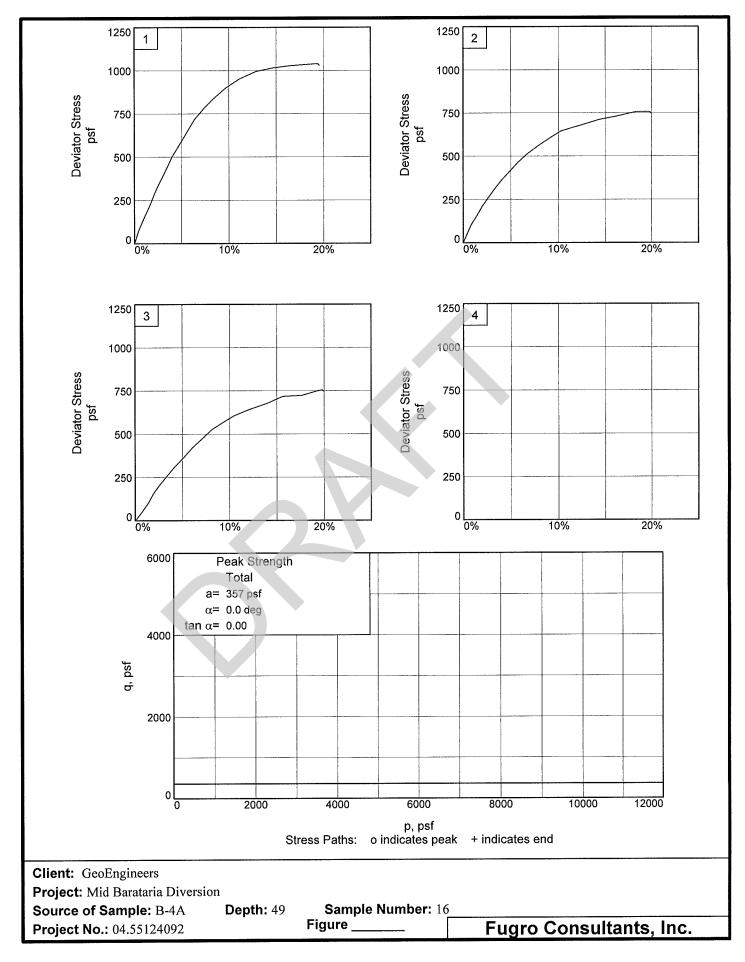
Unconsolidated Undrained Sample Type: UNDISTURBED Description: SO GR CL W/ ARS SP

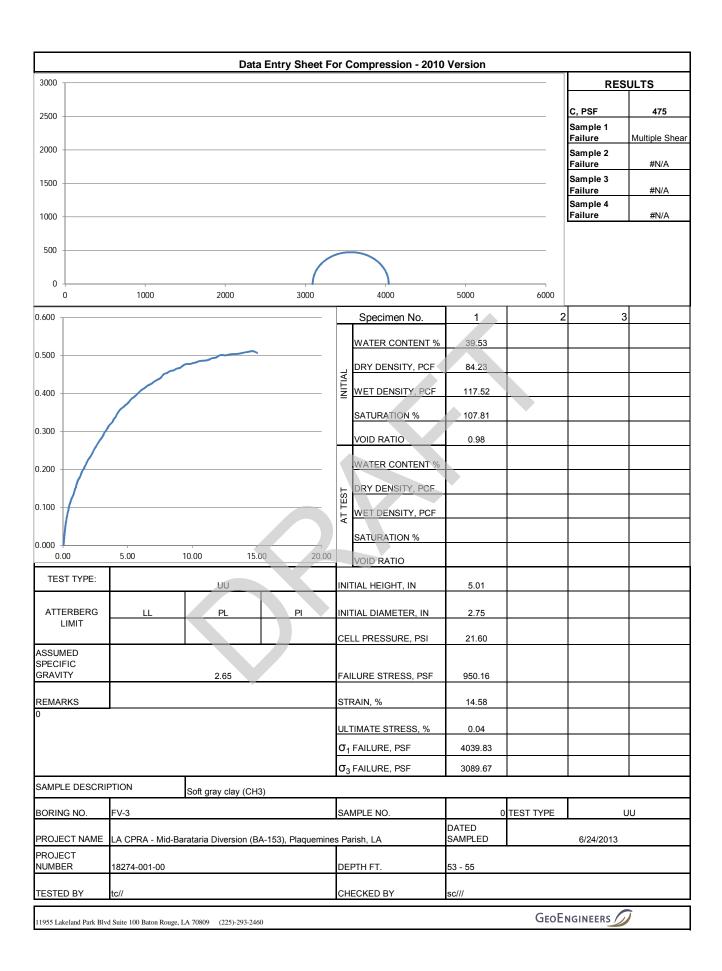
LL= 29 **PL=** 22 **PI=** 7 **Assumed Specific Gravity=** 2.68

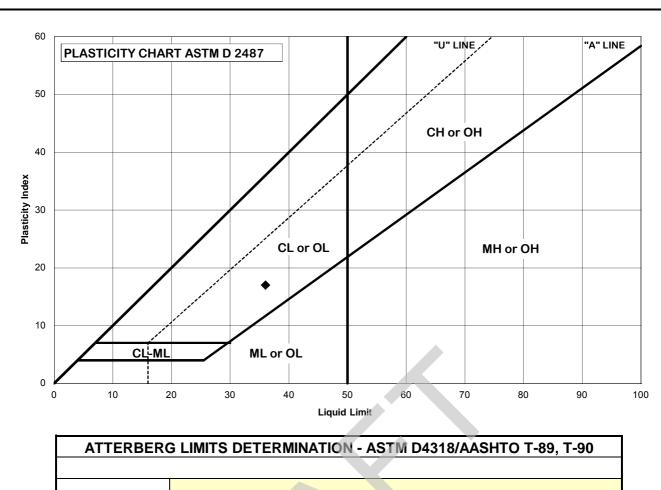
Remarks:

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: B-4A Depth: 49


Sample Number: 16


Proj. No.: 04.55124092 Date Sampled: 10/8/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

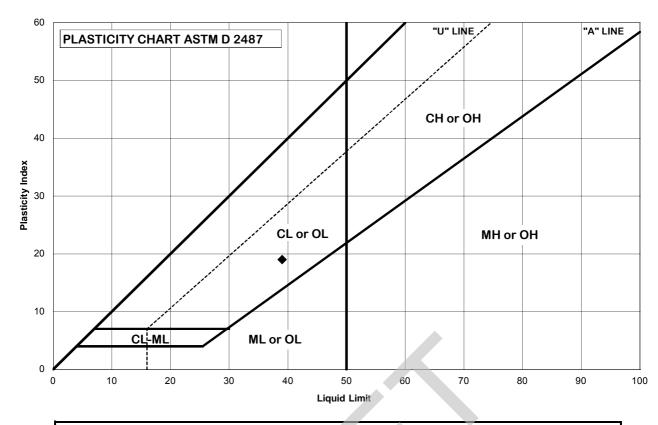
Figure

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-00</mark>	18274-001-00				
Boring No.	IS-1A				Natural WC:	#DIV/0!
Depth, ft.	<mark>2.3 - 3</mark>				Preparation:	Wet (as-received)
Cup No.	1077	1077			No. Points:	
Percent Retained on No. 40		0	Estimated or Tested		0.0	
Original sample d	Very stiff tar	Very stiff tan and gray clay with sand pockets and sand seams (CL4)				

Classification	Liquid Limit =	36	Date:	7/1/2013
(fraction passing No. 40 sieve)	Plastic Limit =	19	Tested By:	ВН
CL	Plasticity Index =	17	Checked By:	SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	18274-00	18274-001-00					
Boring No.	IS-1A				Natural WC:	#DIV/0!	
Depth, ft.	7 - 8				Preparation:	Wet (as-received)	
Cup No.	1077	1077			No. Points:		
Percent Retained on No. 40		0		Estimated or 1	Tested	0.0	
Original sample desci	Soft gray clay	Soft gray clay with sand pockets and seams (CL4)					

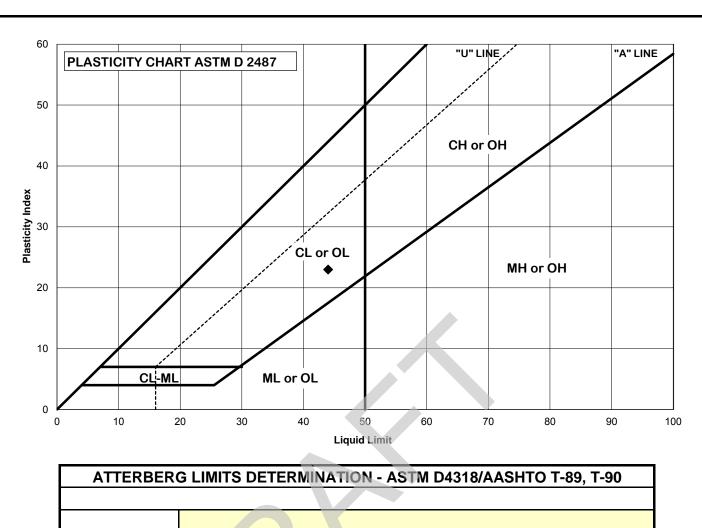
Classification	Liquid Limit =	39	Date:	6/30/2013
(fraction passing No. 40 sieve)	Plastic Limit =	20	Tested By:	ВН
CL	Plasticity Index =	19	Checked By:	SC
	•			

sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the

performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section



NOTES:

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	18274-00 ⁻²	18274-001-00					
Boring No.	IS-1A				Natural WC:	#DIV/0!	
Depth, ft.	9 - 10				Preparation:	Air Dried	
Cup No.	1077	77			No. Points:		
Percent Retained on No. 40		0	Estimated or Tested		0.0		
Original sample d	Soft gray clay with organic material (CL6)						

Classification
(fraction passing No. 40 sieve)

CL

Liquid Limit = 44

Plastic Limit = 21

Plasticity Index = 23

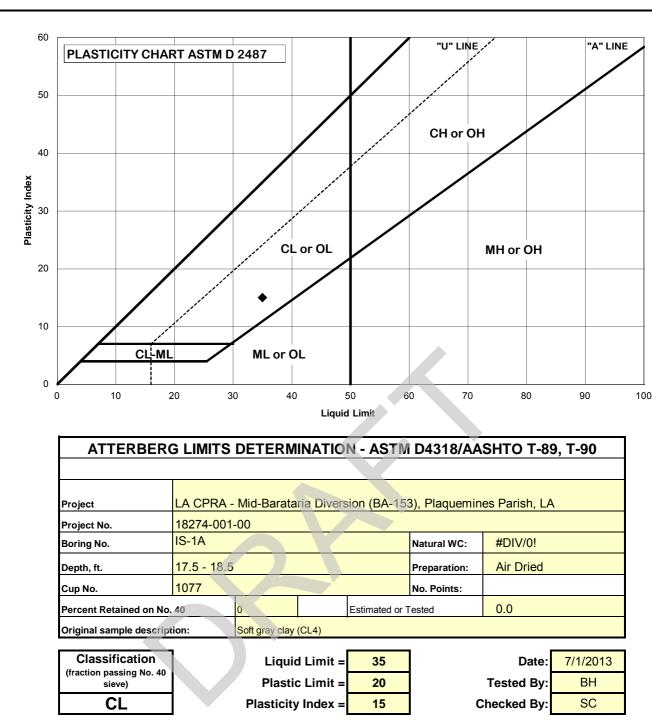
 Date:
 7/2/2013

 Tested By:
 BH

 Checked By:
 SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

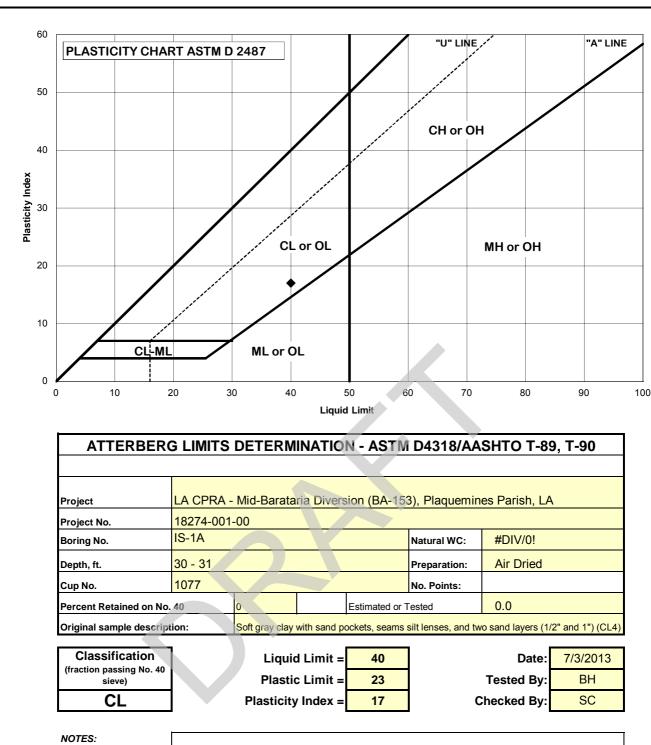
ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

sieve)	i idotio Eliilit =		rooted by.	5
CL	Plasticity Index =	15	Checked By:	SC
NOTES:				

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

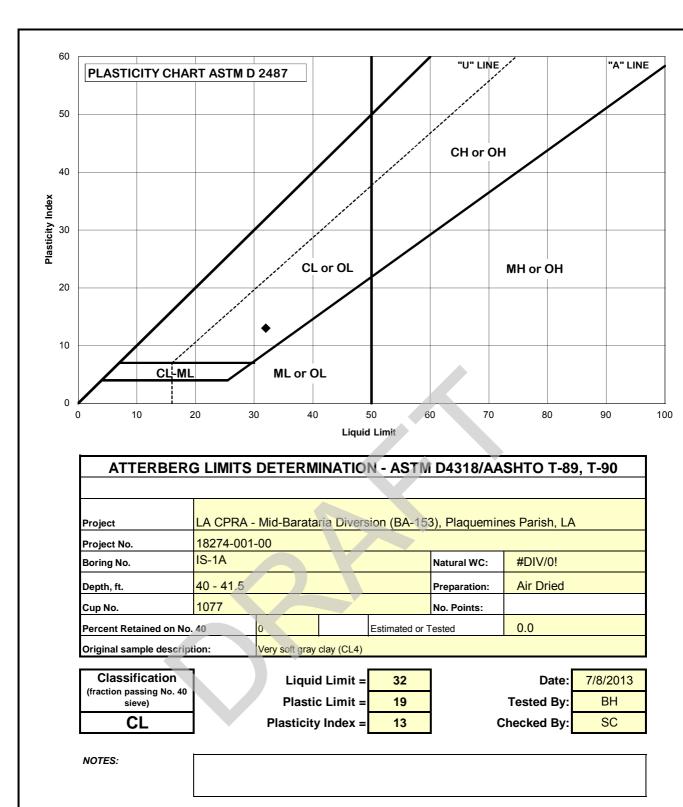
GEOENGINEERS	
--------------	--

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

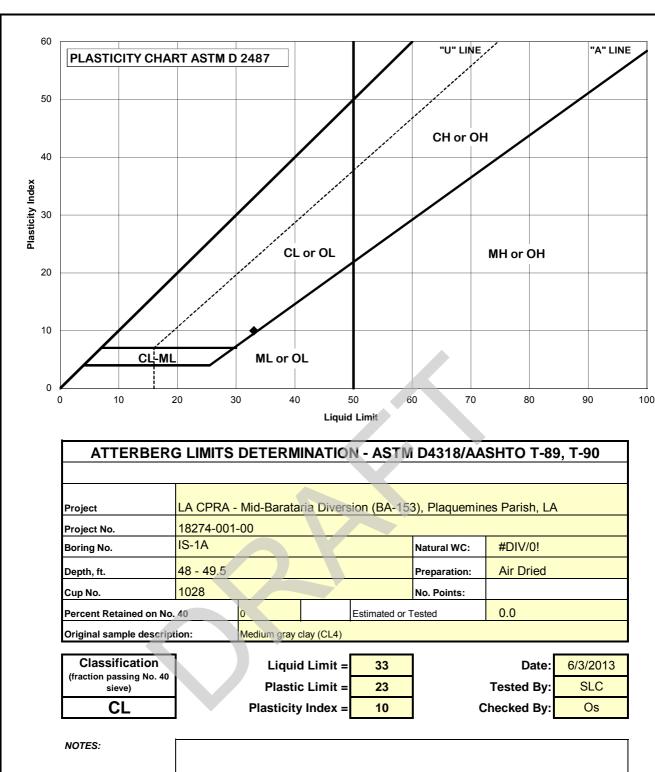

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

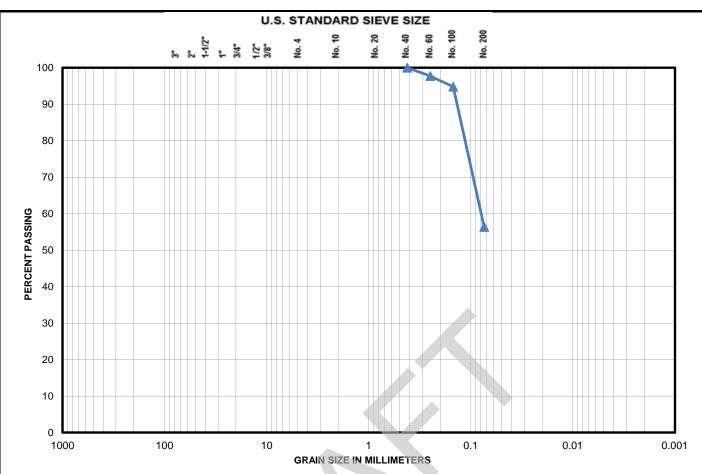
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section



11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

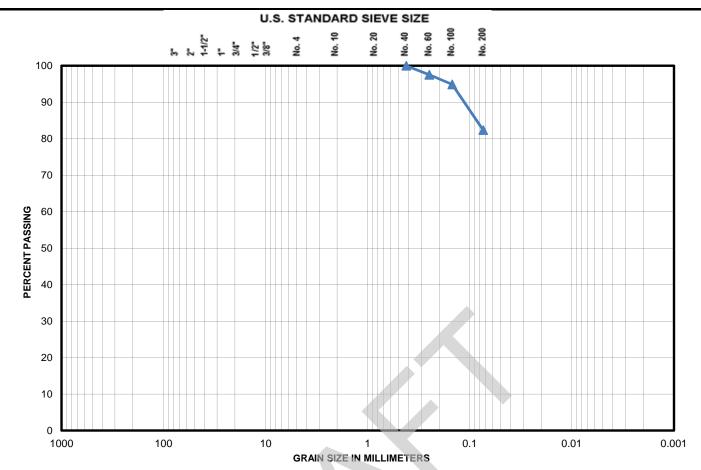
sample as a whole must be considered when using these tests to evaluate properties of a soil.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRA	VEL	SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %			0.0	Medium Sand	%		0.0
Fine Gravel %			0.0	Fine Sand % 43.6		43.6	
Coarse Sand %			0.0	Fines (Silt & Clay) %		56.4	
USC Classification			X	Cu	na	C _c	na
Description (D 2488)	Loose gray sandy silt with 3" and 1 1/2" clavey silt layers (ML)						


Individual Sieve Data - % Passing							
3"	#N/A	No. 4	#N/A				
2"	#N/A	No. 10	#N/A				
1 1/2"	#N/A	No. 20	#N/A				
1"	#N/A	No. 40	100.0				
3/4"	#N/A	No. 60	97.7				
1/2"	#N/A	No. 100	94.8				
3/8"	#N/A	No. 200	56.4				

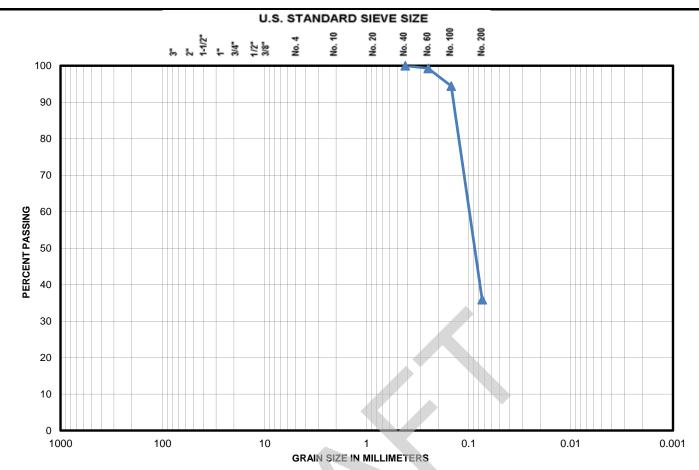
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquer	Date Tested	7/10/2013
Project No.	18274-001-00	Tested By	JK
Boring No.	IS-1A	Checked By	SC
Source/Dept	h (feet) 35 - 36	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRI ES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	%		0.0	
Fine Gravel %		0.0	Fine Sand % 17.6		17.6		
Coarse Sand %		0.0	Fines (Silt & C	Fines (Silt & Clay) %		82.4	
USC Classification		ML	Cυ	na	C _c	na	
Description (D 2488)	Loose gray sandy silt with 4" clay layer (ML)						


Individual Sieve Data - % Passing							
3"	#N/A	No. 4	#N/A				
2"	#N/A	No. 10	#N/A				
1 1/2"	#N/A	No. 20	#N/A				
1"	#N/A	No. 40	100.0				
3/4"	#N/A	No. 60	97.5				
1/2"	#N/A	No. 100	94.9				
3/8"	#N/A	No. 200	82.4				

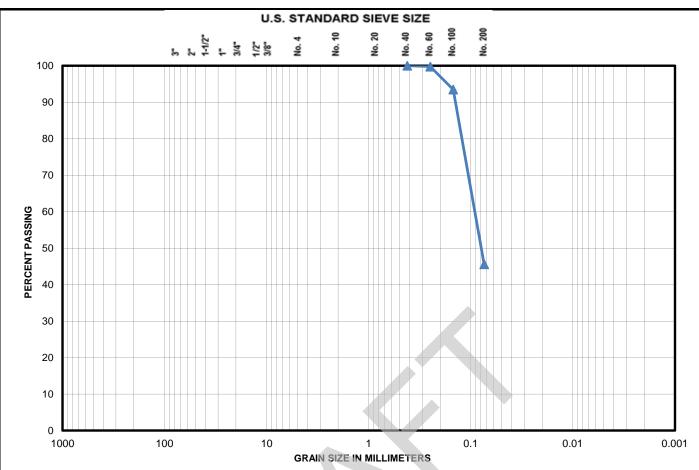
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	7/10/2013
Project No.	18274-001-00	Tested By	JK
Boring No.	IS-1A	Checked By	SC
Source/Dept	h (feet) 45 - 46	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

COBBLES	GRA	VEL	SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	Medium Sand %		0.0
Fine Gravel %		0.0	Fine Sand %	Fine Sand %		64.1
Coarse Sand %		0.0	Fines (Silt & C	Fines (Silt & Clay) %		35.9
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty sa	and				


Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	100.0					
3/4"	#N/A	No. 60	99.3					
1/2"	#N/A	No. 100	94.4					
3/8"	#N/A	No. 200	35.9					

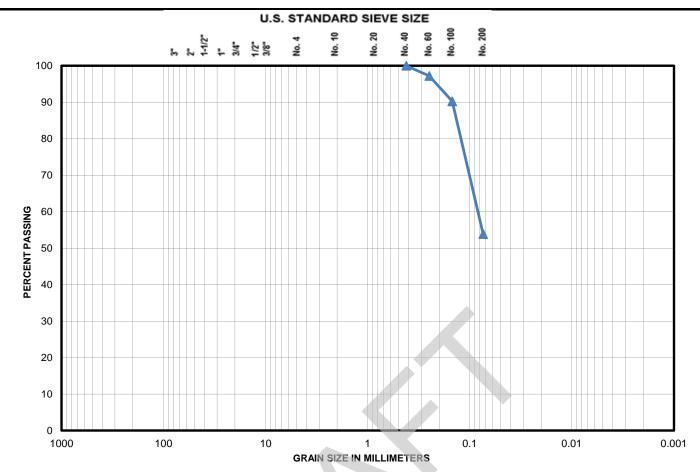
Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaq	uem Date Tested	7/10/2013
Project No.	18274-001-00		Tested By	JK
Boring No.	IS-1A		Checked By	SC
Source/Dept	h (feet)	64 - 65.5	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

COBBLES	GRA	VEL	SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	Medium Sand %		0.0
Fine Gravel %		0.0	Fine Sand %	Fine Sand %		54.4
Coarse Sand %		0.0	Fines (Silt & C	Fines (Silt & Clay) %		45.6
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty sa	and				


Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	100.0					
3/4"	#N/A	No. 60	99.8					
1/2"	#N/A	No. 100	93.5					
3/8"	#N/A	No. 200	45.6					

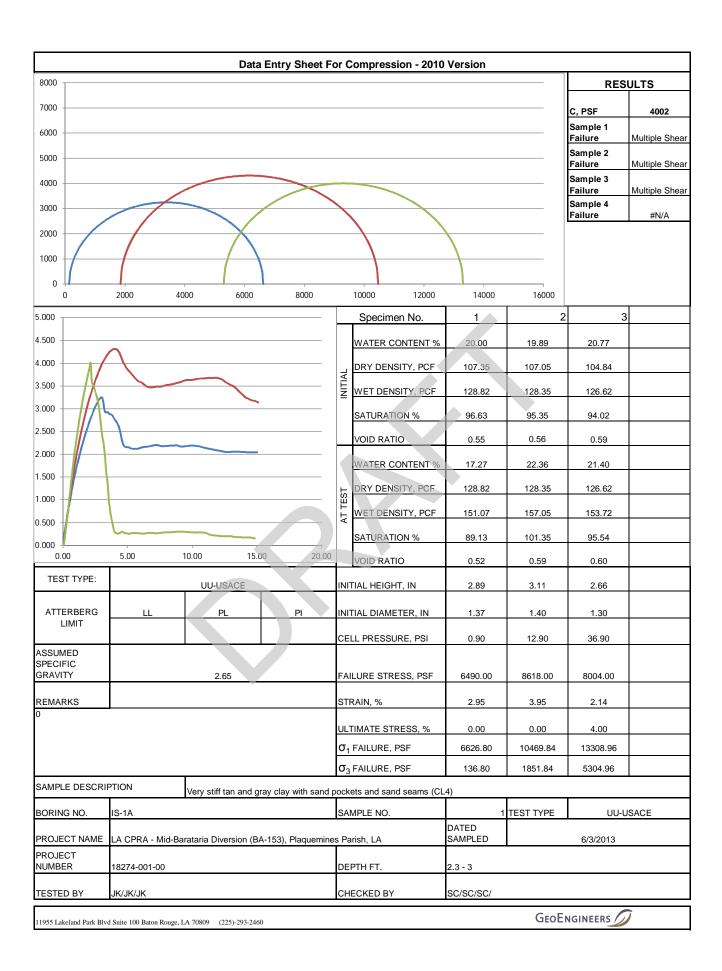
Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaquen	Date Tested	7/10/2013
Project No.	18274-001-00		Tested By	JK
Boring No.	IS-1A		Checked By	SC
Source/Dept	th (feet)	79 - 80.5	Sieve Type	Dry Sieve

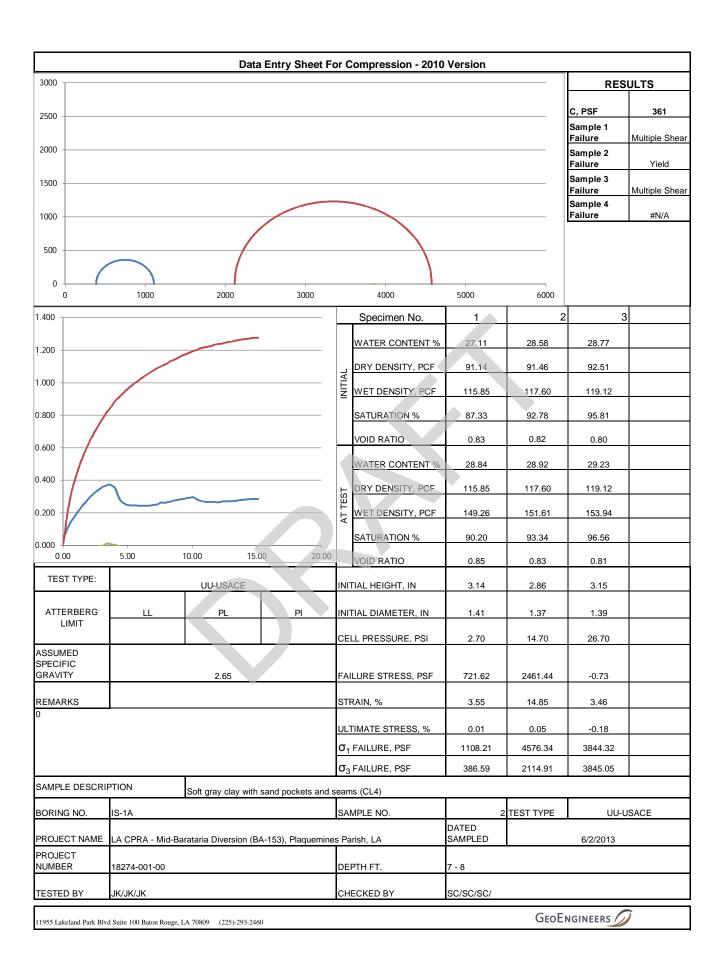
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

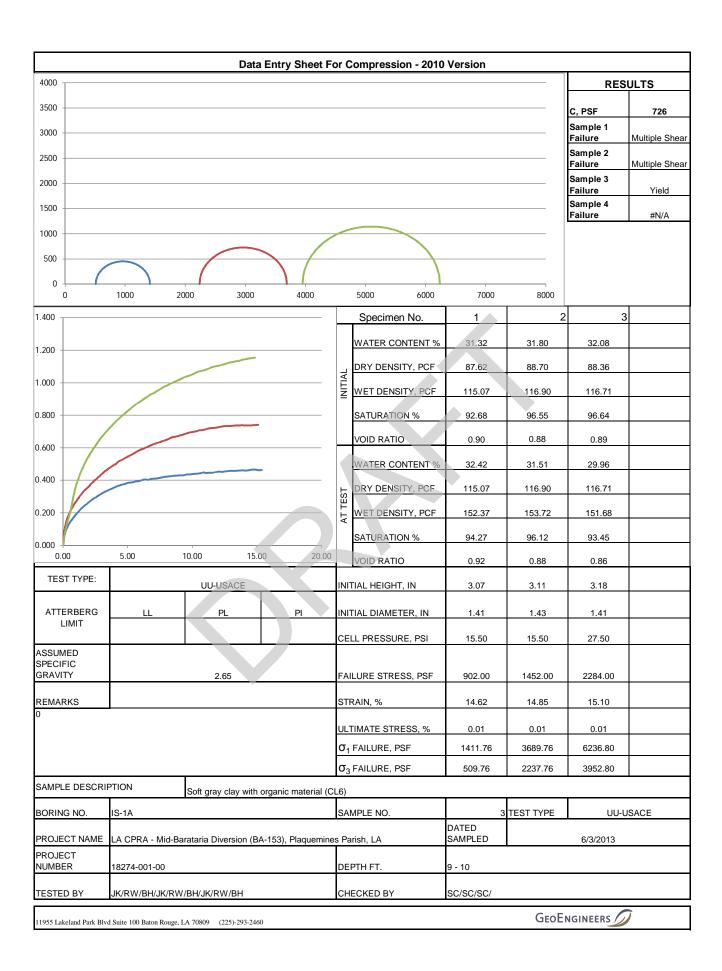
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

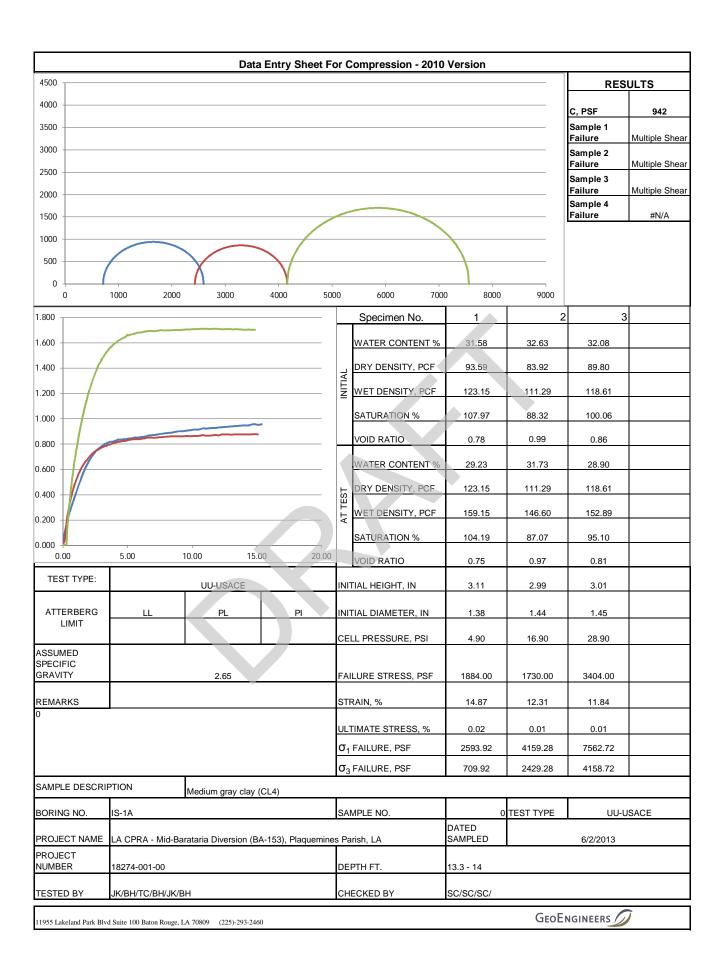
COPPLES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

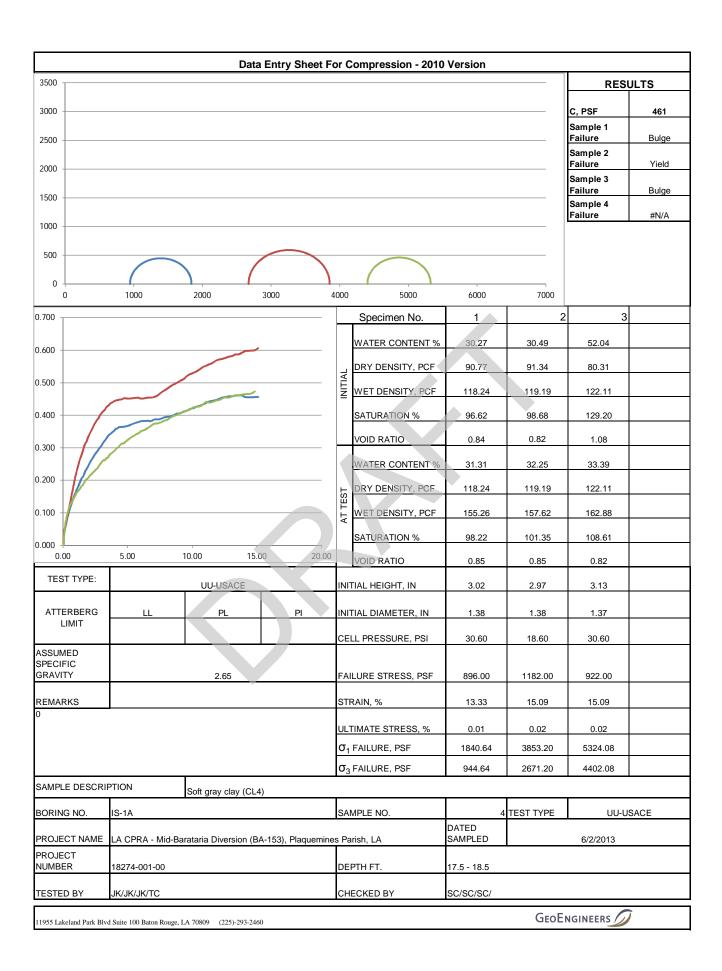
Coarse Gravel %		0.0		Medium Sand %		0.0	
Fine Gravel %		0.0		Fine Sand % 46.1		46.1	
Coarse Sand %		0.0		Fines (Silt & Clay) %			53.9
USC Classification		ML		Cu	na	C _c	na
Description (D 2488) Medium dense gray sandy silt (ML)							

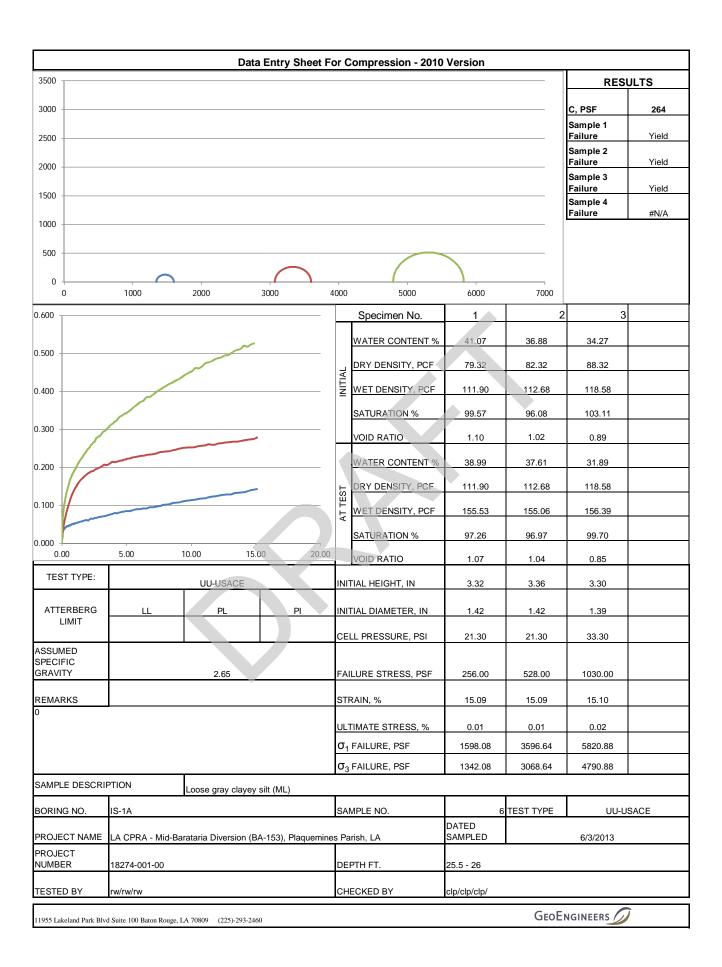

Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	100.0					
3/4"	#N/A	No. 60	97.2					
1/2"	#N/A	No. 100	90.3					
3/8"	#N/A	No. 200	53.9					

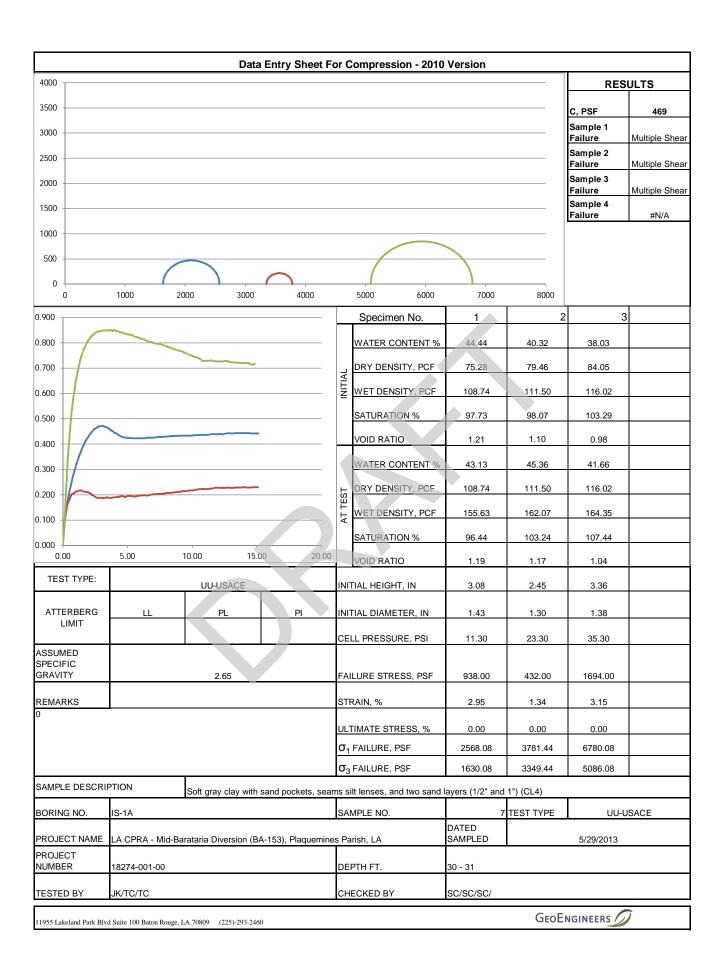

Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaqu	en Date Tested	7/10/2013
Project No.	18274-001-00		Tested By	JK
Boring No.	IS-1A		Checked By	SC
Source/Depth (feet)		91.5 - 93	Sieve Type	Dry Sieve

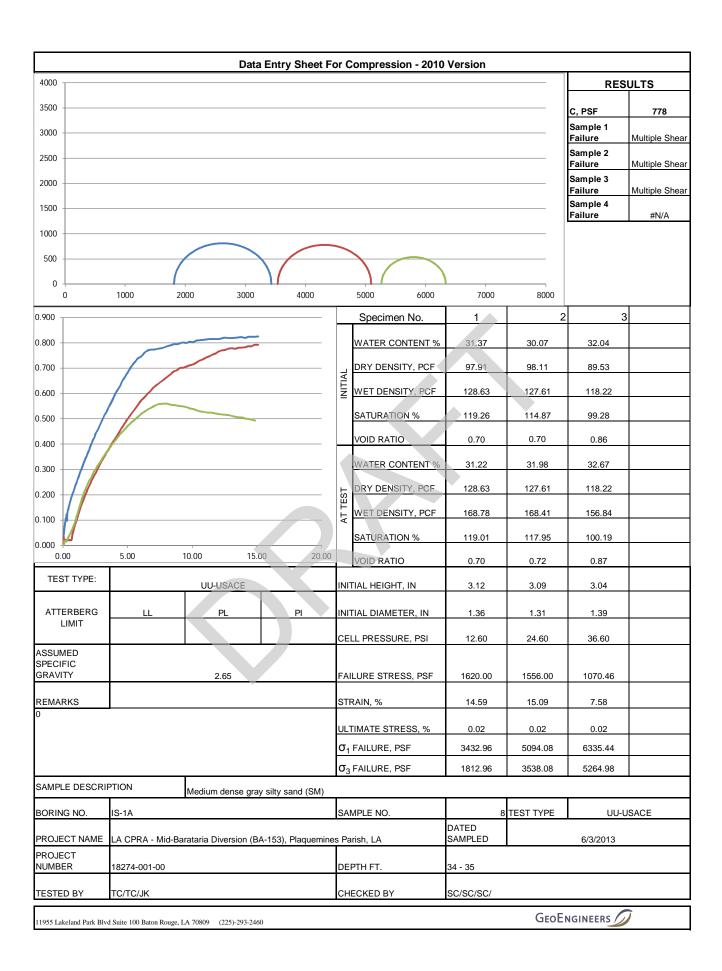


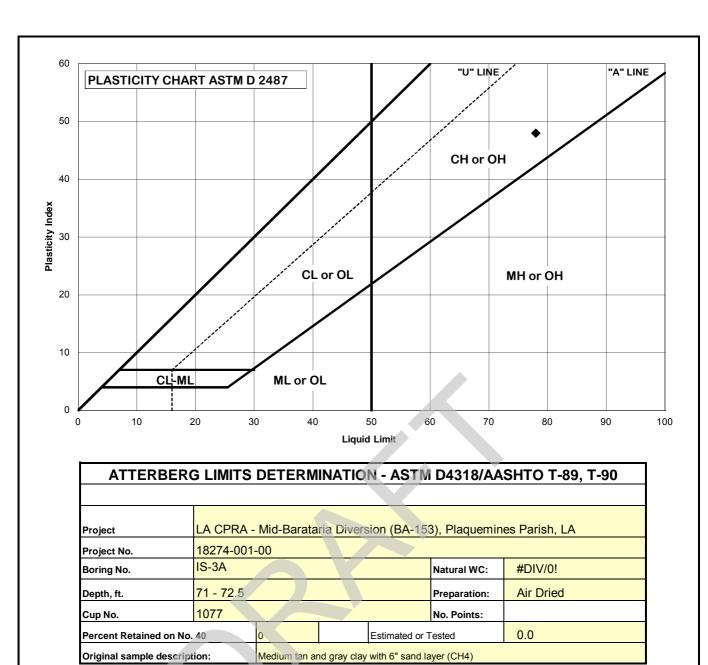

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS


LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA









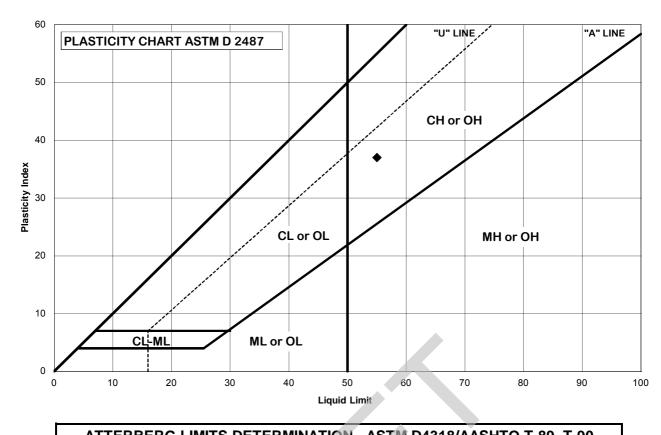
	The state of the s		
Classification	Liquid Limit =	78	ι
(fraction passing No. 40 sieve)	Plastic Limit =	30	Tested
СН	Plasticity Index =	48	Checked
	•		-

Date: 7/1/2013
Tested By: BH
Checked By: SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were


GEOENGINEERS

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

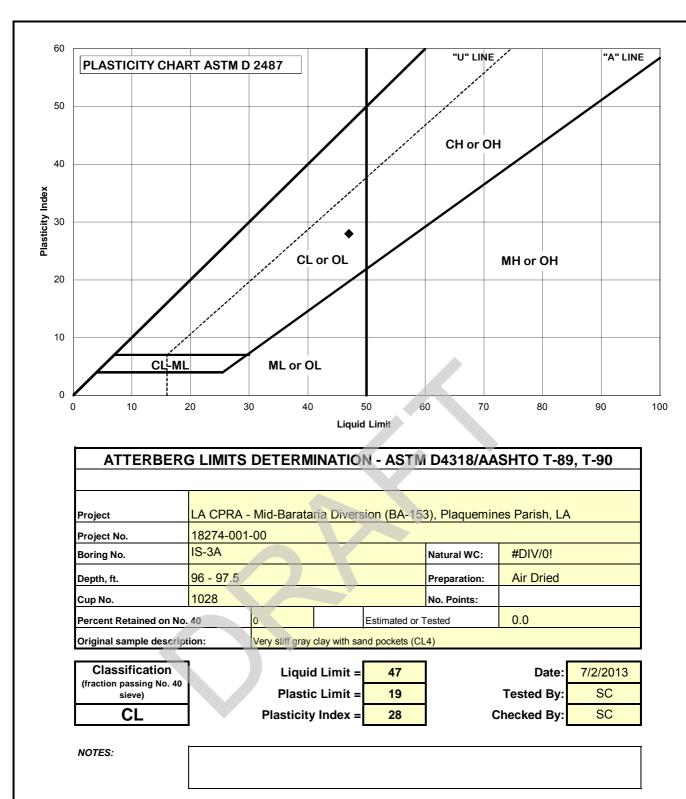
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	- Mid-Bara	taria Divers	sion (BA-15	3), Plaquemin	es Parish, LA
Project No.	<mark>18274-00</mark>	18274-001-00				
Boring No.	IS-3A				Natural WC:	#DIV/0!
Depth, ft.	91 - 92.5				Preparation:	Air Dried
Cup No.	1028	1028			No. Points:	
Percent Retained on No. 40 Estimated or		Estimated or T	Tested	0.0		
Original sample description: Stiff tan and gray clay with sand pockets (CH2)						

Classification	Liquid Limit =	55	Date:	7/1/2013
(fraction passing No. 40 sieve)	Plastic Limit =	18	Tested By:	SC
СН	Plasticity Index =	37	Checked By:	SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

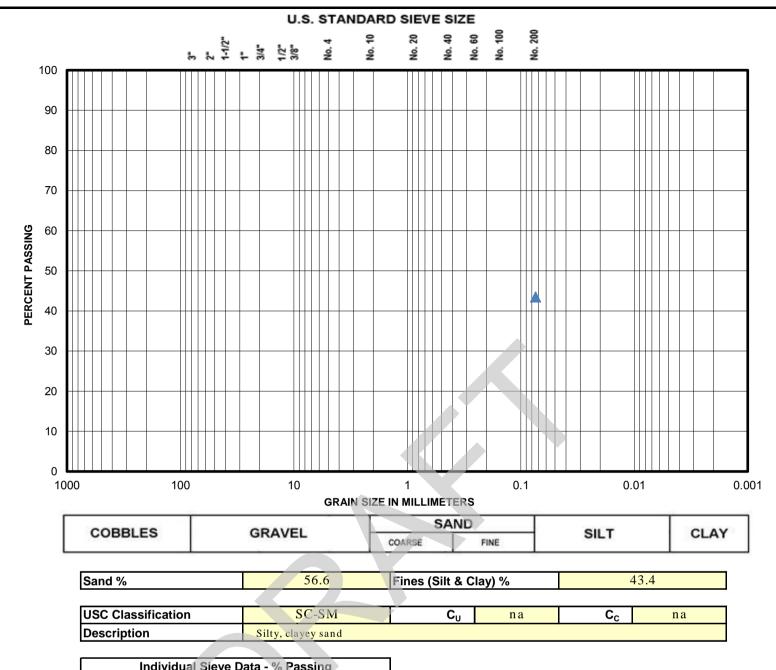
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were


performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

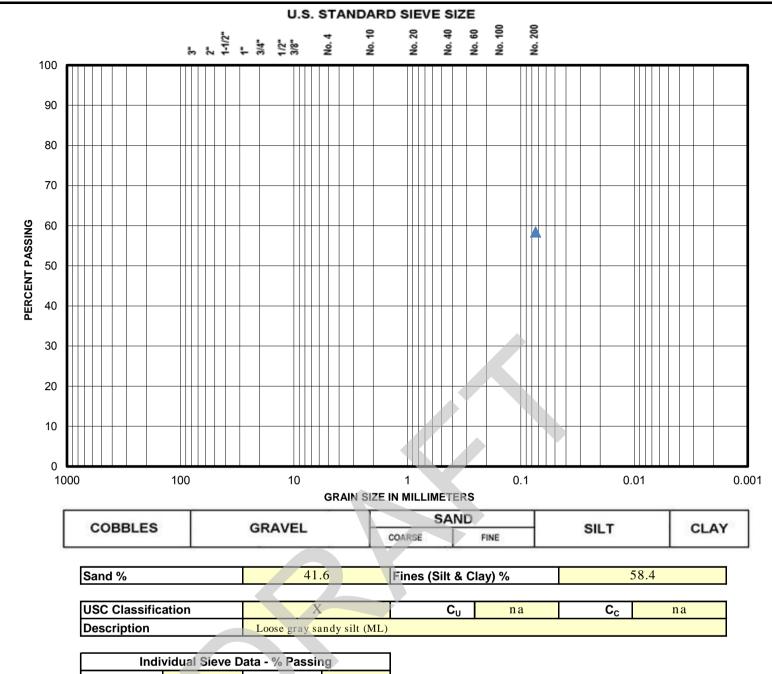
ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	#N/A		
1"	#N/A	No. 40	#N/A		
3/4"	#N/A	No. 60	#N/A		
1/2"	#N/A	No. 100	#N/A		
3/8"	#N/A	No. 200	43.4		

Project	LA CPRA - Mid-Barataria Diversion	Date Tested	7/3/2013
Project No.	18274-001-00	Tested By	TC
Boring No.	IS-3A	Checked By	SC
Source/Depth (feet)	36 - 37.5	Sieve Type	200 Wash

Method B was used for the 200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

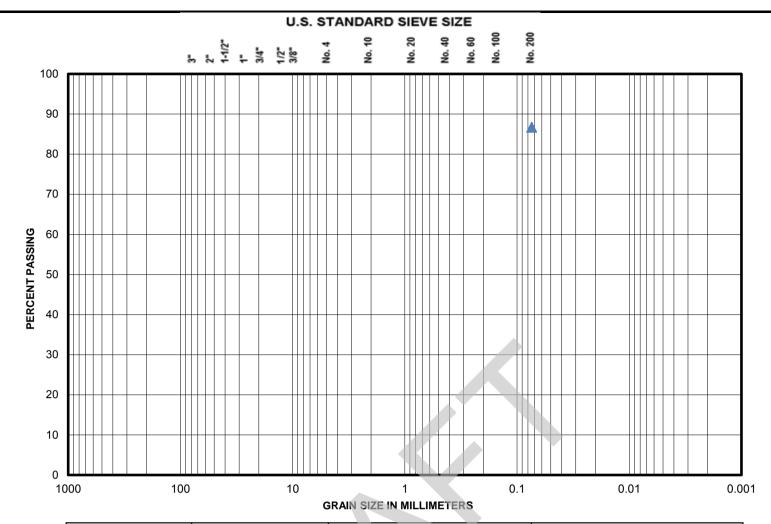
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

AASHTO T 11 (No. 200) SIEVE ANALYSIS OF FINE AGGREGATES

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA 18274-001-00

Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	#N/A		
1"	#N/A	No. 40	#N/A		
3/4"	#N/A	No. 60	#N/A		
1/2"	#N/A	No. 100	#N/A		
3/8"	#N/A	No. 200	58.4		

Project	LA CPRA - Mid-Barataria Diversion	Date Tested	7/3/2013
Project No.	18274-001-00	Tested By	GOM
Boring No.	IS-3A	Checked By	JВ
Source/Depth (feet)	53.5 - 55	Sieve Type	200 Wash


Method B was used for the 200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

AASHTO T 11 (No. 200) SIEVE ANALYSIS OF FINE AGGREGATES

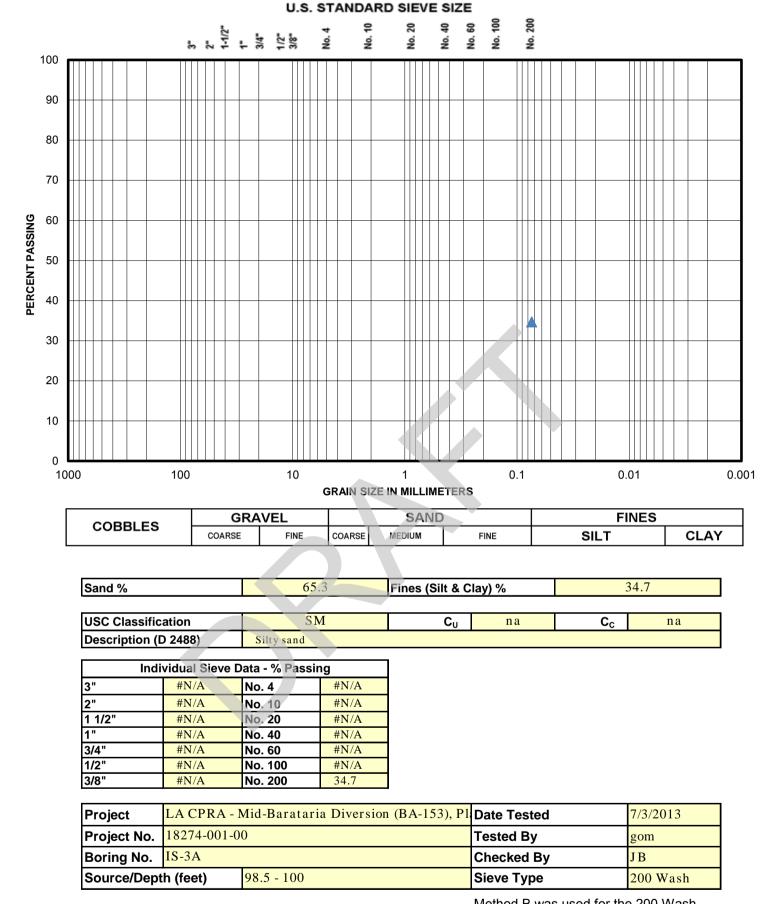
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRLES GRAVEL		SAND		FINES			
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand %		0.0	
Fine Gravel %	0.0	Fine Sand %	1	13.3	
Coarse Sand %	0.0	Fines (Silt & Clay) %	86.7		
USC Classification	X	C _U na	C _c	na	
Description (D 2488)	Medium dense gray sandy silt with 5" clay layer (ML)				

Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	#N/A		
1"	#N/A	No. 40	#N/A		
3/4"	#N/A	No. 60	#N/A		
1/2"	#N/A	No. 100	#N/A		
3/8"	#N/A	No. 200	86.7		

Project	LA CPRA - N	Mid-Barataria Diversion (BA-	153), Pl	6/4/2013
Project No.	18274-001-0	0	Tested By	GM
Boring No.	IS-3A		Checked By	sc
Source/Dept	h (feet)	56 - 57.5	Sieve Type	200 Wash


Method A was used for the 200 Wash

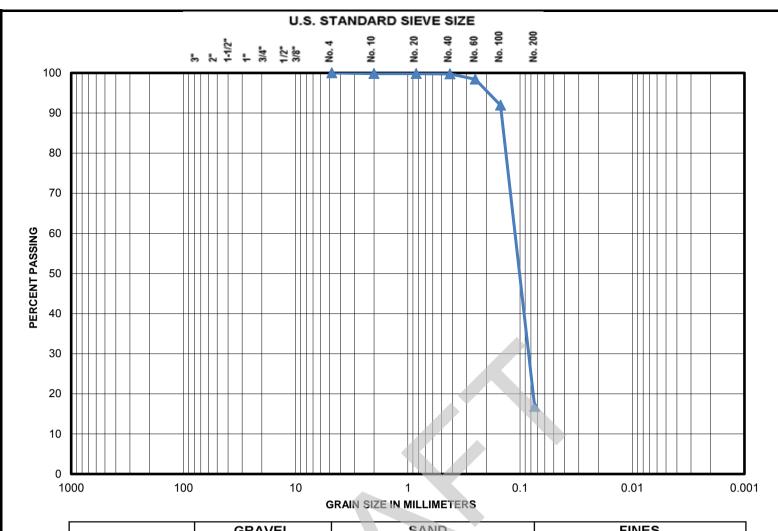
NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Method B was used for the 200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of



ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

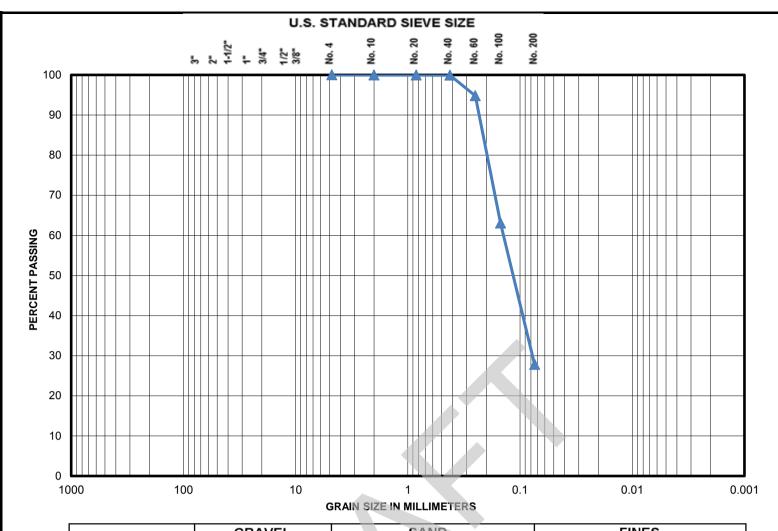
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

COBBLES GRAVEL			SAND		FINES		
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	%		0.1
Fine Gravel %		0.0	Fine Sand % 82.9		82.9	
Coarse Sand %		0.2	Fines (Silt & Clay) %		16.8	
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty sa	and				

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	100.0			
2"	#N/A	No. 10	99.8			
1 1/2"	#N/A	No. 20	99.8			
1"	#N/A	No. 40	99.7			
3/4"	#N/A	No. 60	98.4			
1/2"	#N/A	No. 100	91.9			
3/8"	#N/A	No. 200	16.8			

Project	LA CPRA - N	Mid-Barataria Diversi	Date Tested	7/3/2013	
Project No.	18274-001-0	0		Tested By	tc
Boring No.	IS-3A		Checked By	jb	
Source/Dept	h (feet)	46 - 47.5		Sieve Type	Dry Sieve



ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

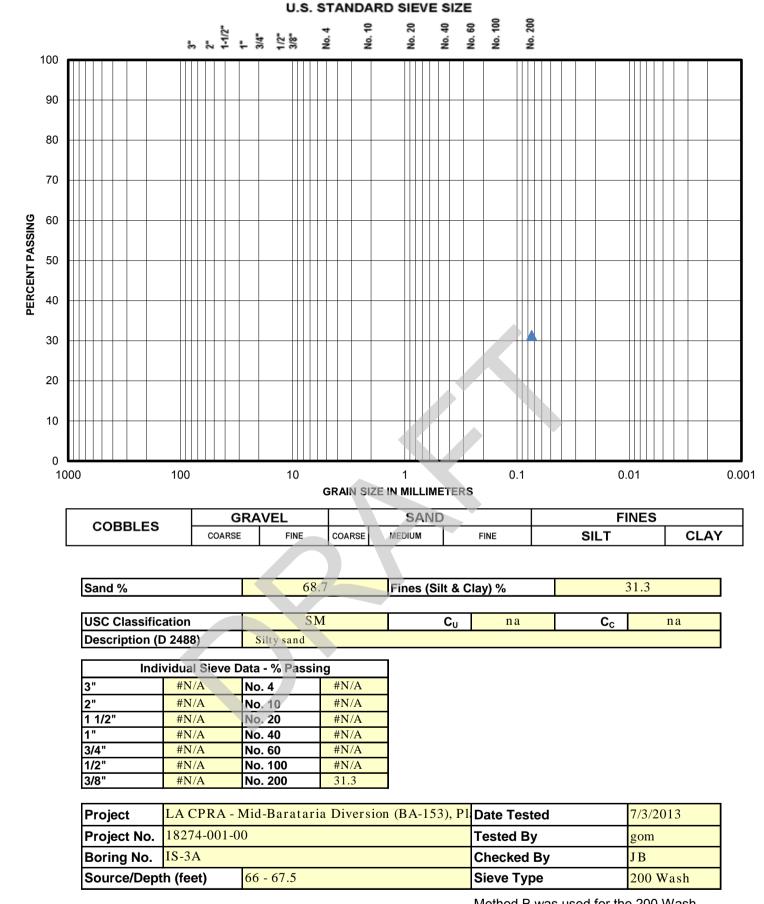
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

CORRIES	COBBLES GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand %		0.0	
Fine Gravel %		0.0	Fine Sand % 72.1		72.1	
Coarse Sand %		0.0	Fines (Silt & Clay) %		27.8	
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty s	and				

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	100.0			
2"	#N/A	No. 10	100.0			
1 1/2"	#N/A	No. 20	100.0			
1"	#N/A	No. 40	99.9			
3/4"	#N/A	No. 60	94.8			
1/2"	#N/A	No. 100	63.1			
3/8"	#N/A	No. 200	27.8			

Project	LA CPRA - N	Mid-Barataria Diversi	Date Tested	7/3/2013	
Project No.	18274-001-0	0		Tested By	gom
Boring No.	IS-3A		Checked By	JB	
Source/Dept	h (feet)	58.5 - 60		Sieve Type	Dry Sieve

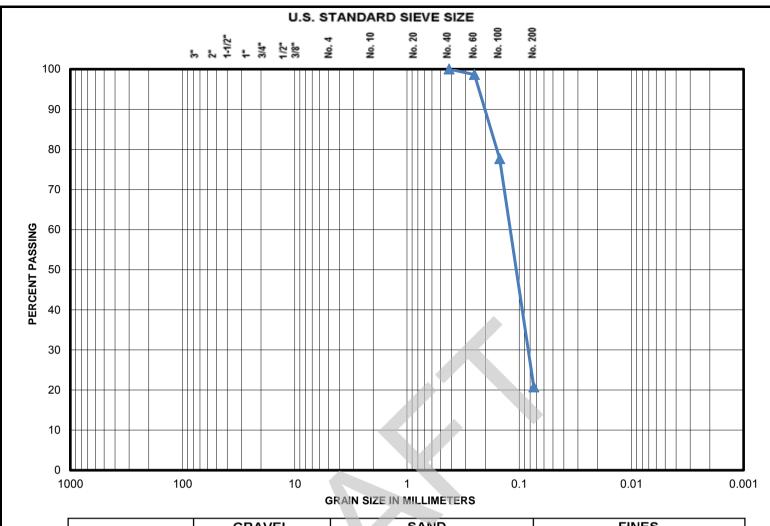


ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809


Method B was used for the 200 Wash

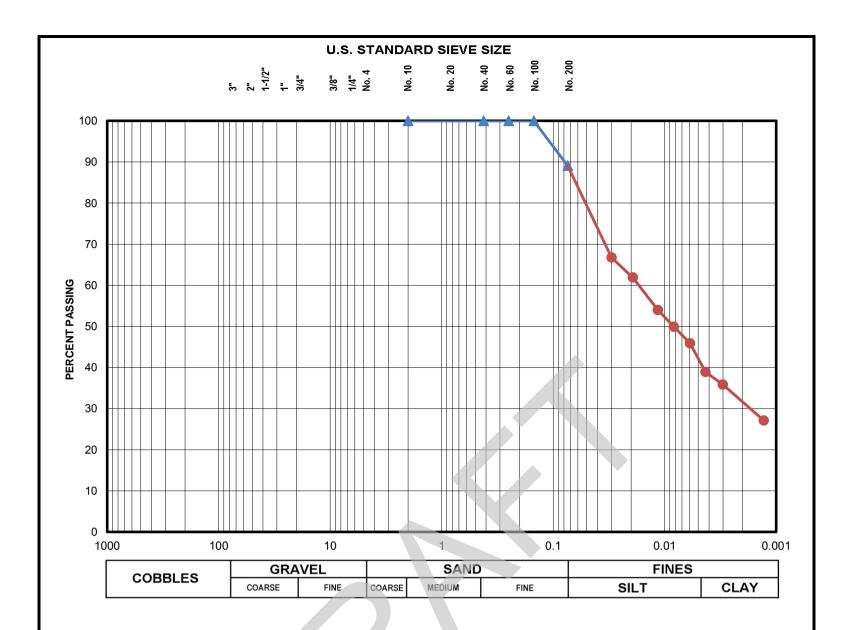
NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

COBBLES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand %		0.0
Fine Gravel %	0.0	Fine Sand %	,	79.3
Coarse Sand %	0.0	Fines (Silt & Clay) %	20.7	
USC Classification	SM	C _U na	C _c	na
Description (D 2488)	Silty sand	-		


Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	#N/A			
1 1/2"	#N/A	No. 20	#N/A			
1"	#N/A	No. 40	100.0			
3/4"	#N/A	No. 60	98.6			
1/2"	#N/A	No. 100	77.7			
3/8"	#N/A	No. 200	20.7			

Project	LA CPRA - N	Mid-Barataria Diversion (B	A-153), Plante Tested	7/10/2013
Project No.	18274-001-00)	Tested By	JK
Boring No.	IS-3A		Checked By	SC
Source/Dept	h (feet)	78.5 - 80	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

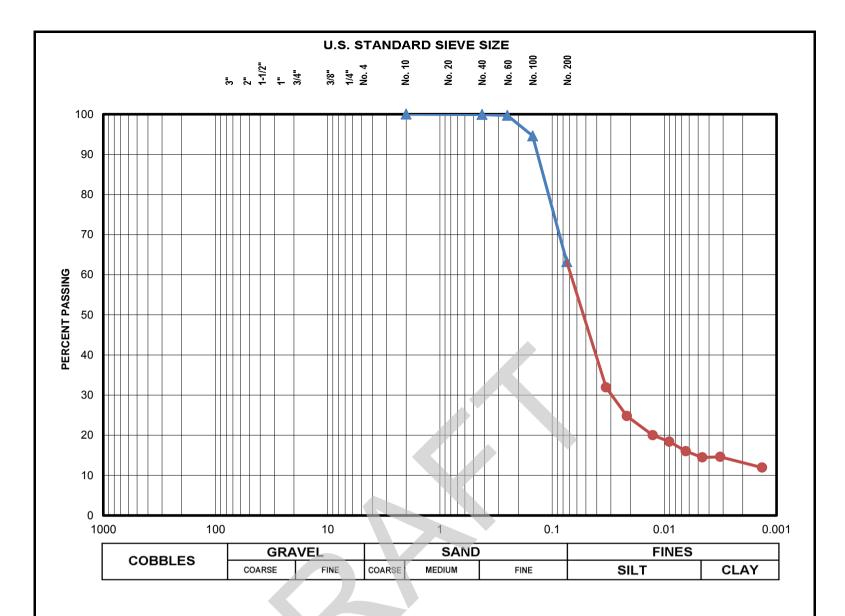
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	89.1	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1149
Hydro jar ID:	1354

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (B	Date Tested	7/29/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	IS-3A	Checked By	RW
Source/Depth (feet)	61 - 62.5		



11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

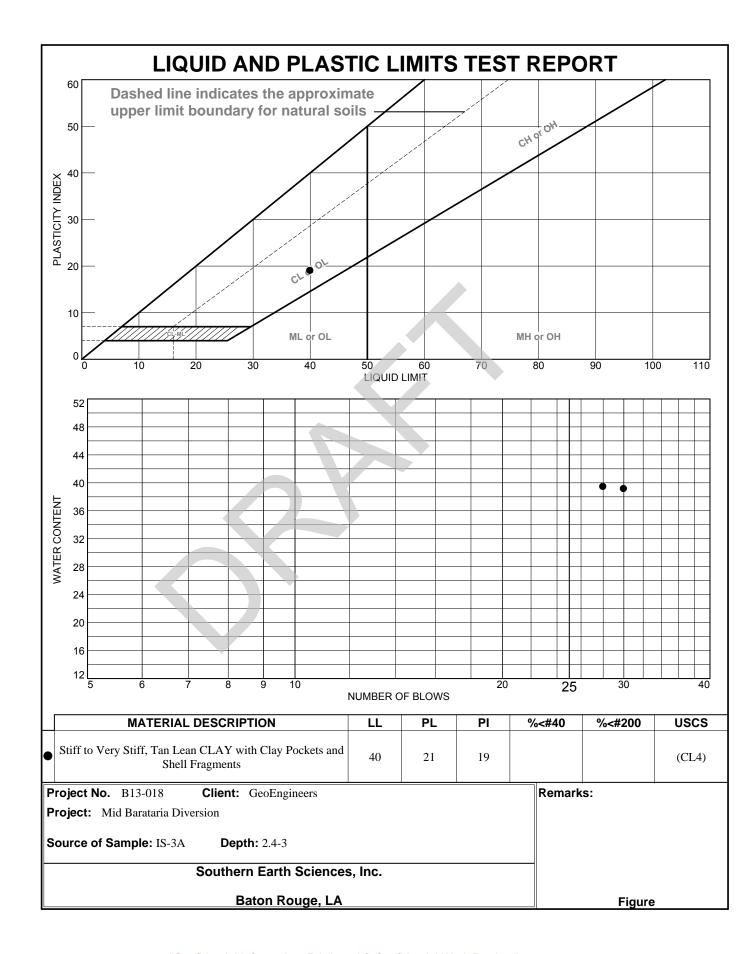
Description (D 2488)	Medium dense sandy silt with clay, organic matter, and 3" silty clay layer (ML)

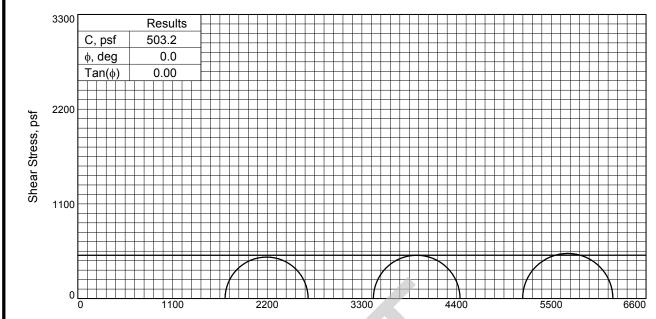
Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	99.9
3/4"	100.0	No. 60	99.7
3/8"	100.0	No. 100	94.6
1/4"	100.0	No. 200	63.2

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1353

^{*}assumed unless noted

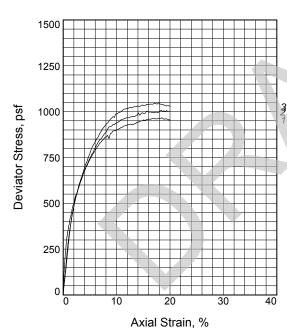
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	8/8/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	IS-3A	Checked By	RW
Source/Depth (feet)	76 - 77.5		




ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809


"Confidential Information; Privileged & Confidential Work Product"

Normal Stress, psf

Sample No.

	-	inple ito.	•	_	U	
	nitial	Water Content, % Dry Density, pcf Saturation, %	48.6 74.6 102.5	45.9 77.4 103.7	46.9 76.2 103.0	
	<u>-</u>	Void Ratio	1.3024	1.2179	1.2527	
3		Diameter, in.	1.392	1.394	1.393	
1		Height, in.	2.800	2.800	2.800	
V		Water Content, %	47.4	44.3	45.6	
	پ	Dry Density, pcf	74.6	77.4	76.2	
	es	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	1.3024	1.2179	1.2527	
	~	Diameter, in.	1.392	1.394	1.393	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	0.999	
	Ba	ck Pressure, psi	0.000	0.000	0.000	
	Ce	ll Pressure, psi	11.880	23.840	35.880	
	Fai	I. Stress, psf	964.6	1006.5	1048.4	
	5	Strain, %	18.3	18.3	17.9	
	Ult.	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	2675.3	4439.4	6215.2	
	σ_3	Failure, psf	1710.7	3433.0	5166.7	

1

2

3

Type of Test:

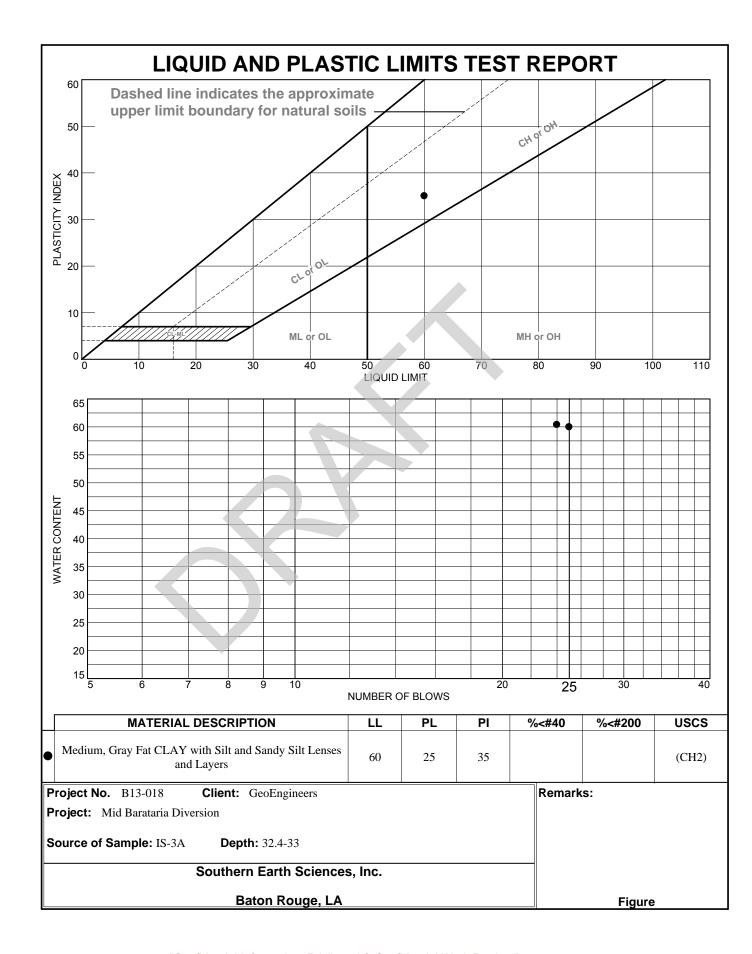
Unconsolidated Undrained **Sample Type:** Undisturbed

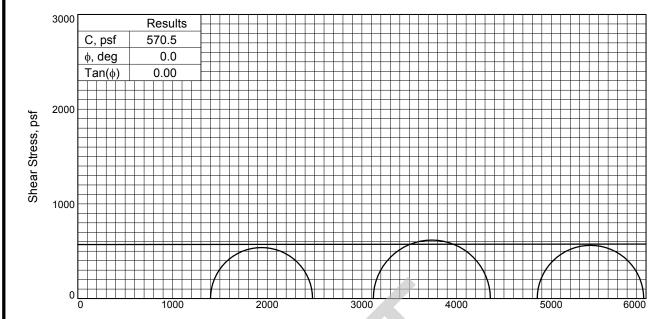
Description: Medium, Gray Fat CLAY with Silt and Sandy Silt Lenses and Layers (CH2)

LL= 60 **PL=** 25 **PI=** 35

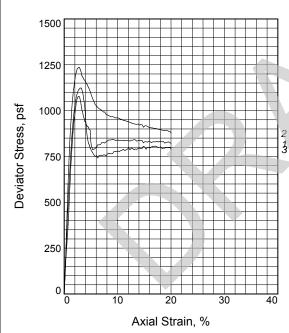
 $\textbf{Assumed Specific Gravity=}\ 2.75$

Remarks: Type Failure:


Multi Shear


Project: Mid Barataria Diversion

Client: GeoEngineers


Source of Sample: IS-3A Depth: 32.4-33

Proj. No.: B13-018 Date Sampled:

Normal Stress, psf

ype of	Test:			
* *	11.1 . 1	 		

Unconsolidated Undrained **Sample Type:** Undisturbed

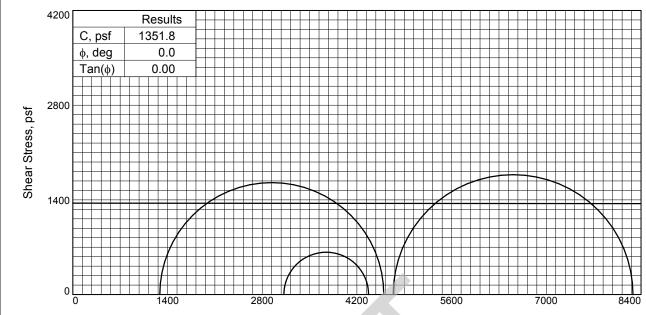
Description: Medium, Fat CLAY with Silt and

Sandy Silt Lenses and Layers (CH2)

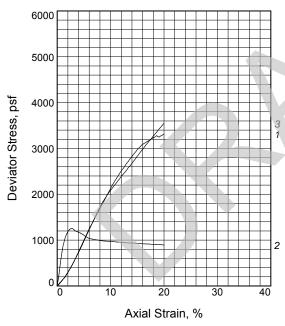
Assumed Specific Gravity= 2.80

Remarks: Type Failure: 45 Degree Shear slicken Sided

Figure


	Saı	mple No.	1	2	3	_
		Water Content, %	61.0 64.6	61.7 64.6	61.0 64.2	
	03	Dry Density, pcf	0	00	© _	
	nitia	Saturation, % Void Ratio	100.3	101.4	99.2	
	=		1.7043			
1		Diameter, in.	1.402	1.403	1.397	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	60.9	60.9	61.5	
	پ	Dry Density, pcf	64.6	64.6	64.2	
1	es	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	1.7043	1.7042	1.7207	
	~	Diameter, in.	1.402	1.403	1.397	
		Height, in.	2.800	2.800	2.800	
(Str	ain rate, in./min.	1.000	1.000	1.000	
I	Ba	ck Pressure, psi	0.000	0.000	0.000	
1	Cel	ll Pressure, psi	9.730	21.670	33.690	
H	Fai	I. Stress, psf	1077.3	1235.8	1124.0	
	5	Strain, %	2.8	2.7	3.1	
ļι	Ult.	Stress, psf				
	5	Strain, %				
۱,	Ծ1	Failure, psf	2478.5	4356.3	5975.3	
	σ_3	Failure, psf	1401.1	3120.5	4851.4	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-3A Depth: 26-27

Proj. No.: B13-018 Date Sampled:

LVDE	to e	Test:

Unconsolidated Undrained Sample Type: Undisturbed

Description: Loose, Gray Silt with Clay and Fine

Sand (ML)

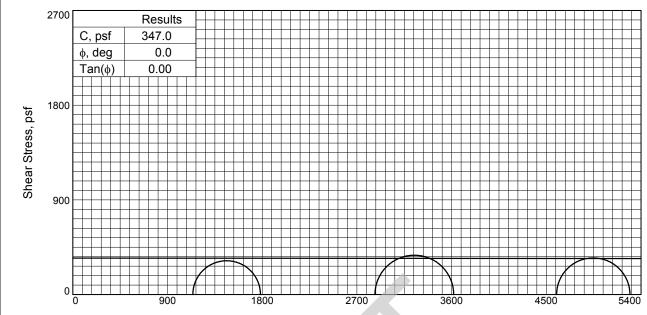
Assumed Specific Gravity= 2.65

Remarks: Type Failure:

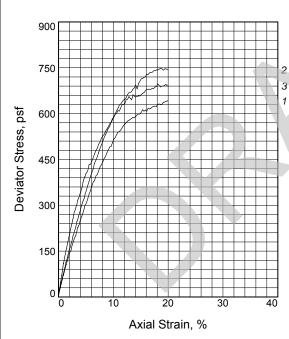
Bulge

Slumping under own weight / Dilating

Fi	ia	ure		


	Sai	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	31.5 93.4	34.4 88.3	33.8 94.3	
	8	Saturation, %	108.2	104.4	118.8	
	nitia	Void Ratio	0.7717	0.8745		
	7	Diameter, in.	1.378	1.394	1.363	
,		Height, in.	2.800	2.800	2.800	
		Water Content, %	29.1	33.0	28.4	
	٠,	Dry Density, pcf	93.4	88.3	94.3	
	es	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	0.7717	0.8745	0.7534	
		Diameter, in.	1.378	1.394	1.363	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	0.999	
2	Ba	ck Pressure, psi	0.000	0.000	0.000	
	Ce	ll Pressure, psi	8.930	21.670	32.890	
	Fai	I. Stress, psf	3311.1	1251.8	3544.8	
	5	Strain, %	20.0	2.7	20.0	
	Ult.	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	4597.0	4372.3	8281.0	
	σ_3	Failure, psf	1285.9	3120.5	4736.2	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-3A Depth: 24.5-25

Proj. No.: B13-018 Date Sampled:

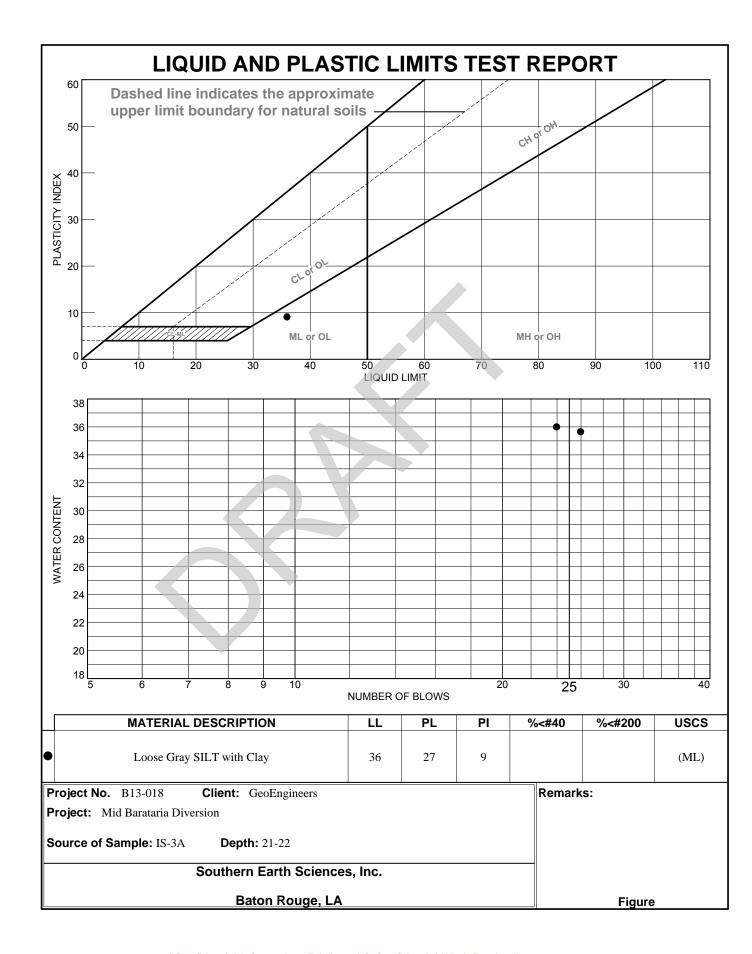
Type	οf	Test:
IVDC	v	ı cst.

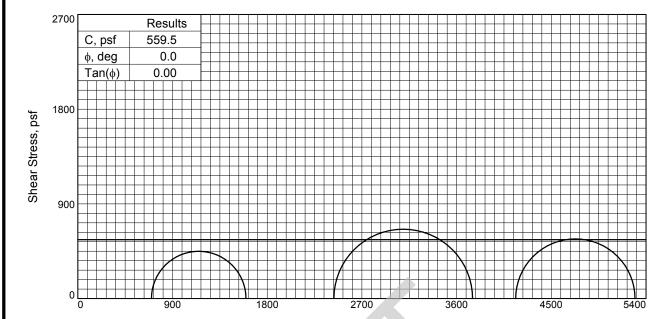
Unconsolidated Undrained Sample Type: Undisturbed

Description: Loose Gray SILT with Clay (ML)

LL= 36 PL= 27 Pl= 9
Assumed Specific Gravity= 2.70
Remarks: Slumping under own weight

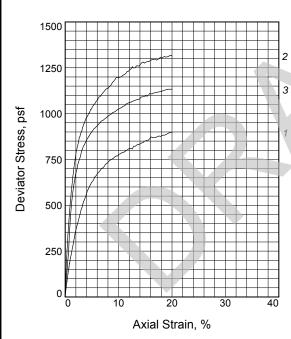
	٠		_		
-		ur	ρ		
	м	u	·		


	Sai	mple No.	1	2	3	
		Water Content, %	36.9	35.3	34.8	
,		Dry Density, pcf	92.3	89.5	93.8	
3	nitial	Saturation, %	120.7	108.0	118.1	
,	İni	Void Ratio	0.8256	0.8837	0.7963	
		Diameter, in.	1.348	1.372	1.347	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	30.6	32.7	29.5	
	7	Dry Density, pcf	92.3	89.5	93.8	
	<u>Se</u>	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	0.8256	0.8837	0.7963	
	`	Diameter, in.	1.348	1.372	1.347	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.001	1.000	1.000	
	Ba	ck Pressure, psi	0.000	0.000	0.000	
	Cel	ll Pressure, psi	7.920	19.940	31.930	
	Fai	I. Stress, psf	643.0	748.4	696.8	
	5	Strain, %	20.0	18.6	18.1	
	Ult.	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	1783.5	3619.8	5294.7	
	σ_3	Failure, psf	1140.5	2871.4	4597.9	


Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: IS-3A Depth: 21-22


Proj. No.: B13-018 Date Sampled:

Normal Stress, psf

Sample No.

_		•		
I Vr	10	Ωt	Test:	
	,,	•		

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Medium, Gray Lean CLAY with Clay

Pockets (CL4)

Assumed Specific Gravity= 2.70

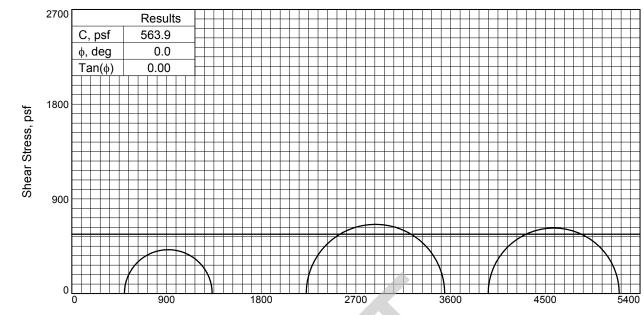
Remarks: Type Failure:

Bulge

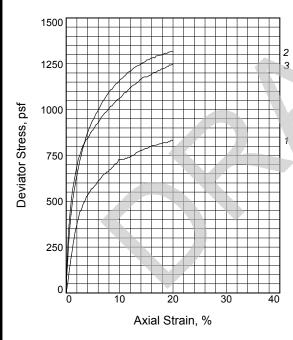
	Water Content, %	33.1	32.5	34.8	
	Dry Density, pcf	85.7	87.2	82.1	
nitial	Saturation, %	92.6	93.9	89.2	
'n	Void Ratio	0.9658	0.9331	1.0537	
	Diameter, in.	1.374	1.384	1.386	
	Height, in.	2.800	2.800	2.800	
	Water Content, %	35.8	34.6	39.0	
+ ,	Dry Density, pcf	85.7	87.2	82.1	
At Test	Saturation, %	100.0	100.0	100.0	
=	Void Ratio	0.9658	0.9331	1.0537	
`	Diameter, in.	1.374	1.384	1.386	
	Height, in.	2.800	2.800	2.800	
Str	ain rate, in./min.	1.000	1.000	0.999	
Ba	ck Pressure, psi	0.000	0.000	0.000	
Cel	ll Pressure, psi	4.860	16.900	28.900	
Fai	I. Stress, psf	898.4	1318.2	1133.8	
5	Strain, %	19.8	19.9	19.9	
Ult.	Stress, psf				
5	Strain, %				
σ₁	Failure, psf	1598.2	3751.8	5295.4	
σ_3	Failure, psf	699.8	2433.6	4161.6	

1

2


3

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-3A Depth: 13-14

Proj. No.: B13-018 Date Sampled:

Tvpe	of	Test:

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Soft, Tan Lean CLAY with Trace

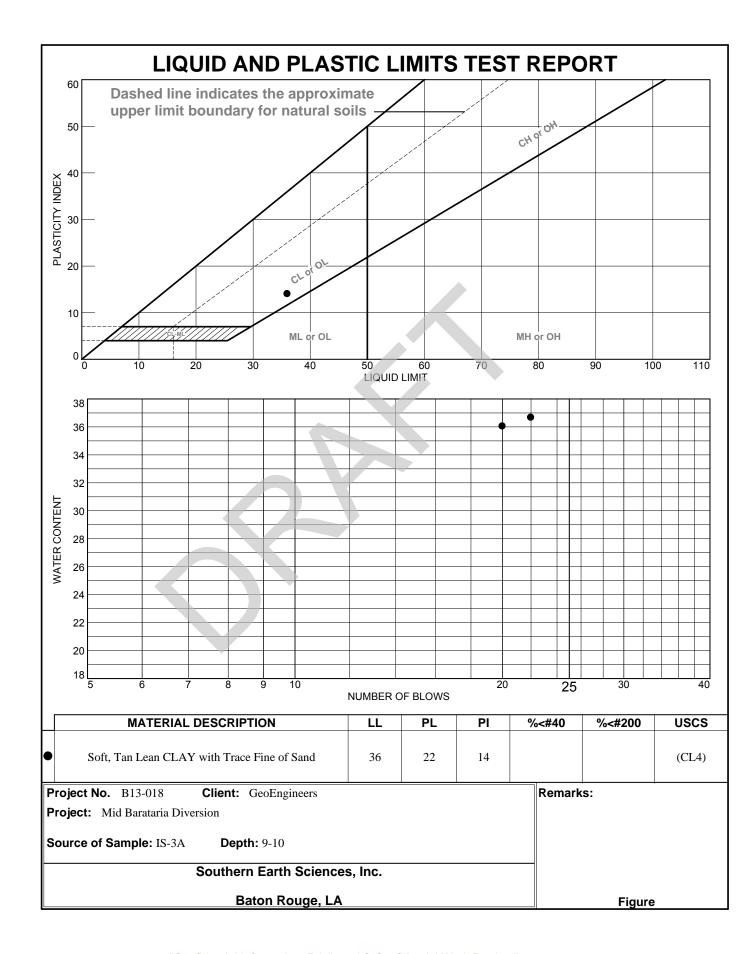
Fine of Sand (CL4)

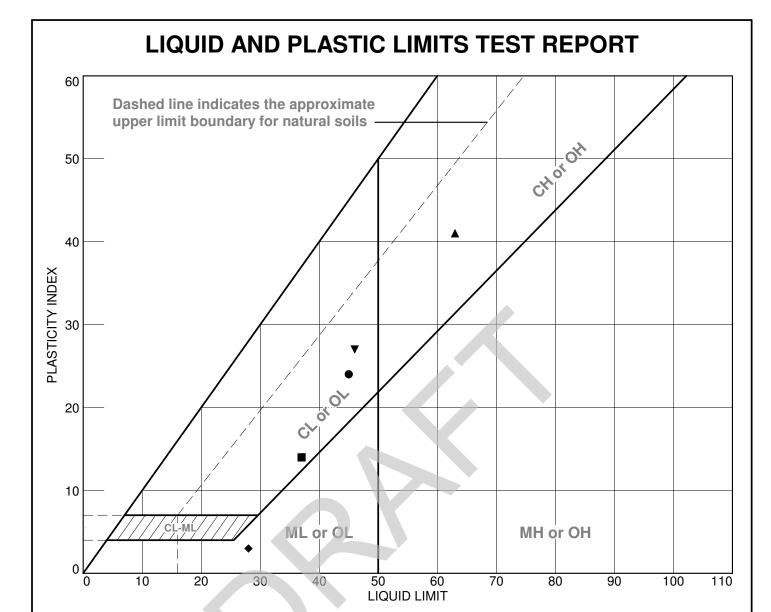
LL= 36 **PL=** 22 **PI=** 14

Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Bulge


Sa	mple No.	1	2	3	
	Water Content, % Dry Density, pcf	31.7 82.7	31.0 85.0	31.2 87.4	
ia	Saturation, %	82.4	85.4	90.8	
Initia	Void Ratio	1.0391	0.9821	0.9282	
	Diameter, in.	1.372	1.376	1.368	
	Height, in.	2.800	2.800	2.800	
	Water Content, %	38.5	36.4	34.4	
12	Dry Density, pcf	82.7	85.0	87.4	
At Test	Saturation, %	100.0	100.0	100.0	
=	Void Ratio	1.0391	0.9821	0.9282	
`	Diameter, in.	1.372	1.376	1.368	
	Height, in.	2.800	2.800	2.800	
Str	ain rate, in./min.	1.001	1.000	1.000	
Ba	ck Pressure, psi	0.000	0.000	0.000	
Се	ll Pressure, psi	3.470	15.470	27.480	
Fai	l. Stress, psf	834.2	1316.3	1245.5	
5	Strain, %	20.0	19.8	19.8	
Ult	. Stress, psf				
5	Strain, %				
σ ₁	σ ₁ Failure, psf		3544.0	5202.7	
σ_3	Failure, psf	499.7	2227.7	3957.1	


Client: GeoEngineers

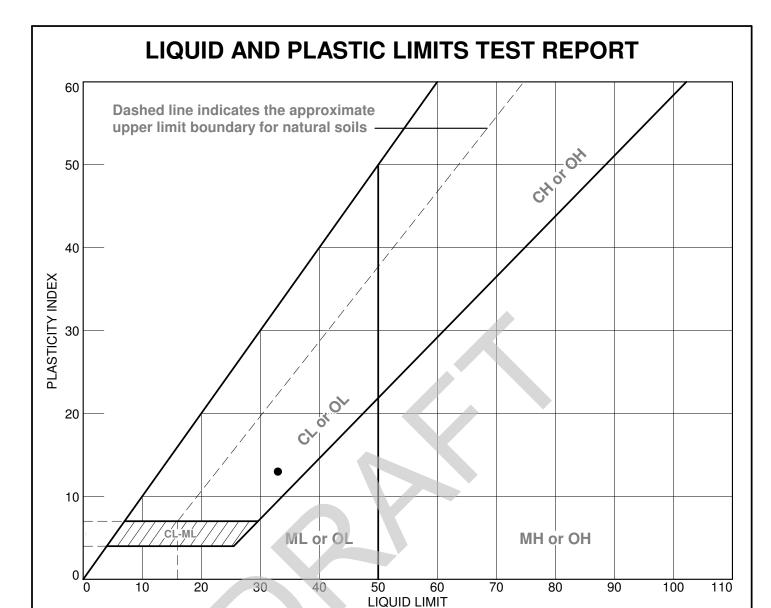
Project: Mid Barataria Diversion

Source of Sample: IS-3A Depth: 9-10

Proj. No.: B13-018 Date Sampled:

	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS		
•	IS-7A	N/A	1	28	21	45	24	CL6		
-	IS-7A	N/A	3	34	23	37	14	CL4		
A	IS-7A	N/A	6	40	22	63	41	СН3		
•	IS-7A	N/A	49		25	28	3	ML		
▼	IS-7A	N/A	65.5		19	46	27	CL6		

Fugro Consultants, Inc.


Client: GeoEngineers

Project: Mid Barataria Diversion

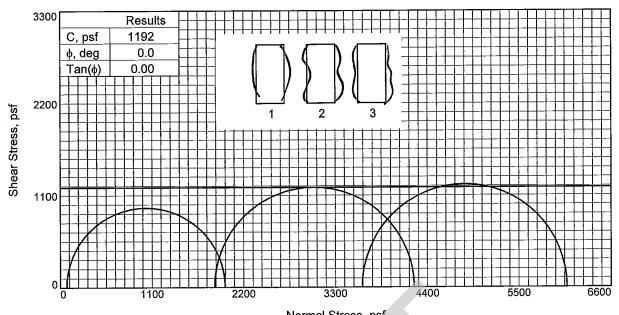
Baton Rouge, LA

Project No.: 04.55124092

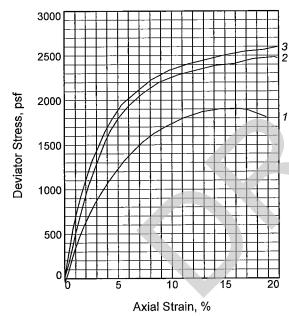
Figure

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	IS-7A	N/A	74		20	33	13	CL4

Fugro Consultants, Inc.


Client: GeoEngineers

Project: Mid Barataria Diversion


Figure

Baton Rouge, LA

Project No.: 04.55124092

Normal Stress, psf

	Sa	mple No.	1	2	3	
3		Water Content, %	 28.2	27.5	28.5	
2		Dry Density, pcf	93.8	98.2	96.2	
	iai	Saturation, %	96.3	104.8	103.3	
1	Initial	Void Ratio	0.7840	0.7032	0.7392	
		Diameter, in.	1.38	1.39	1.40	
1		Height, in.	3.00	3.01	3.01	
		Water Content, %	28.2	27.5	28.5	
	7.	Dry Density, pcf	93.8	98.2	96.2	
į	est	Saturation, %	96.3	104.8	103.3	
	¥	Void Ratio	0.7840	0.7032	0.7392	
	ལ	Diameter, in.	1.38	1.39	1.40	
		Height, in.	3.00	3.01	3.01	
	Str	ain rate, in./min.	 1.00	1.00	1.00	
	Ва	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	0.53	12.85	25.13	
	Fa	il. Stress, psf	1902	2388	2459	
	:	Strain, %	14.6	14.1	13.3	
	Ult	. Stress, psf	1902	2388	2459	
		Strain, %	14.6	14.1	13.3	
-	σ ₁ Failure, psf		1978	4239	6078	
	σ_3	Failure, psf	76	1850	3619	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED Description: ST BR CL6 W/G

LL= 45

PL= 21

PI= 24

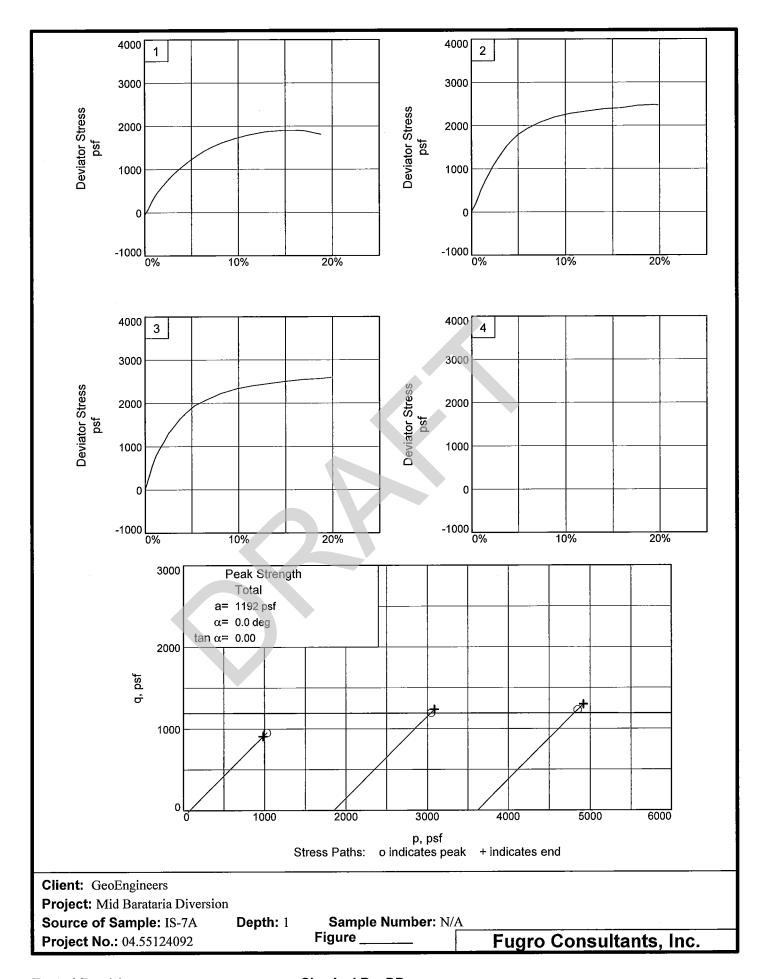
Assumed Specific Gravity= 2.68

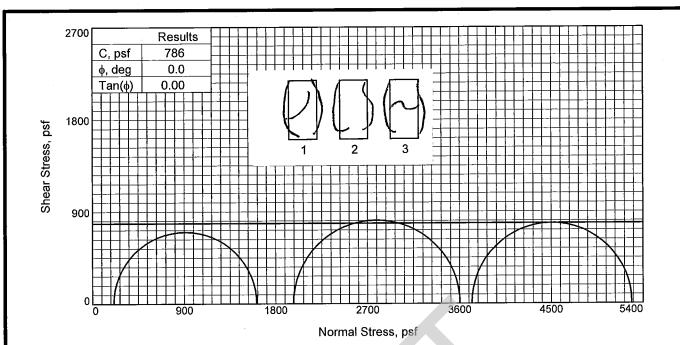
Remarks: "Confidential Information: Privileged &

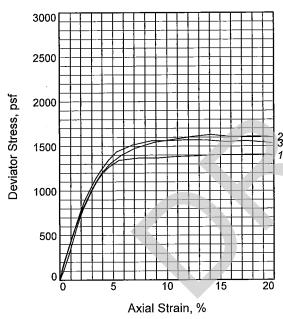
Confidential Work Product"

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: IS-7A Depth: 1


Sample Number: N/A


Date Sampled: 8/12/13 **Proj. No.:** 04.55124092

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

	Sample No.			1	2	3 _	
23 1	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio		33.2 88.6 100.0 0.8890	34.0 88.3 101.7 0.8955	33.9 88.6 102.4 0.8880	
		Diameter, in. Height, in.		1.39 3.01	1.39 3.01	1.39 3.01	
	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.		33.2 88.6 100.0 0.8890 1.39 3.01	34.0 88.3 101.7 0.8955 1.39 3.01	33.9 88.6 102.4 0.8880 1.39 3.01	
	Strain rate, in./min. Back Pressure, psi		1.00	1.00	1.00 0.00		
	Cell Pressure, psi Fail. Stress, psf Strain, %		1.45 1403 14.3	13.69 1631 14.1	25.83 1574 12.1		
		. Stress, psf Strain, %		1403 14.3	1631 14.1	1568 13.8	
		Failure, psf Failure, psf		1611 209	3603 1971	5293 3720	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: MBR CL4

LL= 37

PL= 23

PI= 14

Assumed Specific Gravity= 2.68

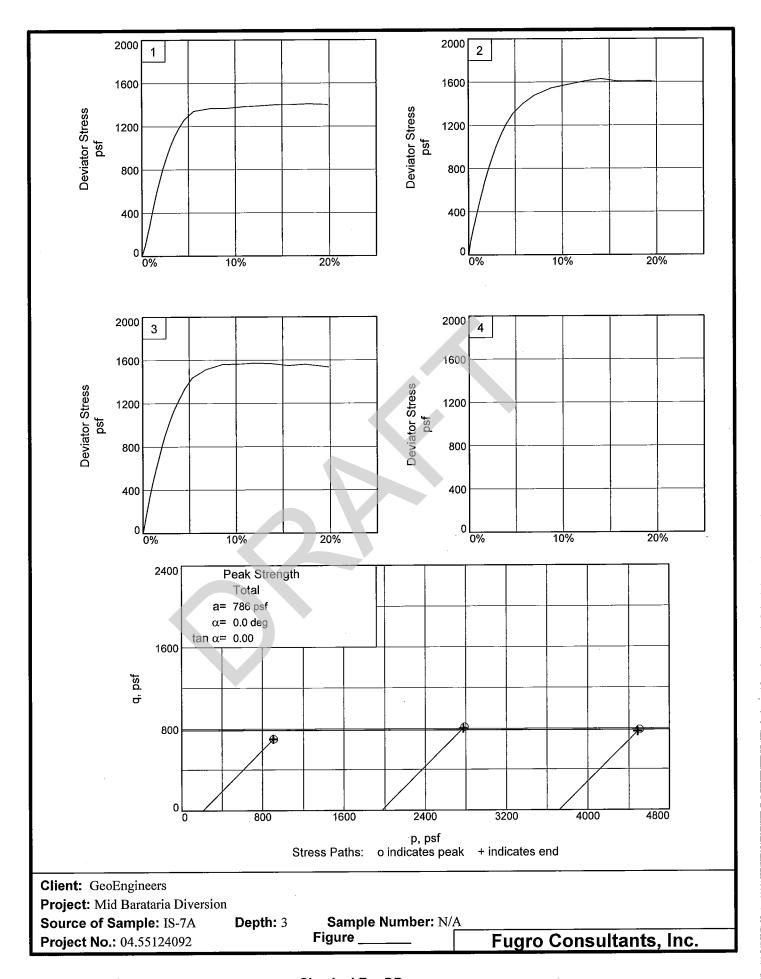
Remarks: "Confidential Information: Privileged &

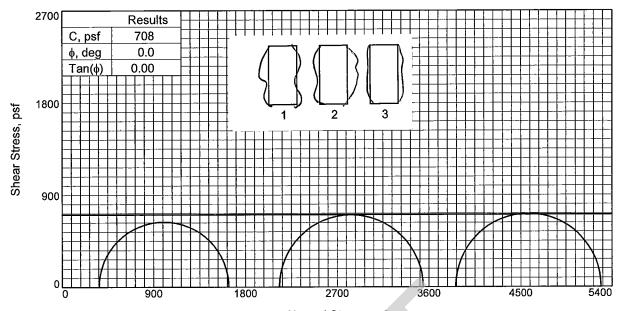
Confidential Work Product"

Client: GeoEngineers

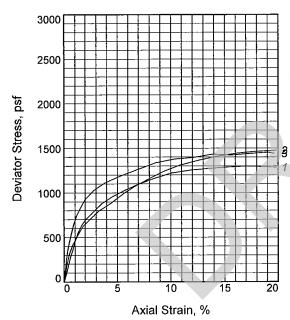
Project: Mid Barataria Diversion

Depth: 3 Source of Sample: IS-7A


Sample Number: N/A


Proj. No.: 04.55124092

Date Sampled: 8/12/13


TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

Normal Stress, psf

	Sai	mple No.		1	2	3	
		Water Content, %	_	43.5	36.8	39.0	
		Dry Density, pcf		78.1	85.6	82.6	
	nitia	Saturation, %		101.2	102.4	101.2	
ľ	ln:	Void Ratio		1.1595	0.9700	1.0399	
		Diameter, in.		1.41	1.40		
		Height, in.		3.01	3.01	3.02	
		Water Content, %	-	43.5	36.8	39.0	
3	#	Dry Density, pcf		78. 1	85.6	82.6	
	Test	Saturation, %		101.2	102.4	101.2	
	At-	Void Ratio		1.1595	0.9700		
	1	Diameter, in.		1.41	1.40	1.41	
		Height, in.		3.01	3.01	3.02	
	Str	ain rate, in./min.		1.00	1.00	1.00	
	Ba	ck Pressure, psi		0.00	0.00	0.00	
	Ce	ll Pressure, psi		2.52	14.80	26.81	
	Fai	I. Stress, psf		1273	1411	1433	
	5	Strain, %		13.6	14.4	13.8	
	Ult.	. Stress, psf		1273	1411	1433	
	5	Strain, %		13.6	14.4	13.8	
-	σ_1	Failure, psf		1635	3542	5294	
	σ_3	Failure, psf		363	2131	3861	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M LGR CH3

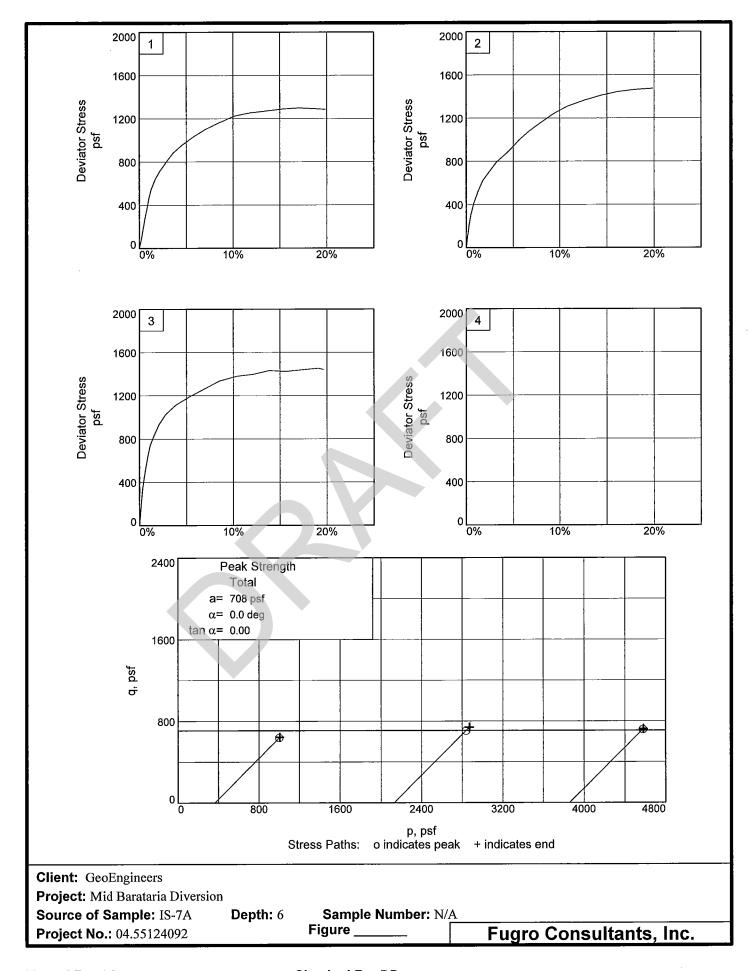
LL= 63 **PL=** 22 **PI=** 41

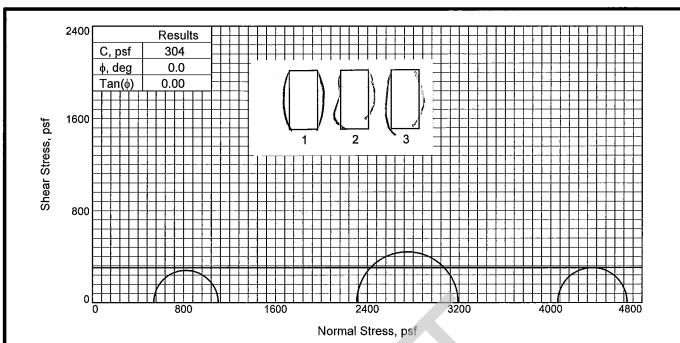
Assumed Specific Gravity= 2.70

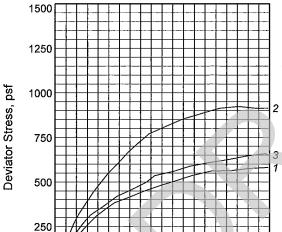
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-7A **Depth:** 6


Sample Number: N/A

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

Axial Strain, %

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: SO GR CL6

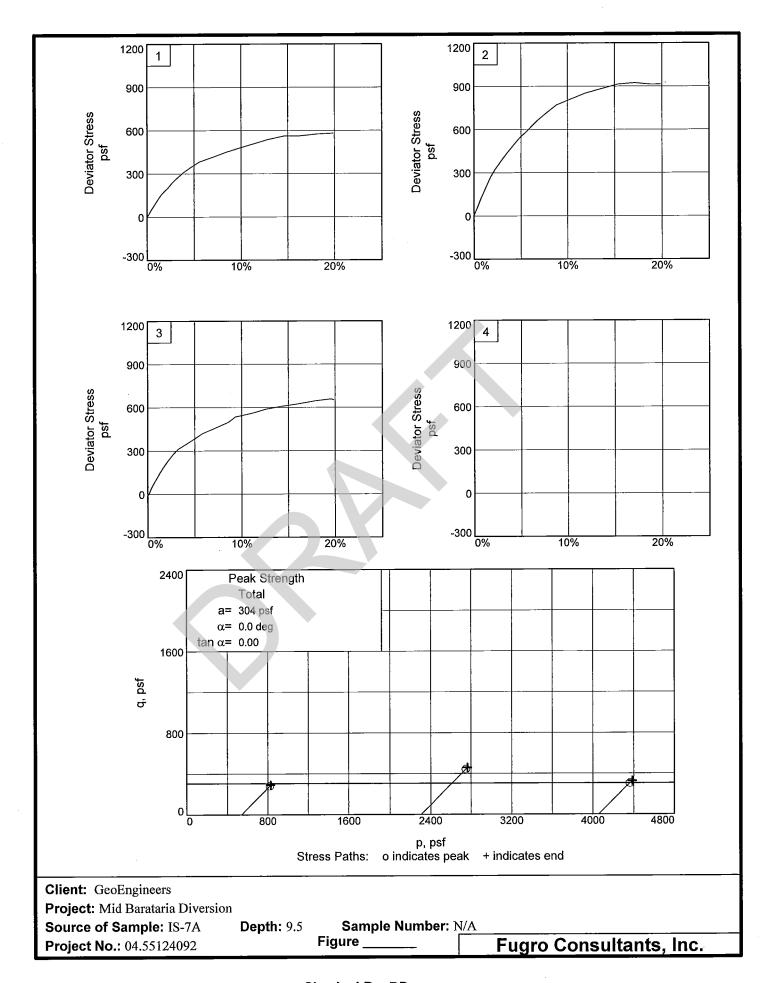
Assumed Specific Gravity= 2.68

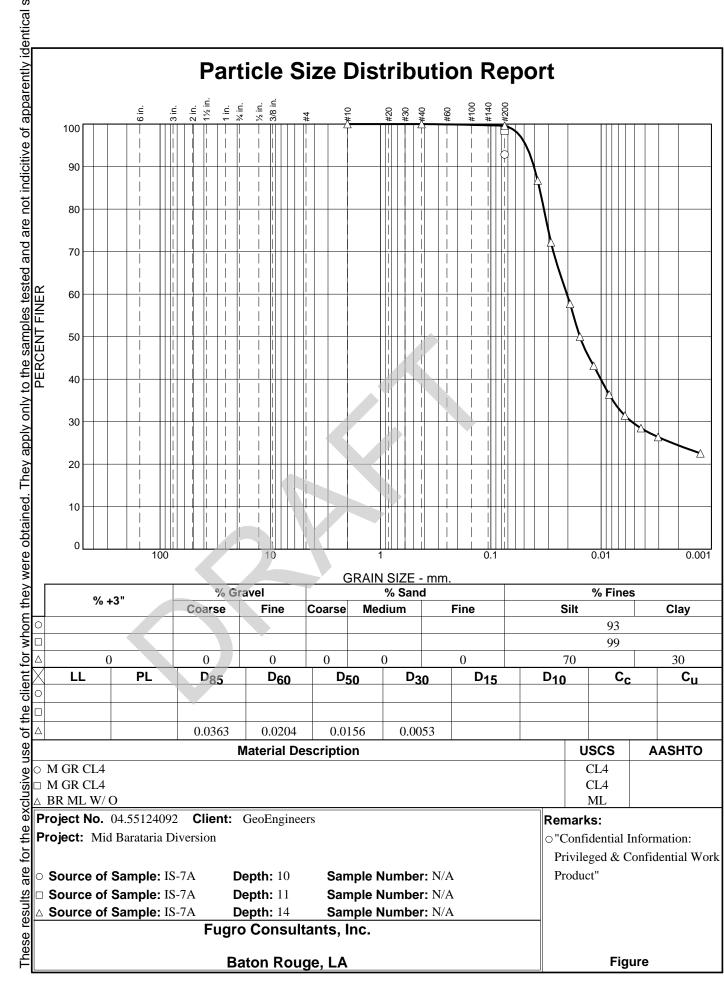
Remarks: "Confidential Information: Privileged &

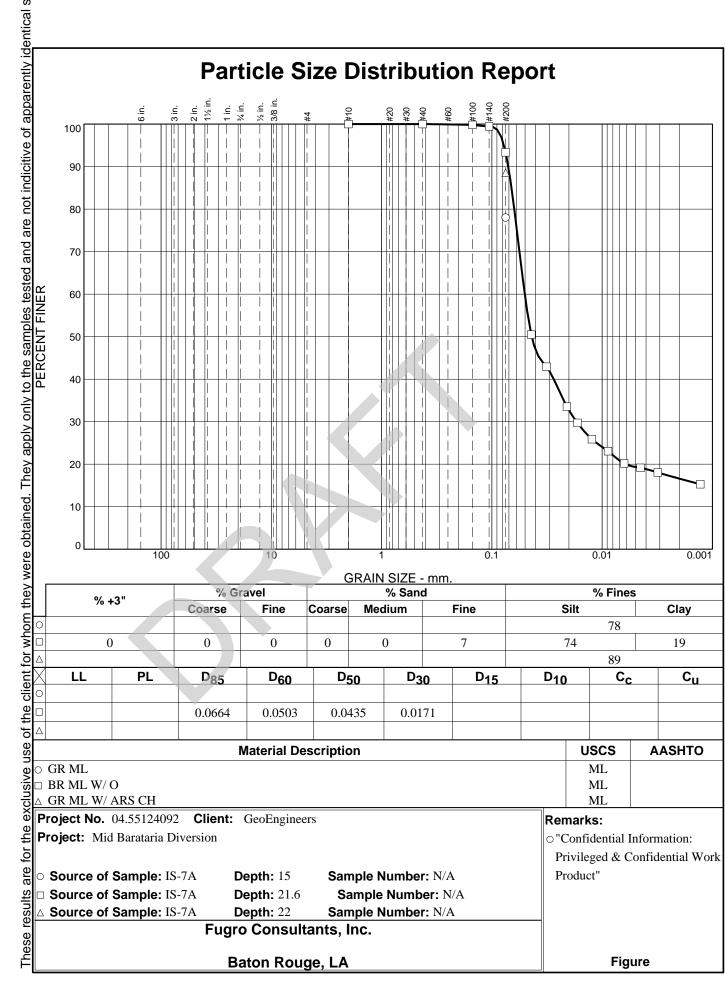
Confidential Work Product"

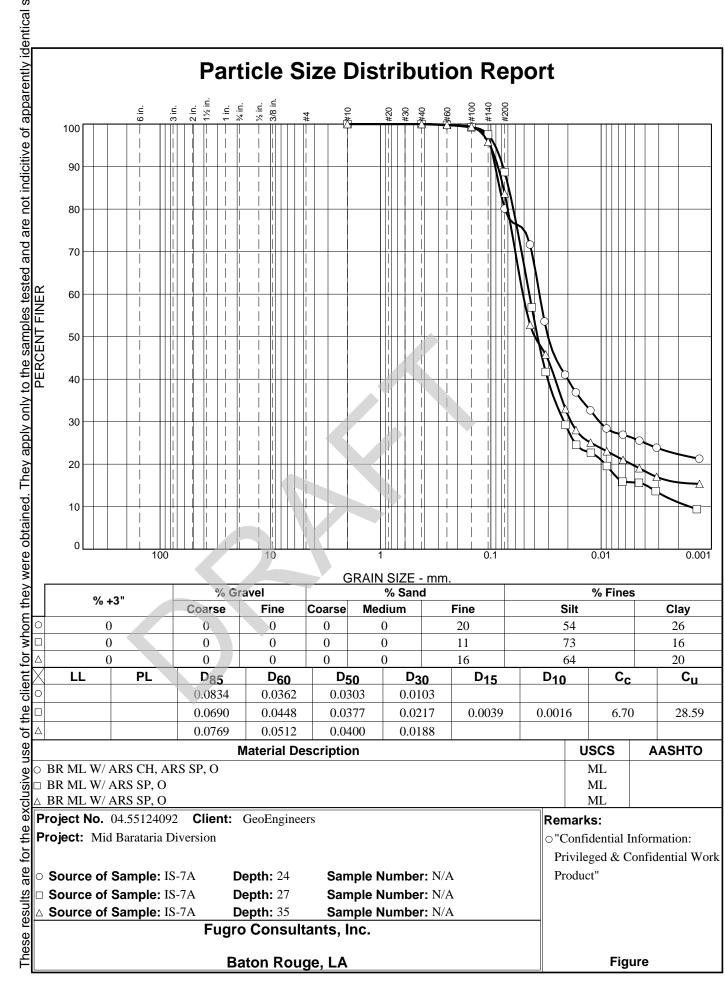
	Sai	mple No.	1	2	3	
		Water Content, %	34.9	33.5	34.9	
		Dry Density, pcf	87.7	87.1	84.1	
	Initia	Saturation, %	102.9	97.5	94.7	
	三	Void Ratio	0.9080	0.9214	0.9888	
		Diameter, in.	1.38	1.38	1.41	
,		Height, in.	3.01	3.00	3.01	
		Water Content, %	34.9	33.5	34.9	
	*;;	Dry Density, pcf	87.7	87.1	84.1	
	Test	Saturation, %	102.9	97.5	94.7	
	₹	Void Ratio	0.9080	0.9214	0.9888	
	`	Diameter, in.	1.38	1.38	1.41	
		Height, in.	3.01	3.00	3.01	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	3.74	16.02	28.19	
	Fai	I. Stress, psf	562	884	609	
	8	Strain, %	14.6	13.6	14.4	
	Ult.	Stress, psf	562	884	609	
	8	Strain, %	14.6	13.6	14.4	
	σ_1	Failure, psf	1101	3191	4668	
	σ_3	Failure, psf	539	2307	4059	

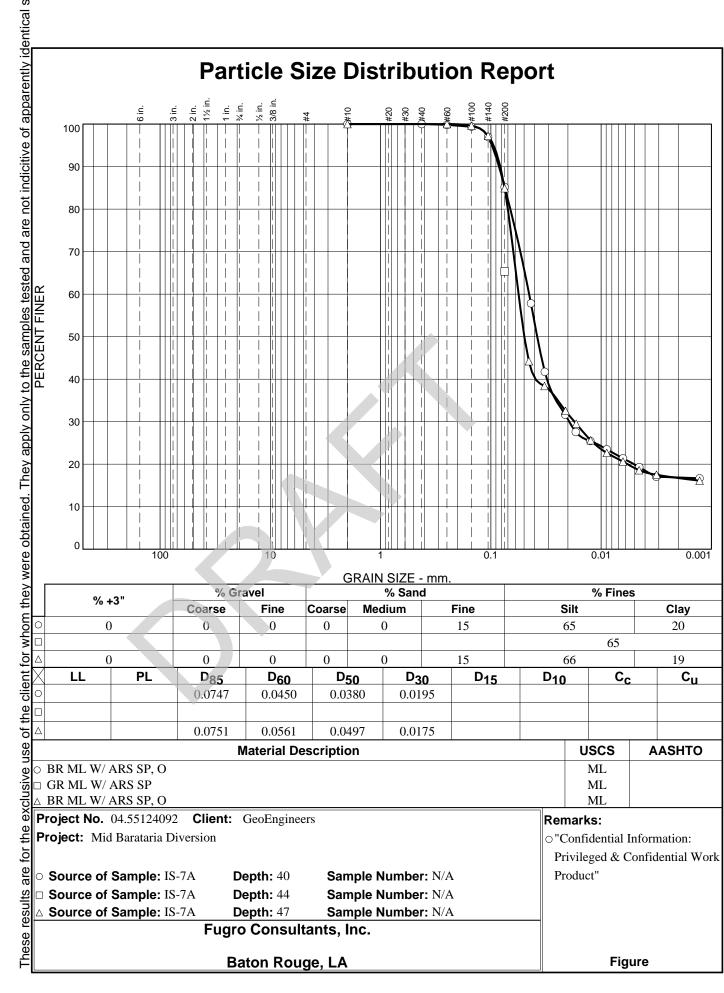
Client: GeoEngineers

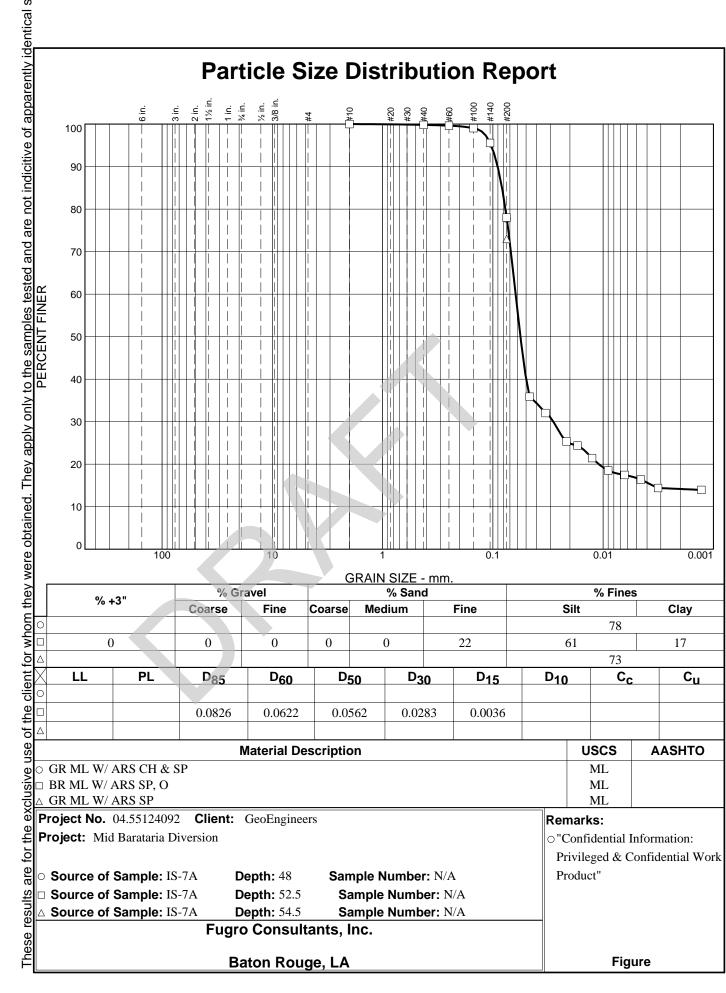

Project: Mid Barataria Diversion

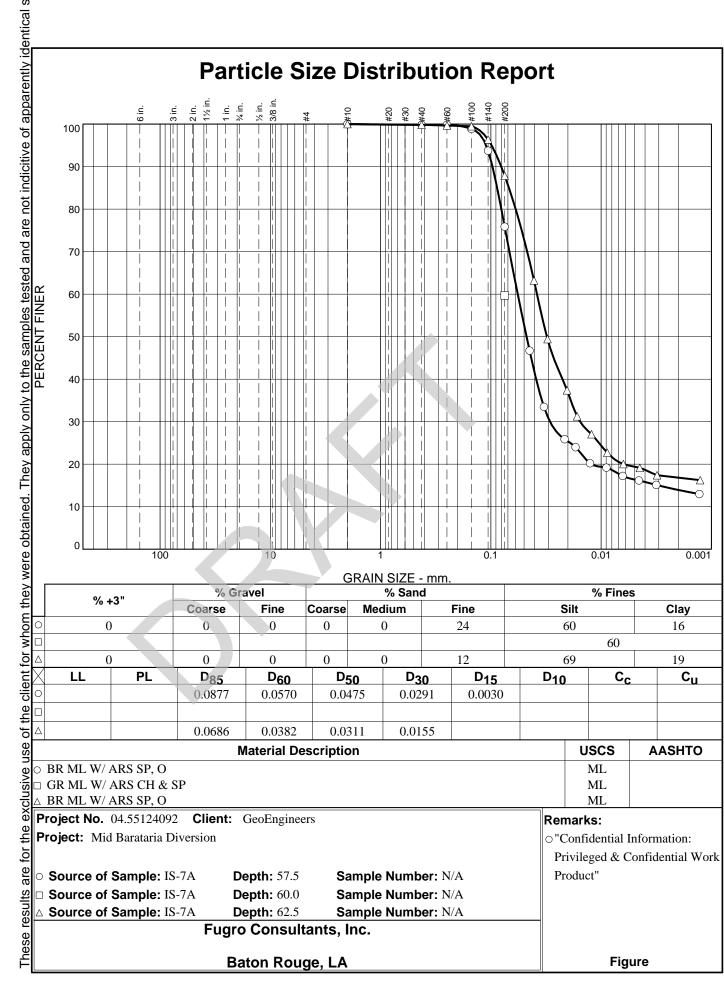

Source of Sample: IS-7A Depth: 9.5

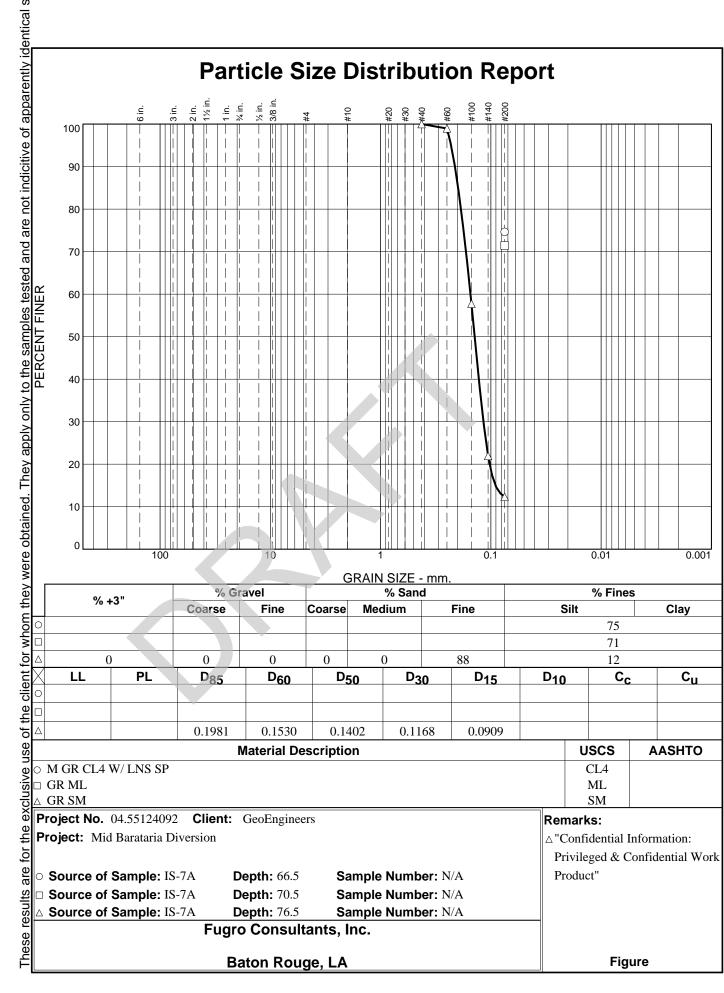

Sample Number: N/A

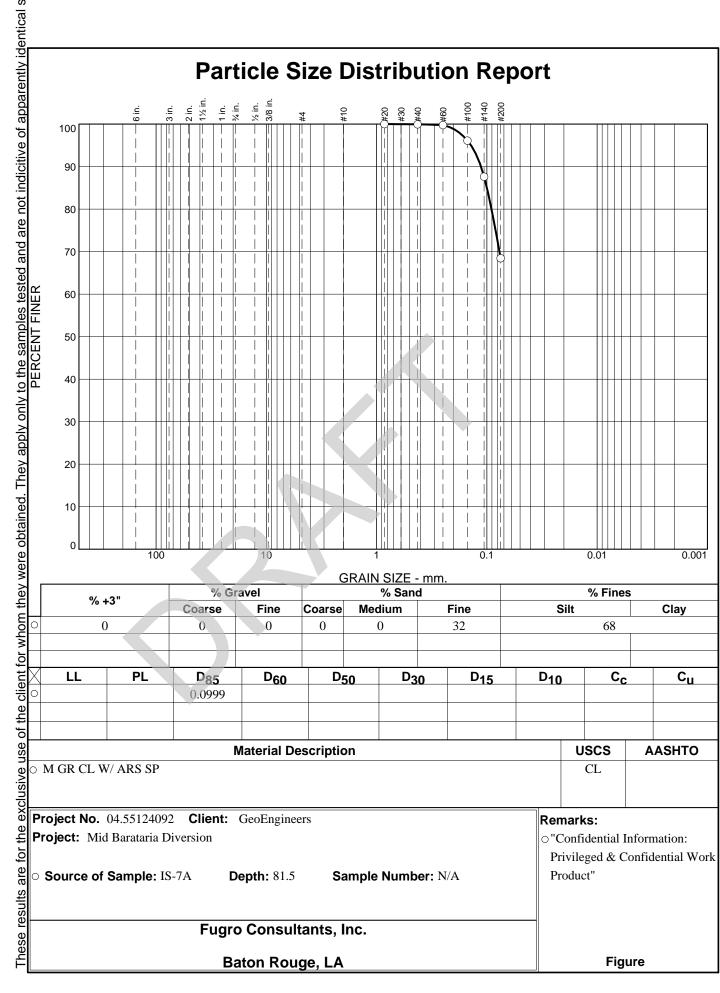

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

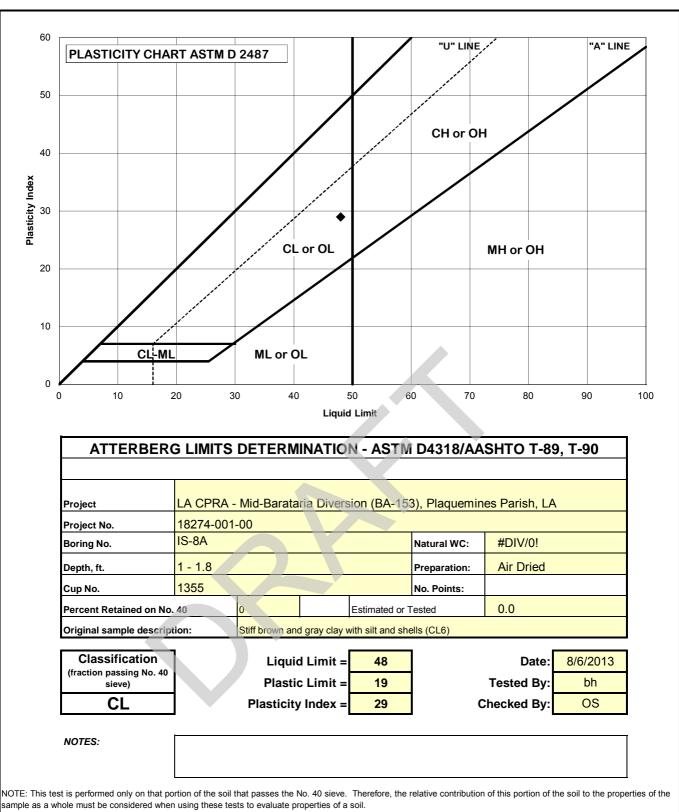

Figure _

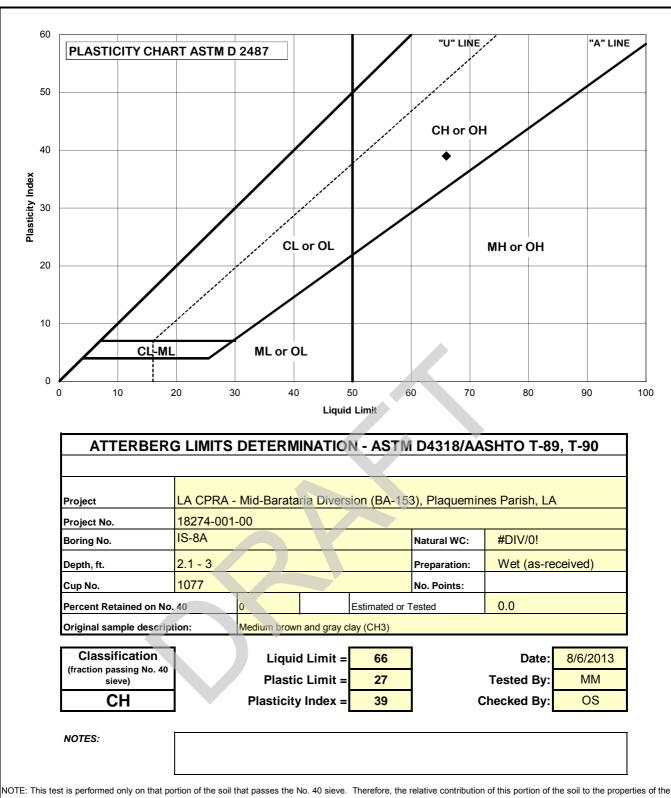











This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

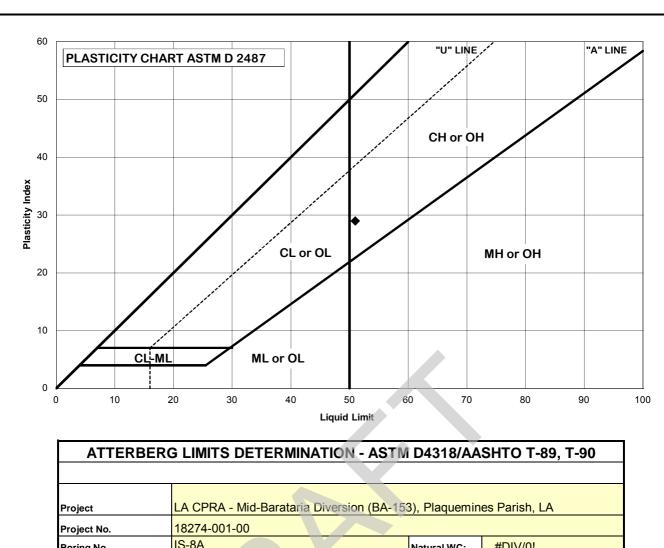
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were eral accordance with the the referenced method(s). Any di


ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

GEOENGINEERS	
--------------	--

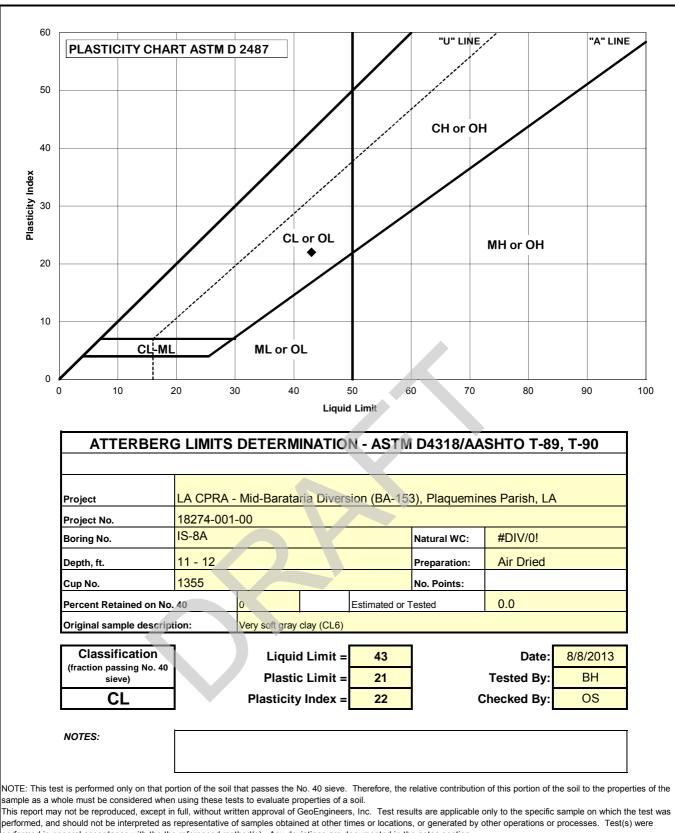
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

Project	LA CPR	A CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-0	01-00						
Boring No.	IS-8A			Natural WC:	#DIV/0!			
Depth, ft.	6 - 7			Preparation:	Wet (as-received)			
Cup No.	1356			No. Points:				
Percent Retained on	No. 40	0	Estimated or	Tested	0.0			
Original sample description:		Soft gray clay	(CH2)					
Classification		Liquid	l Limit = 51	1	Date: 8/20/2013			

Classification	Liquid Limit =	51	Date:
(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:
СН	Plasticity Index =	29	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

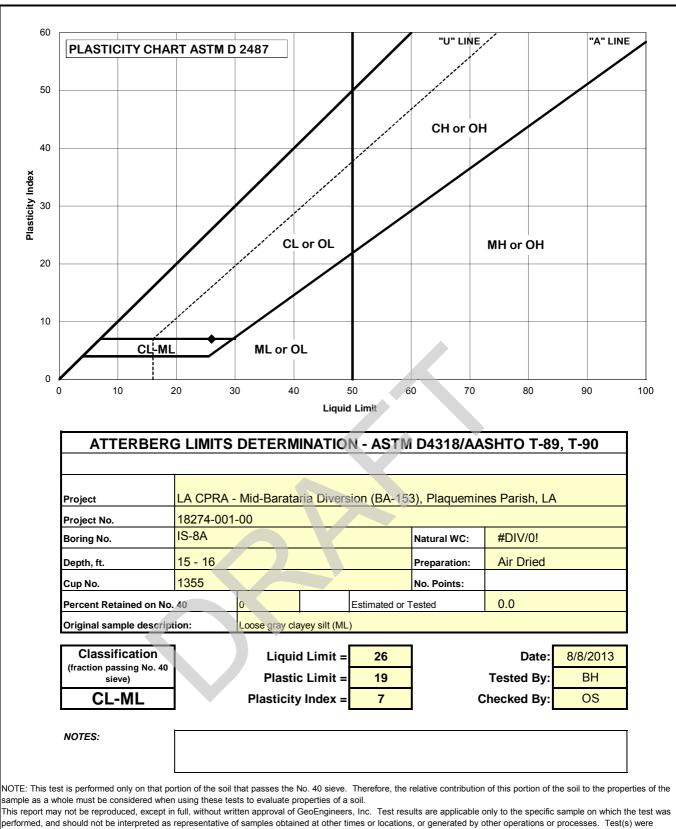

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

sc sc

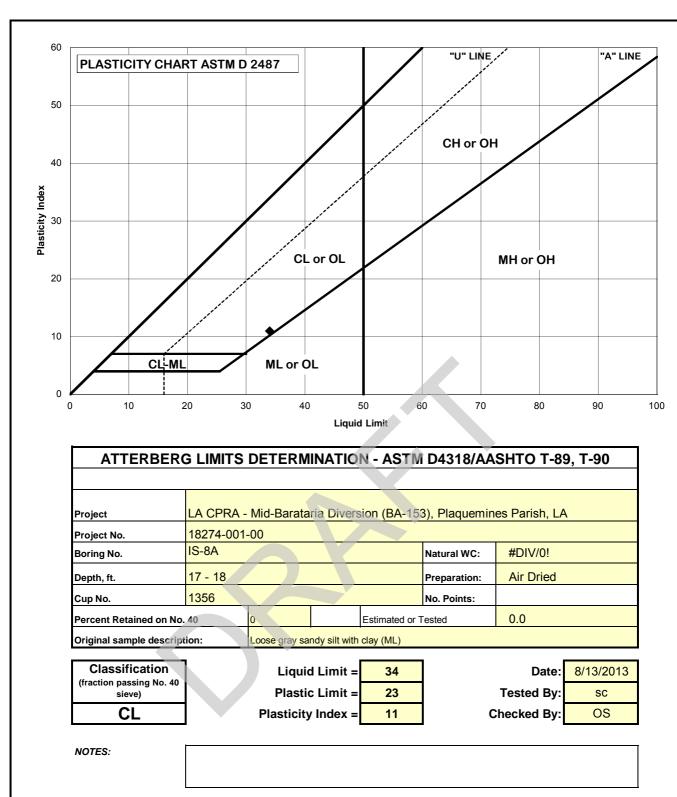
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA


performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA


GEOENGINEERS

ATTERBERG LIMITS - ASTM D4318

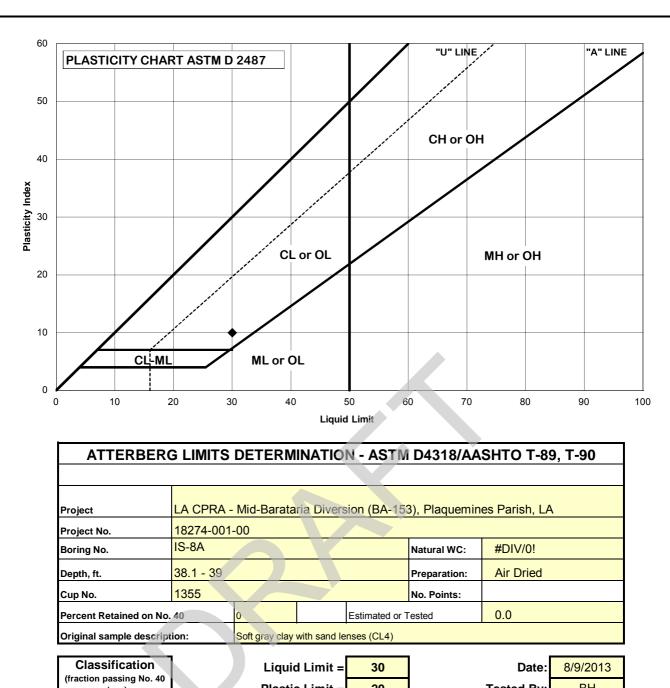
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

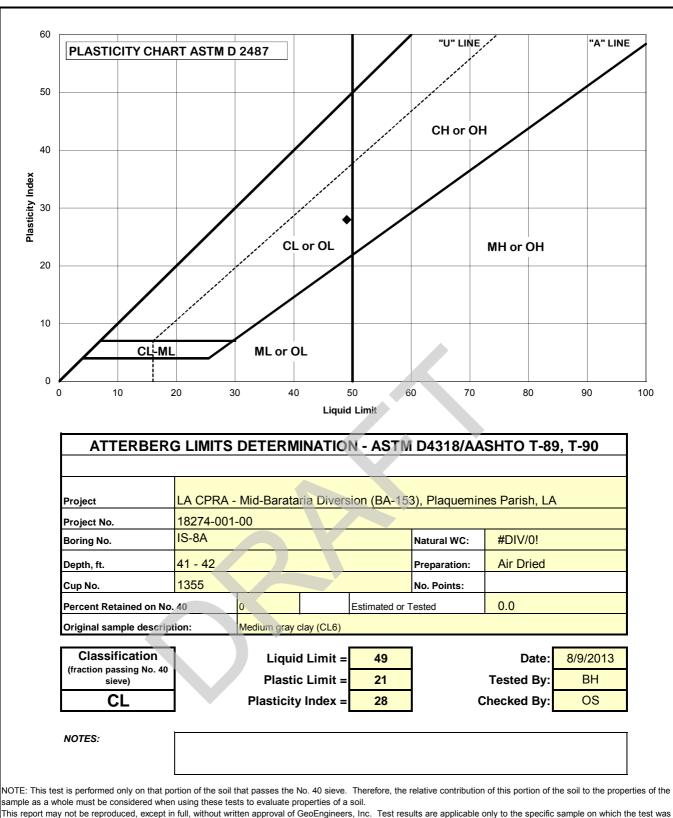

formed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

			_	
Classification	Liquid Limit	= 30	Date:	8/9/2013
(fraction passing No. 40 sieve)	Plastic Limit	= 20	Tested By:	ВН
CL	Plasticity Index	= 10	Checked By:	OS
			_	
NOTES:				


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

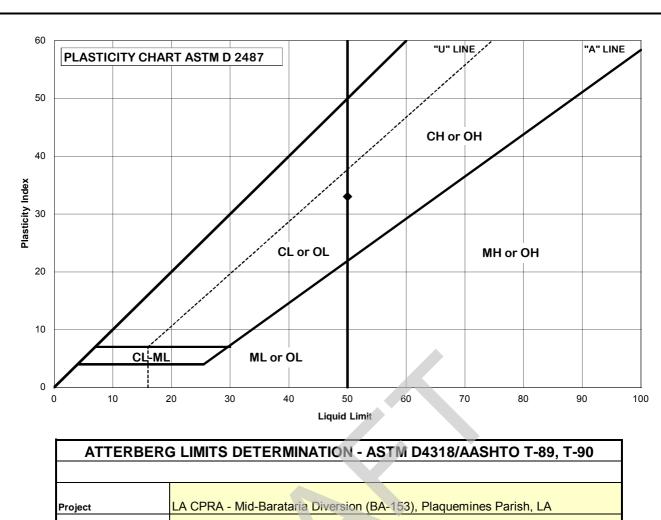
This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were


GEOENGINEERS

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

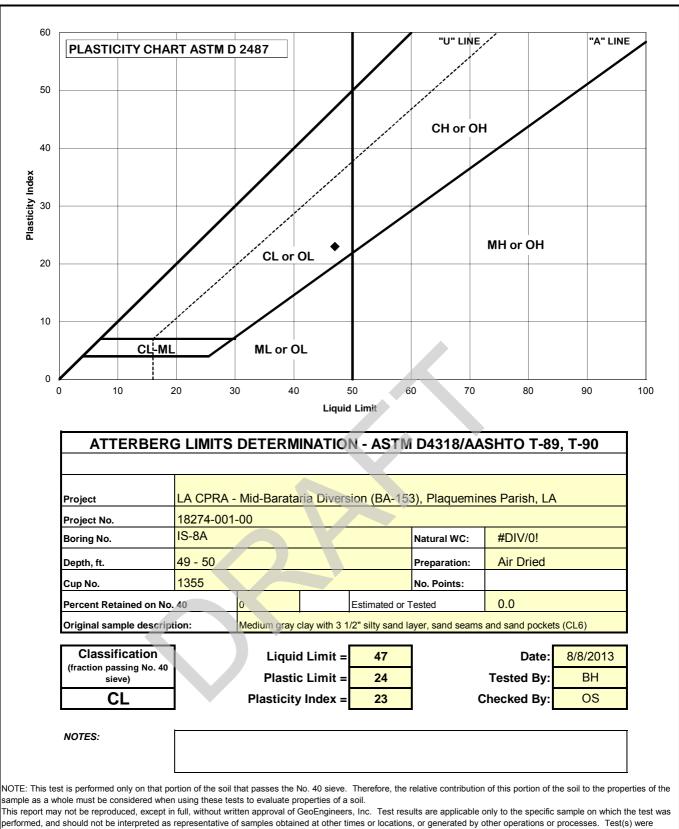
ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00	18274-001-00						
Boring No.	IS-8A					Natural WC:	#DIV/0!	
Depth, ft.	42 - 44					Preparation:	Wet (as-received)	
Cup No.					No. Points:			
Percent Retained on No. 40		Estimated or Tested			0.0			
Original sample de	Gray clay (CH2)							

Classification	Liquid Limit =	50	Date:	8/5/2013
(fraction passing No. 40 sieve)	Plastic Limit =	17	Tested By:	gw
СН	Plasticity Index =	33	Checked By:	sc
			_	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

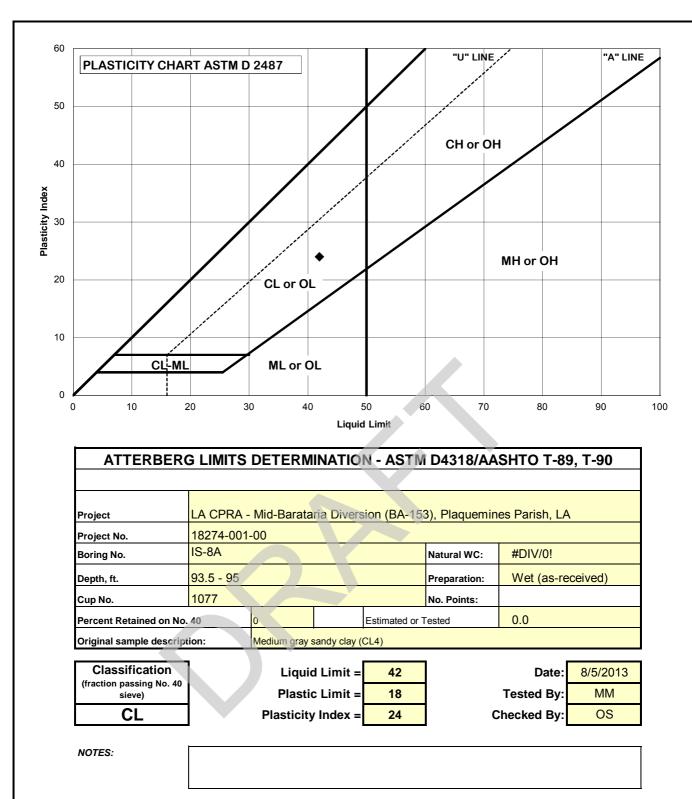

5)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460


performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS	
--------------	--

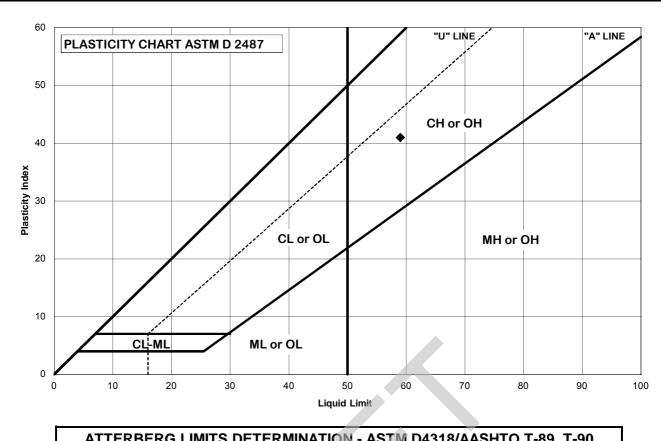
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were


ATTERBER

GEOENGINEERS

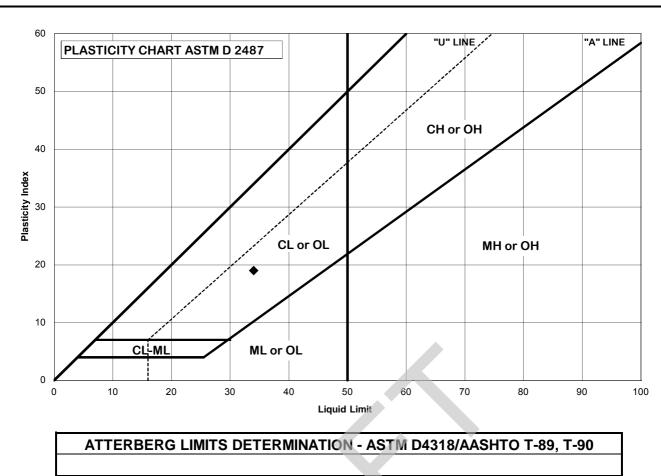
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-00</mark>	01-00					
Boring No.	IS-8A				Natural WC:	#DIV/0!	
Depth, ft.	<mark>106 - 1</mark> 07	7.5			Preparation:	Wet (as-received)	
Cup No.	1028				No. Points:		
Percent Retained	0		Estimated or Tested		0.0		
Original sample d	Very stiff brov	Very stiff brown and gray clay with sand pockets and seams (CH3)					

Classification	Liquid Limit =	59	Date:	8/7/2013
(fraction passing No. 40 sieve)	Plastic Limit =	18	Tested By:	gw
СН	Plasticity Index =	41	Checked By:	clp
	·		<u>-</u>	


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

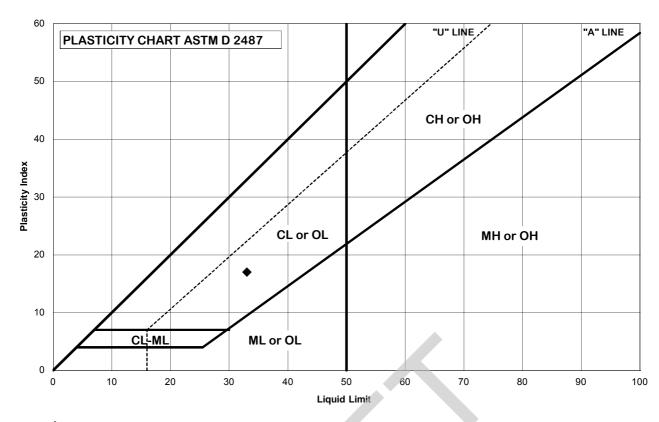
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-00</mark>	18274-001-00						
Boring No.	IS-8A				Natural WC:	#DIV/0!		
Depth, ft.	<mark>136 - 1</mark> 37	7.5			Preparation:	Air Dried		
Cup No.	1356				No. Points:			
Percent Retained	on No. 40	0	Estimated or Tested		0.0			
Original sample d	escription:	Hard light gra	Hard light gray clay with 4" clay layer (CL4)					

Classification	Liquid Limit =	34	Date:	8/5/2013
(fraction passing No. 40 sieve)	Plastic Limit =	15	Tested By:	SC
CL	Plasticity Index =	19	Checked By:	OS
	·		-	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

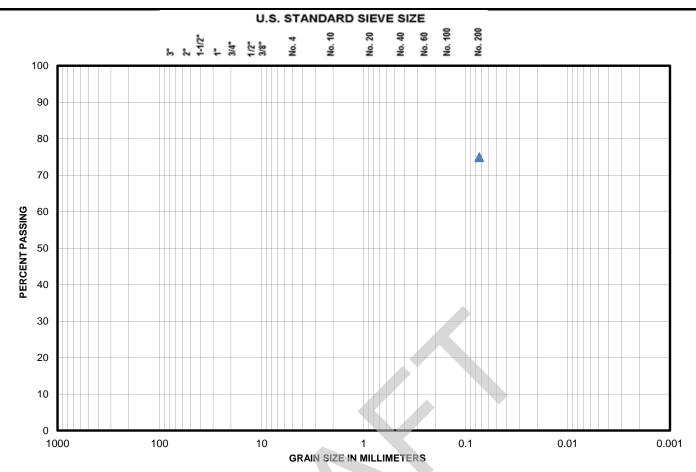
ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	Mid-Bar	ataria Dive	ersion (BA-15	3), Plaquemir	es Parish, LA			
Project No.	<mark>18274-00</mark>	8274-001-00							
Boring No.	IS-8A				Natural WC:	#DIV/0!			
Depth, ft.	<mark>140.5 -</mark> 1	41.5			Preparation:	Wet (as-received)			
Cup No.	1356				No. Points:				
Percent Retained	on No. 40	0		Estimated or	Tested	0.0			
Original sample d	riginal sample description: Very stiff light gray clay with sand pockets and seams (CL4)					4)			

Classification	Liquid Limit =	33	Date:	8/12/2013
(fraction passing No. 40 sieve)	Plastic Limit =	16	Tested By:	sc
CL	Plasticity Index =	17	Checked By:	sc
	·		-	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

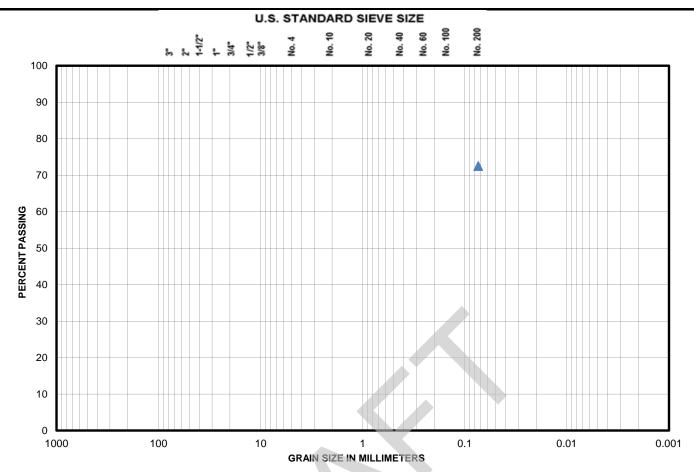
ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRLES GRAV		VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0		Medium Sand % 0.0		0.0	
Fine Gravel %		0.0		Fine Sand % 25.1		25.1	
Coarse Sand %		0.0		Fines (Silt & Clay) %			74.9
USC Classification		Х		Cu	na	C _c	na
Description (D 2488)	Loose	grav sand	v silt (ML)				

Inc	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	74.9						


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaquen	Date Tested	8/8/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	th (feet)	51 - 52	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

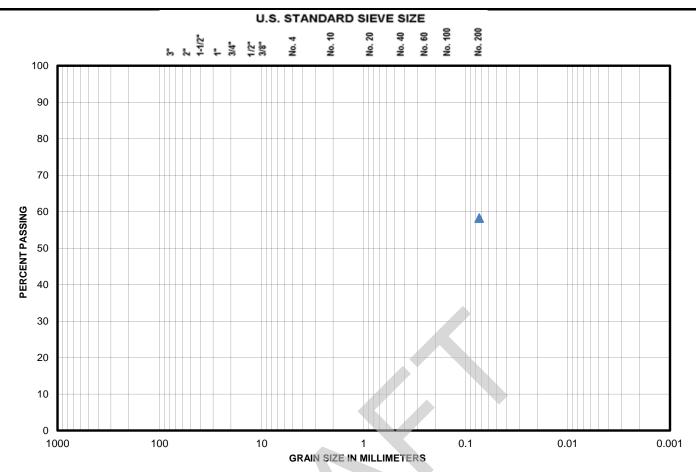
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %			0.0	Medium Sand % 0.0		0.0	
Fine Gravel %			0.0	Fine Sand % 27.5		27.5	
Coarse Sand %			0.0	Fines (Silt & Clay) % 72.5		72.5	
USC Classification			X	Cu	C _U na C _C na		
Description (D 2488)	Loos	e gray s	andy silt with clay	(ML)			

Inc	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	72.5						


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaquen	Date Tested	8/8/2013
Project No.	18274-001-00		Tested By	rw
Boring No.	IS-8A		Checked By	rw
Source/Dept	th (feet)	55 - 56	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

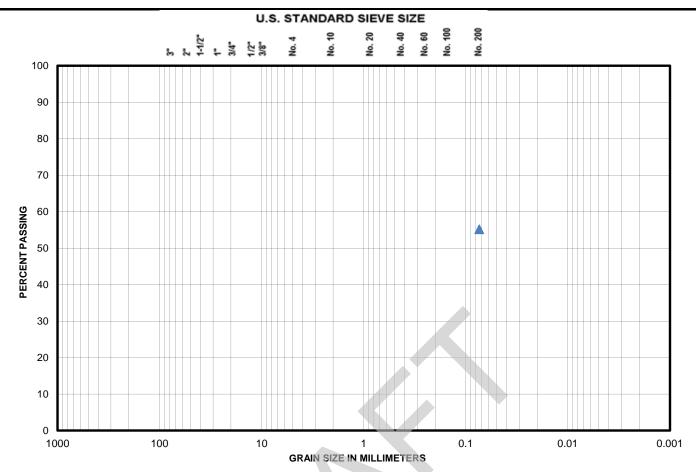
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRLES GRAV		VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %			0.0	Medium Sand %			0.0
Fine Gravel %			0.0	Fine Sand % 41.7		41.7	
Coarse Sand %			0.0	Fines (Silt & Clay) % 58.3		58.3	
USC Classification			X	Cu	na	C _c	na
Description (D 2488)	Loose	Loose gray silty sand with clay (ML)					

I	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	58.3						


Project	LA CPRA - M	lid-Barataria Diversion (BA-153), Plaque	Date Tested	8/7/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	th (feet)	66 - 67.5	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

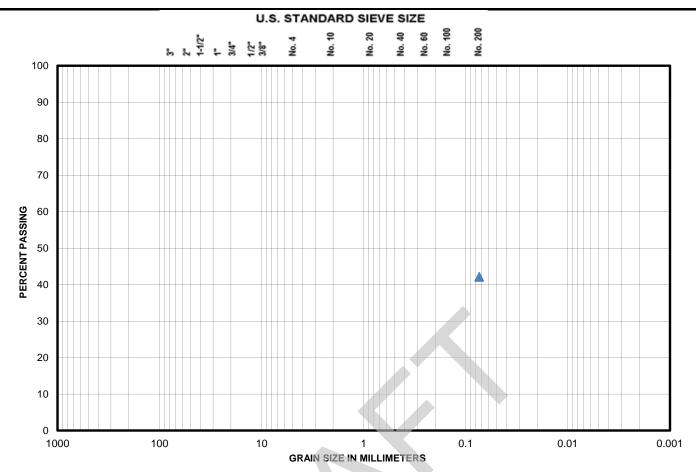
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

COBBLES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0		Medium Sand %			0.0
Fine Gravel %		0.0		Fine Sand %		44.8	
Coarse Sand %		0.0		Fines (Silt & Clay) %		55.2	
USC Classification		X		C _U na C _C na		na	
Description (D 2488)	Loose	Loose gray sandy silt with clay (ML)					

Inc	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	55.2						


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), F	laquen Date Te	sted	8/7/2013
Project No.	18274-001-00		Tested E	Зу	Rw
Boring No.	IS-8A		Checked	d Ву	RW
Source/Dept	th (feet)	73.5 - 75	Sieve Ty	/pe	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

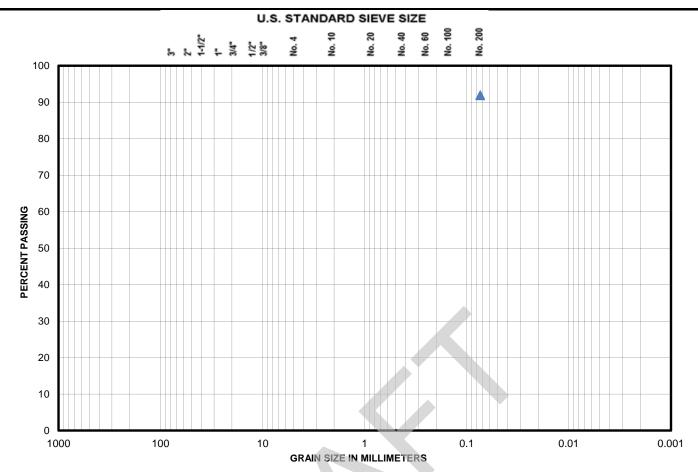
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand %			0.0
Fine Gravel %	0.0	Fine Sand % 57.9		57.9	
Coarse Sand %	0.0	Fines (Silt & Clay) %		42.1	
USC Classification	SM	Cυ	na	C _c	na
Description (D 2488)	Silty sand				

Inc	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	42.1						


Project	LA CPRA - M	Iid-Barataria Diversion (BA-15	53), Plaquen Date Tested	8/7/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	th (feet)	78.5 - 80	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

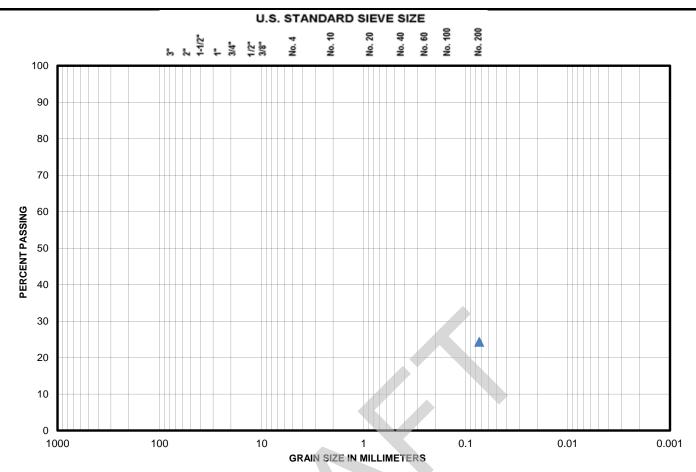
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

COBBLES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand %			0.0
Fine Gravel %		0.0	Fine Sand % 8.1		8.1	
Coarse Sand %		0.0	Fines (Silt & Clay) %			91.9
USC Classification		x	C _U na		C _c	na
Description (D 2488)	Loose gra	Loose gray sandy silt with 3" clay layer (ML)				

Inc	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	91.9						


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Pl	Date Tested	8/7/2013	
Project No.	18274-001-00		Tested By	RW	
Boring No.	IS-8A		Checked By	RW	
Source/Dept	th (feet)	86 - 87.5		Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

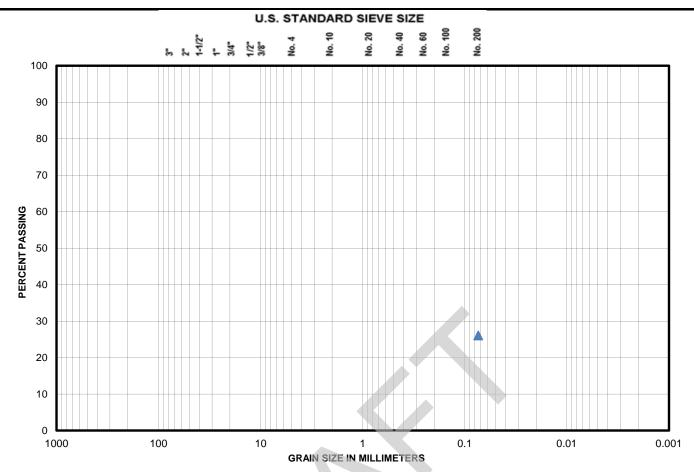
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand %			0.0
Fine Gravel %	0.0	Fine Sand % 75.7		75.7	
Coarse Sand %	0.0	Fines (Silt & Clay) %			24.3
USC Classification	SM	C _U na		C _c	na
Description (D 2488)	Silty sand				

Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	#N/A					
3/4"	#N/A	No. 60	#N/A					
1/2"	#N/A	No. 100	#N/A					
3/8"	#N/A	No. 200	24.3					


Project	LA CPRA - M	lid-Barataria Diversion (BA-153), Plaquen	Date Tested	8/8/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	th (feet)	146.5 - 147.5	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

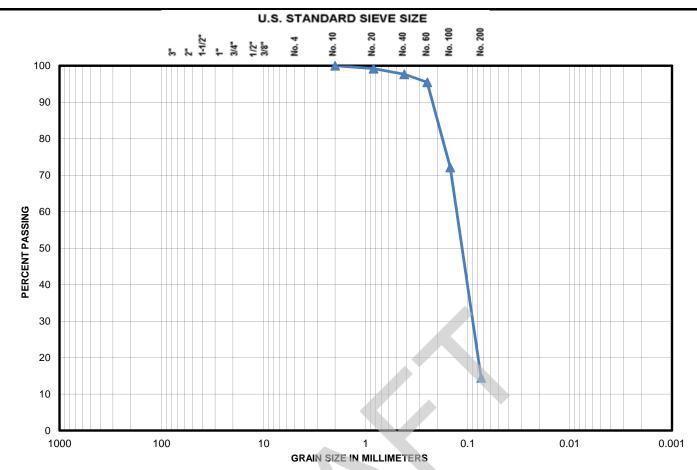
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand %			0.0
Fine Gravel %		0.0	Fine Sand % 73.9		73.9	
Coarse Sand %		0.0	Fines (Silt & Clay) %			26.1
USC Classification		SM	C _U na		C _c	na
Description (D 2488)	Silty sand					

Inc	Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A						
2"	#N/A	No. 10	#N/A						
1 1/2"	#N/A	No. 20	#N/A						
1"	#N/A	No. 40	#N/A						
3/4"	#N/A	No. 60	#N/A						
1/2"	#N/A	No. 100	#N/A						
3/8"	#N/A	No. 200	26.1						


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaquen	Date Tested	8/7/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	h (feet)	150 - 151.5	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

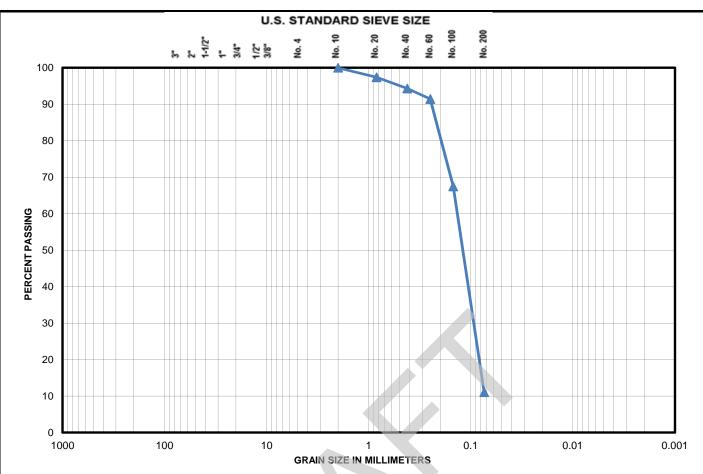
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	%		2.3
Fine Gravel %		0.0	Fine Sand %			83.2
Coarse Sand %		0.0	Fines (Silt & C	lay) %		14.4
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty s	and				

Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	100.0		
1 1/2"	#N/A	No. 20	99.2		
1"	#N/A	No. 40	97.7		
3/4"	#N/A	No. 60	95.5		
1/2"	#N/A	No. 100	72.1		
3/8"	#N/A	No. 200	14.4		


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	8/7/2013
Project No.	18274-001-00	Tested By	RW
Boring No.	IS-8A	Checked By	RW
Source/Dept	h (feet) 96 - 97.5	Sieve Type	Dry Sieve

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

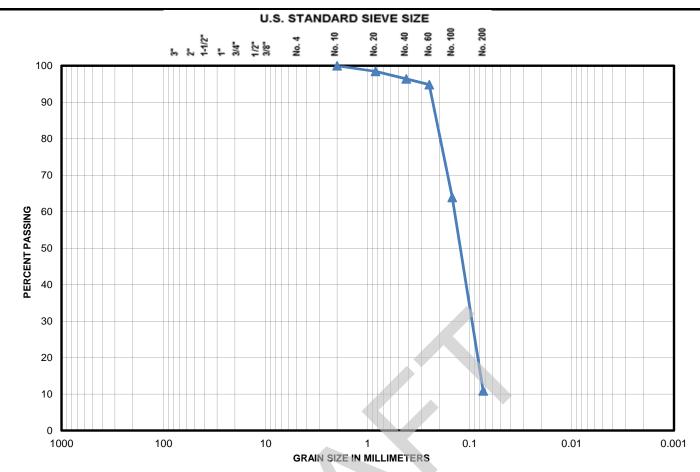
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

COBBLES	GRA	VEL	SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0		Medium Sand %			5.7	
Fine Gravel %		0.0		Fine Sand % 83.2		83.2		
Coarse Sand %		0.0		Fines (Silt & Clay) %			11.1	
USC Classification		X		Cυ	na	C _c	na	
Description (D 2488)	Medium dense grav sand with silt (SP)							

Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	100.0		
1 1/2"	#N/A	No. 20	97.4		
1"	#N/A	No. 40	94.3		
3/4"	#N/A	No. 60	91.4		
1/2"	#N/A	No. 100	67.5		
3/8"	#N/A	No. 200	11.1		


Project	LA CPRA - Mic	d-Barataria Diversion (BA-153), Pl	laquen Date Tested	8/6/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	h (feet)	01 - 102.5	Sieve Type	Dry Sieve

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

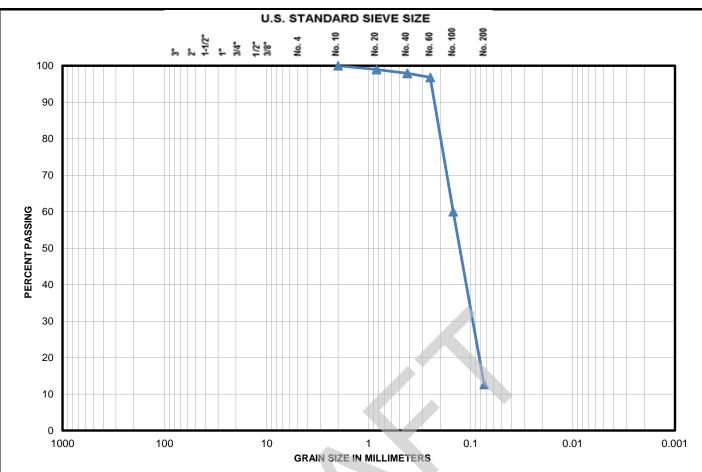
ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		(0.0	Medium Sand % 3.6		3.6	
Fine Gravel %		(.0	Fine Sand %	85.5		85.5
Coarse Sand %			0.0	Fines (Silt & Clay) %		10.9	
USC Classification		, L	SP	Cu	na	C _c	na
Description (D 2488)	Verv	dense g	ray sand with silt	(SP)			

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	100.0			
1 1/2"	#N/A	No. 20	98.5			
1"	#N/A	No. 40	96.4			
3/4"	#N/A	No. 60	94.8			
1/2"	#N/A	No. 100	63.9			
3/8"	#N/A	No. 200	10.9			


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	8/6/2013
Project No.	18274-001-00	Tested By	RW
Boring No.	IS-8A	Checked By	RW
Source/Dept	h (feet) 113.5 - 115	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

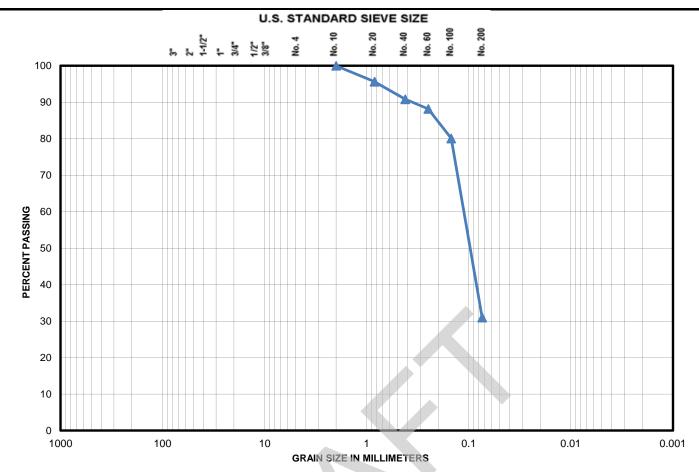
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

COPPLES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand %	2.1	
Fine Gravel %	0.0	Fine Sand %	85.3	
Coarse Sand %	0.0	Fines (Silt & Clay) %	12.6	
USC Classification	SM	C _U na	C _c na	
Description (D 2488)	Silty sand			

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	100.0			
1 1/2"	#N/A	No. 20	99.0			
1"	#N/A	No. 40	97.9			
3/4"	#N/A	No. 60	96.8			
1/2"	#N/A	No. 100	60.0			
3/8"	#N/A	No. 200	12.6			


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	8/6/2013
Project No.	18274-001-00	Tested By	RW
Boring No.	IS-8A	Checked By	RW
Source/Dept	h (feet) 121 - 122.5	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

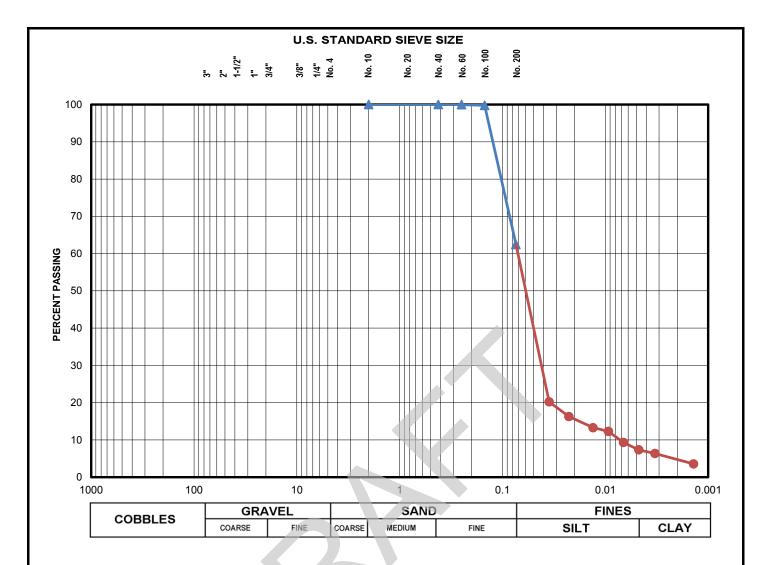
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

COBBLES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand %			9.2
Fine Gravel %	0.0	Fine Sand %			59.8
Coarse Sand %	0.0	Fines (Silt & Clay) %		31.0	
USC Classification	SM	Cυ	na	C _c	na
Description (D 2488)	Silty sand				

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	100.0			
1 1/2"	#N/A	No. 20	95.6			
1"	#N/A	No. 40	90.8			
3/4"	#N/A	No. 60	88.2			
1/2"	#N/A	No. 100	80.1			
3/8"	#N/A	No. 200	31.0			


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaquen	Date Tested	8/6/2013
Project No.	18274-001-00		Tested By	RW
Boring No.	IS-8A		Checked By	RW
Source/Dept	th (feet)	147.5 - 149	Sieve Type	Dry Sieve

ASTM D 6913 SOIL PARTICLE-SIZE GRADATION SIEVE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

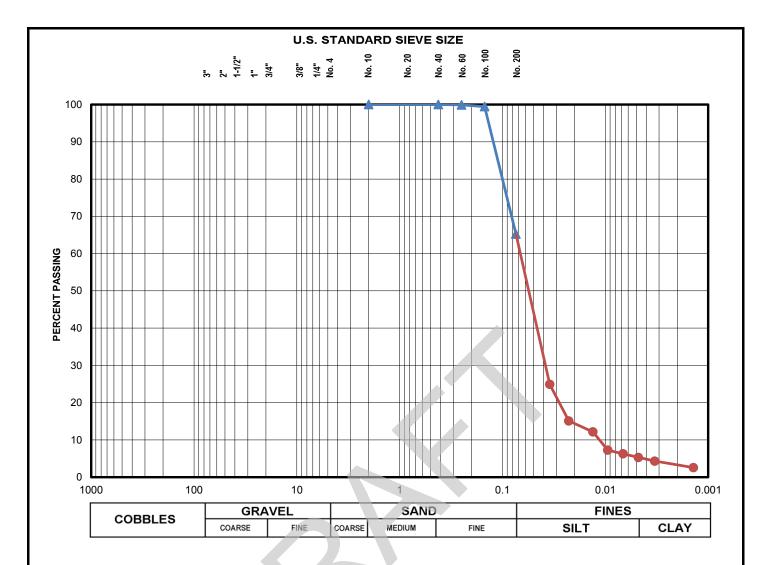
18274-001-00

Description (D 2488)	Medium dense	gray sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	62.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	39278
Hydro jar ID:	10

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	8/16/2013
Project No.	18274-001-00	Tested By	AB
Sample ID.	IS-8A	Checked By	TC
Source/Depth (feet)	26 - 27		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish

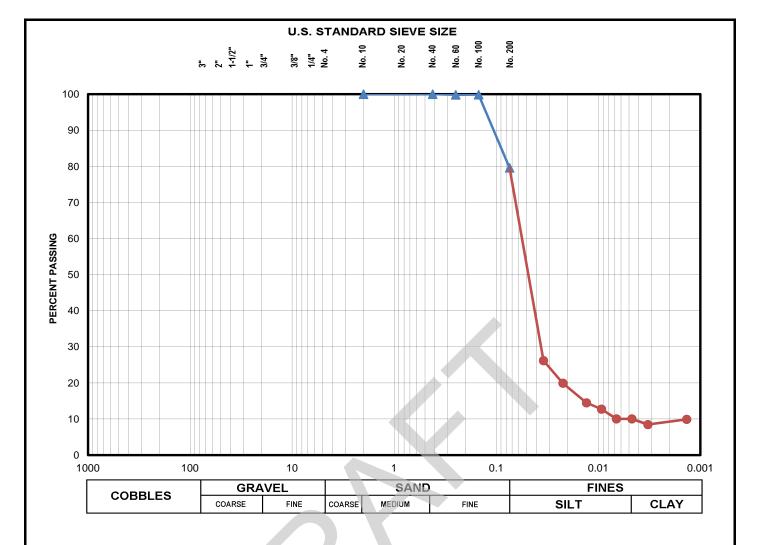
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential \\82774:004=00

		-	
Description (D 2488)	Loose gray sandy s	silt (ML)	

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.5
1/4"	100.0	No. 200	65.2

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	3000
Hydro jar ID:	10

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	8/16/2013
Project No.	18274-001-00	Tested By	AB
Sample ID.	IS-8A	Checked By	TC
Source/Depth (feet)	30 - 31		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

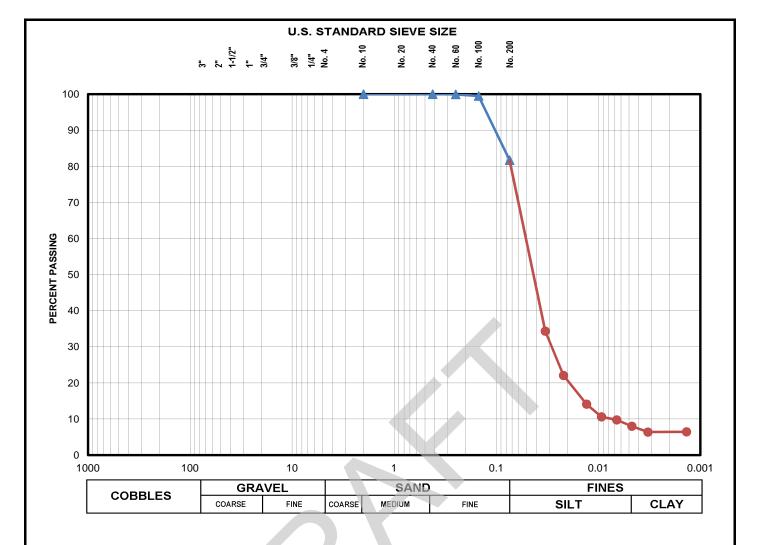
CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential \\82774:004=00

Description (D 2488)	Medium dense gray sandy silty with clay (ML)
= 000: p.i.o.: (= = 100)	Median delibe gray sandy shely with endy (MIZ)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.8
3/8"	100.0	No. 100	99.9
1/4"	100.0	No. 200	79.6

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1159


^{*}assumed unless noted

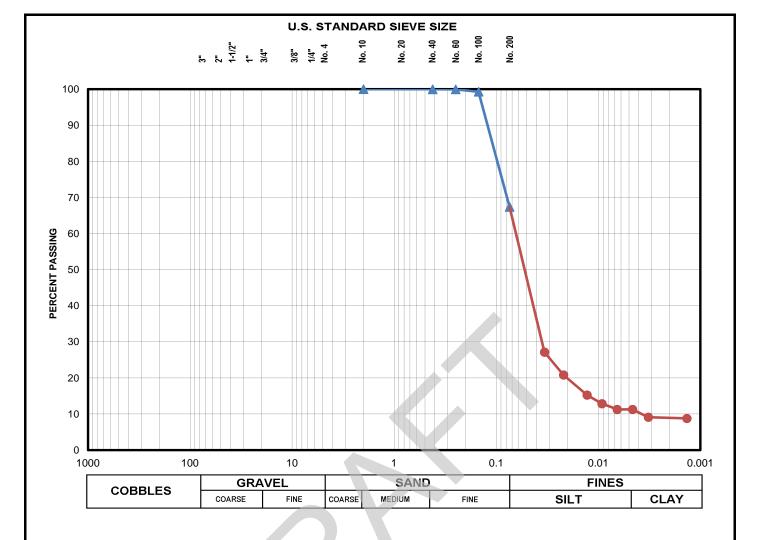
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	8/15/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	IS-8A	Checked By	SEF
Source/Depth (feet)	54 - 55		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

Description (D 2488)	Loose gray early eith with alay (ML)
Description (D 2466)	Loose gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.5
1/4"	100.0	No. 200	81.7


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1165
*assumed unless noted	

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	8/14/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	IS-8A	Checked By	SEF
Source/Depth (feet)	59 - 60		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

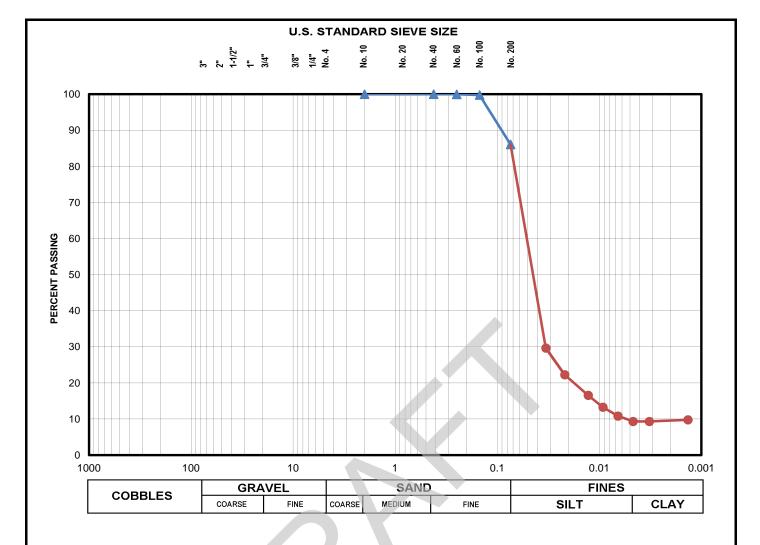
Description (D 2488)	Very loose gray sandy silt with clay (ML)
Podeription (P 2 100)	very loose gray standy sin with endy (HIE)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.3
1/4"	100.0	No. 200	67.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1353
*assumed unless noted	

Project
 LA CPRA - Mid-Barataria Diversion (BA-15)
 Date Tested
 8/15/2013

 Project No.
 18274-001-00
 Tested By
 RW


 Sample ID.
 IS-8A
 Checked By
 SEF

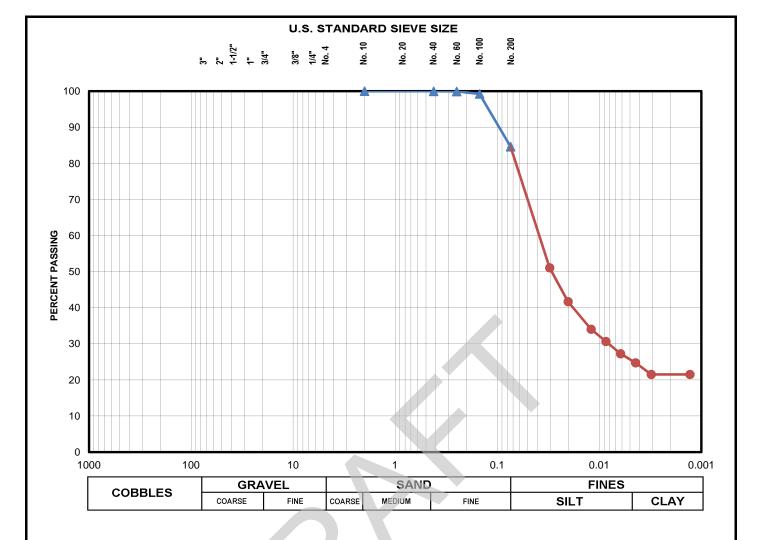
 Source/Depth (feet)
 63.5 - 65
 SEF

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

Description (D 2488)	Very loose gray sandy silt with clay (ML)
= 000: p.:o:: (= = :00)	very roose gray sairly six with early (will)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	86.1


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1156
*assumed unless noted	

ProjectLA CPRA - Mid-Barataria Diversion (BA-15)Date Tested8/15/2013Project No.18274-001-00Tested ByRWSample ID.IS-8AChecked BySEFSource/Depth (feet)68.5 - 70

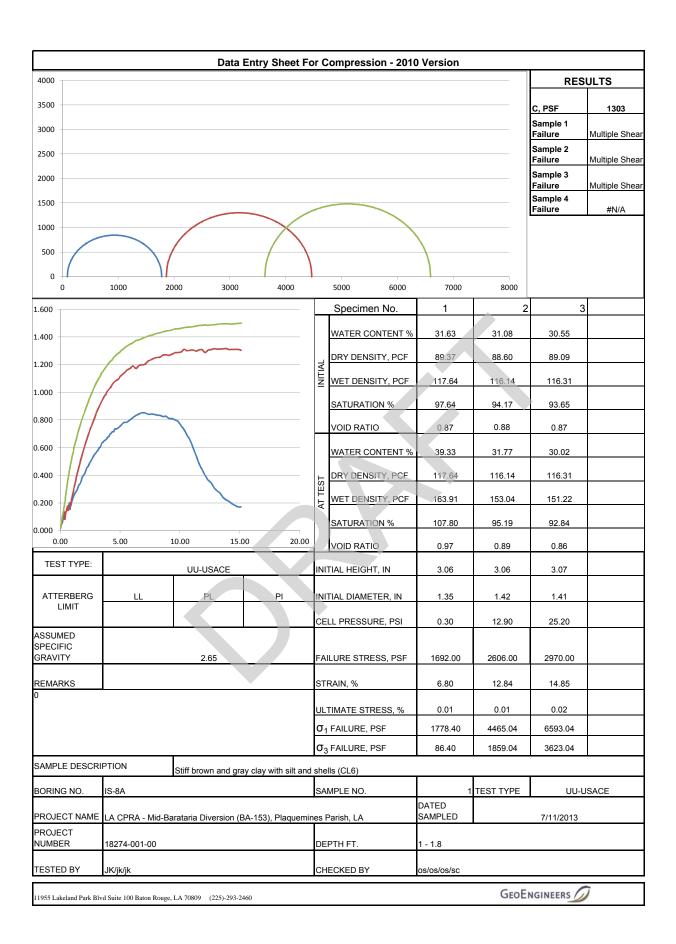
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

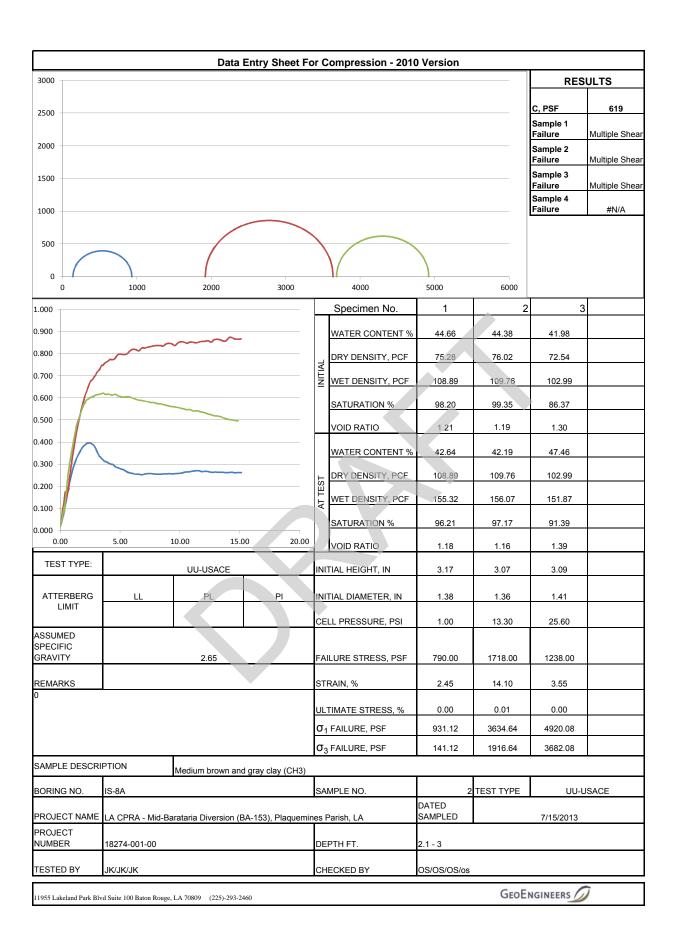
CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

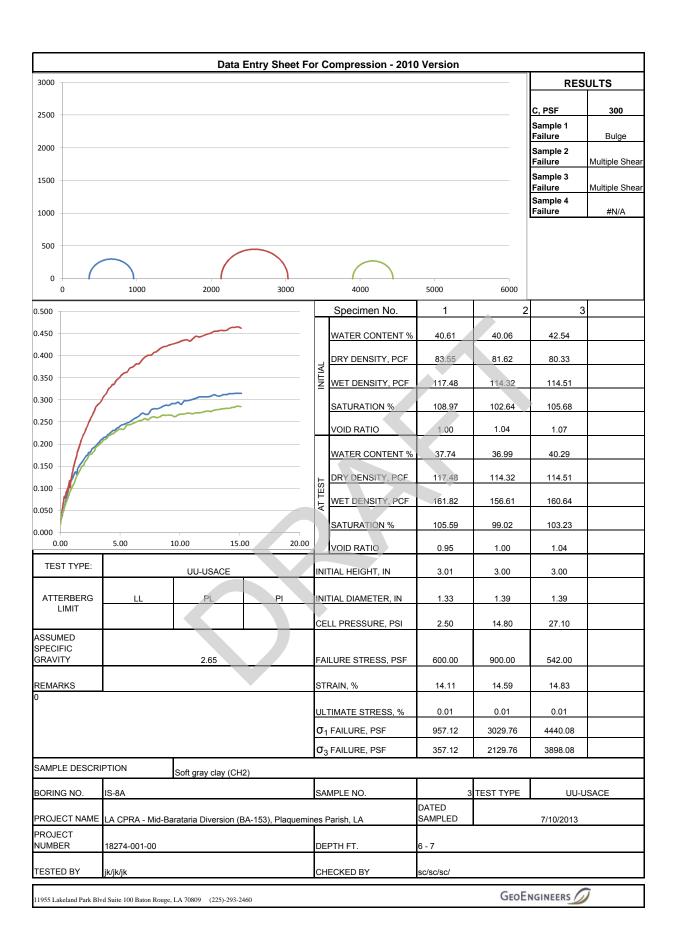
Description (D 2488)	Loose gray sandy clayev silt (ML)
Description (D 2400)	Loose gray saidy etayey site (ME)

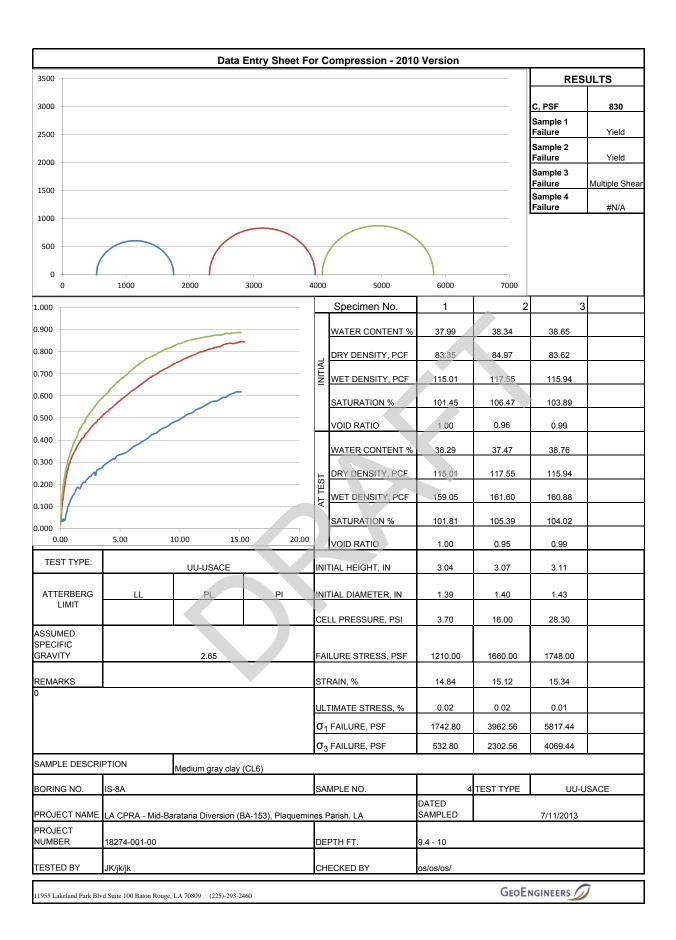
Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.9
3/8"	100.0	No. 100	99.2
1/4"	100.0	No. 200	84.6

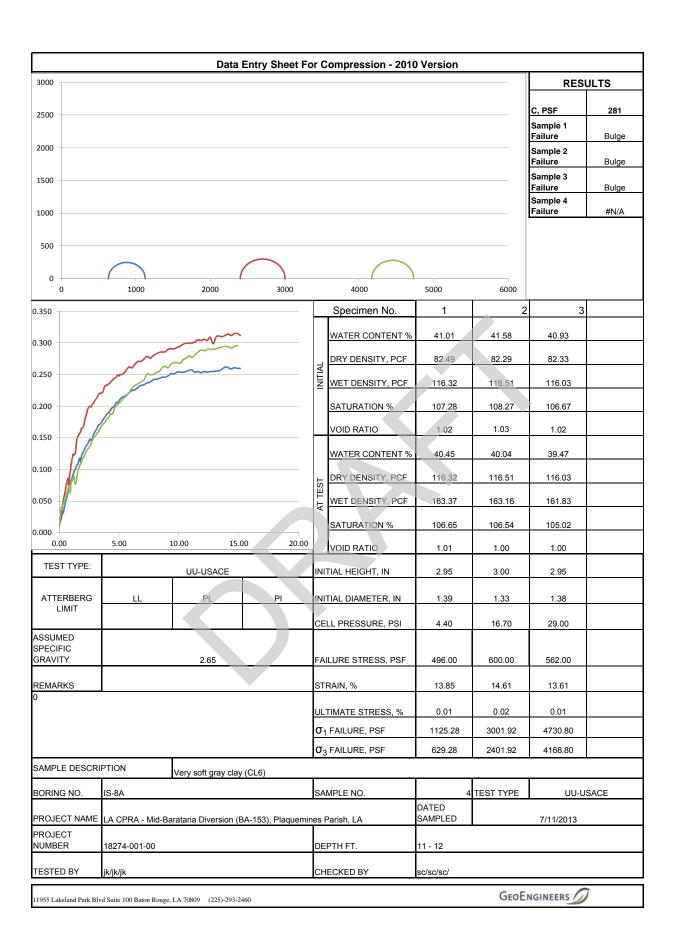
2.65
Type A
1 min.
$(NaPO_3)_6$
ASTM 152 H
1148
1158

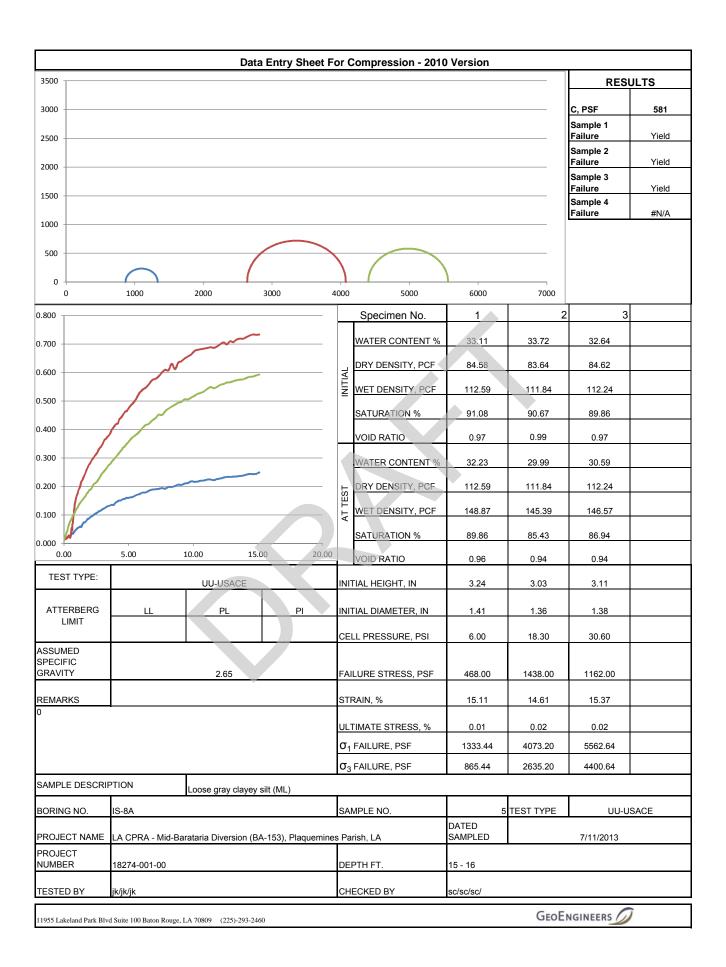

^{*}assumed unless noted

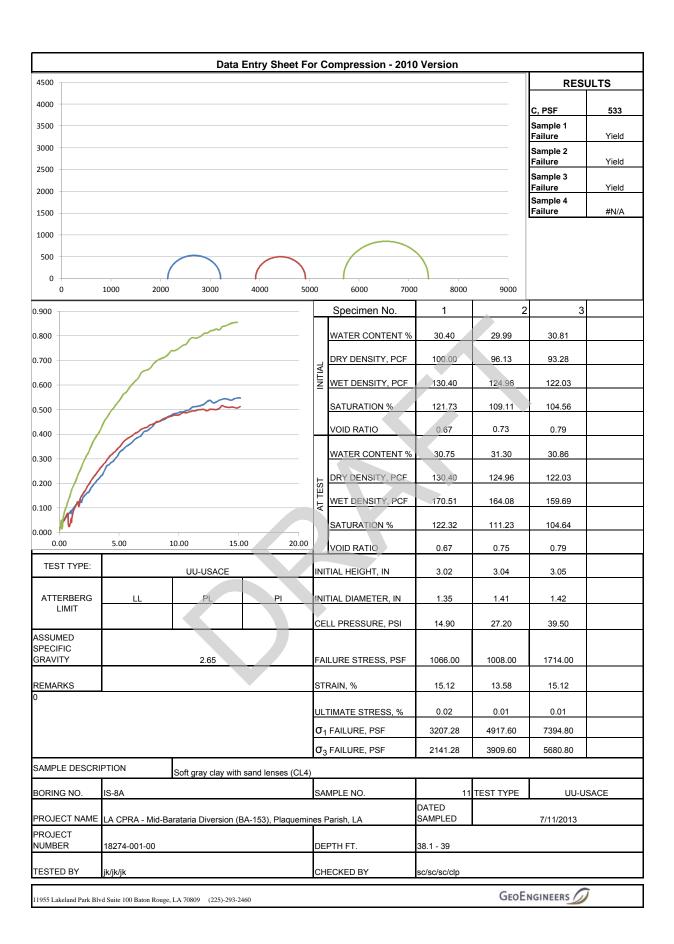

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	8/15/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	IS-8A	Checked By	SEF
Source/Depth (feet)	81 - 82.5		

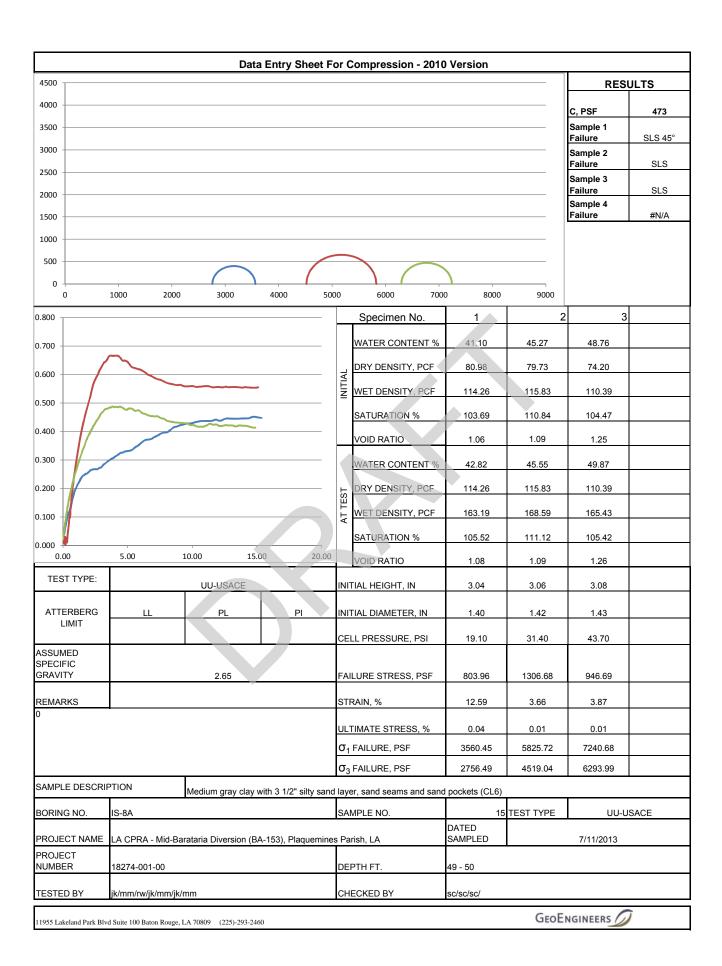


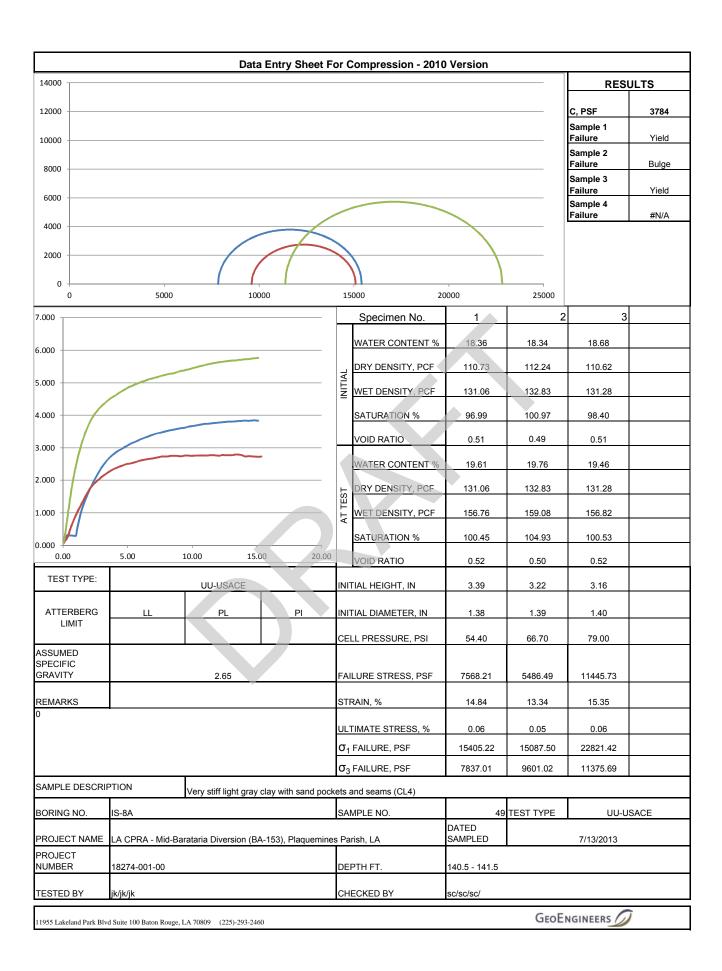

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

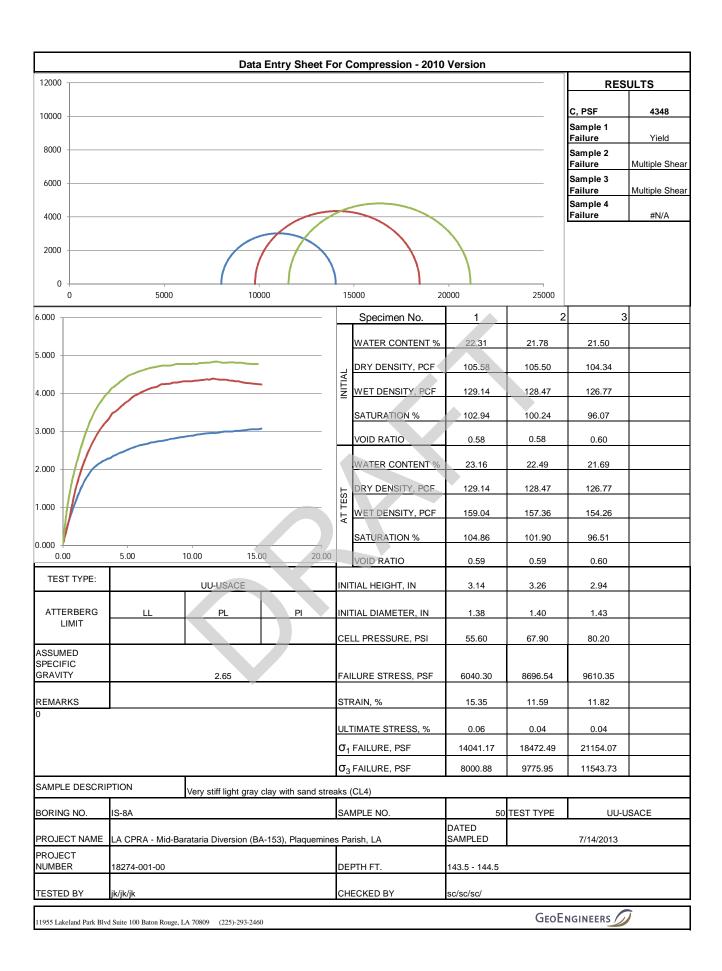

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

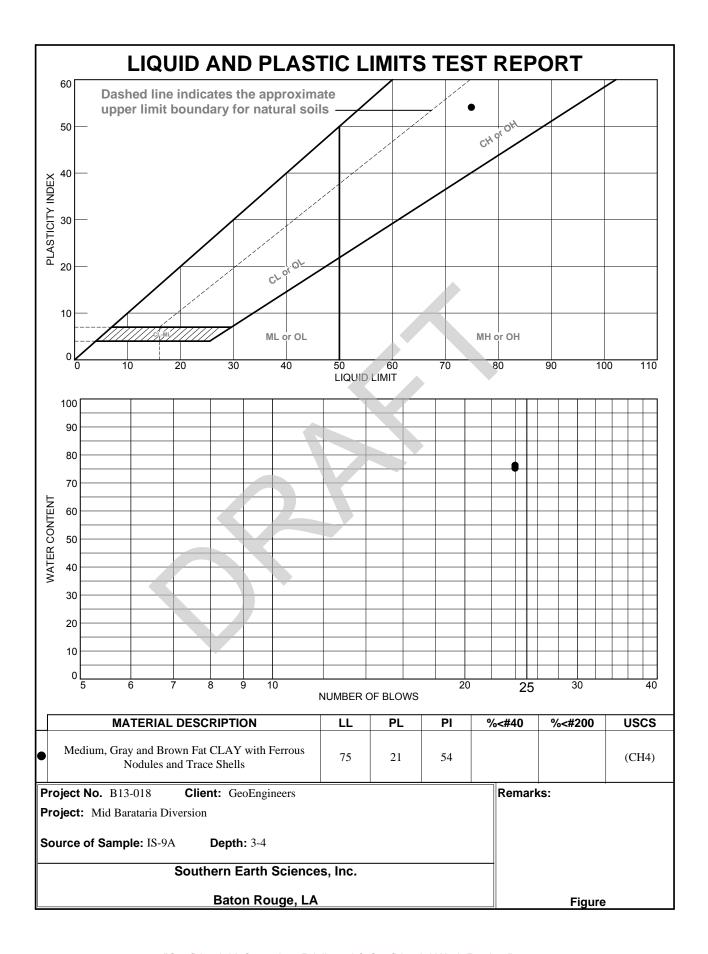


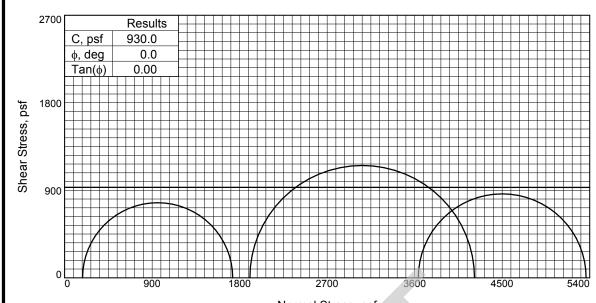


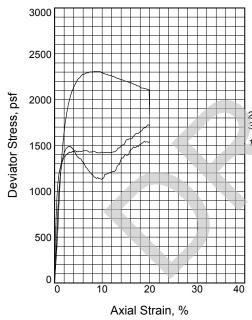












Normal Stress, psf

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Unconsolidated Undrained

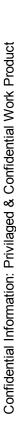
Sample Type: Undisturbed

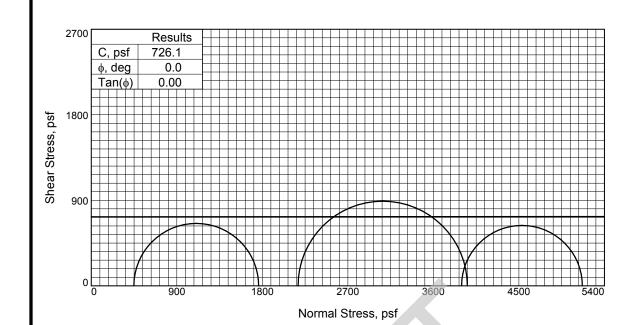
Description: Medium, Gray and Brown Fat CLAY w/ Fe. Nodules and Tr. Shells (CH4)

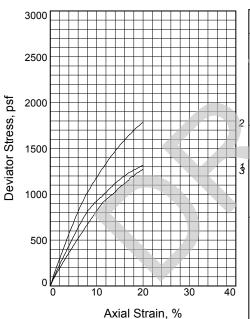
LL= 75 PL= 21 Pl= 54 Assumed Specific Gravity= 2.80

Remarks: Type Failure: 45 Degree Shear

riguie	Figure	
--------	--------	--


	Sa	mple No.	1	2	3	
		Water Content, %	37.2	29.8	37.6	
		Dry Density, pcf	84.8	89.7	84.6	
	Initial	Saturation, %	98.0	88.0	98.7	
	lni	Void Ratio	1.0618	0.9496	1.0664	
		Diameter, in.	1.406	1.420	1.406	
2		Height, in.	2.800	2.800	2.800	
/		Water Content, %	37.9	33.9	38.1	
1	it.	Dry Density, pcf	84.8	89.7	84.6	
	At Test	Saturation, %	100.0	100.0	100.0	
	٩t ٦	Void Ratio	1.0618	0.9496	1.0664	
	`	Diameter, in.	1.406	1.420	1.406	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.001	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Cell Pressure, psi		1.280	13.230	25.260	
	Fail. Stress, psf		1544.2	2309.9	1725.9	
	Strain, %		18.9	8.8	19.6	
	Ult. Stress, psf Strain, %					
	σ1	Failure, psf	1728.5	4215.1	5363.3	
	σ_3	Failure, psf	184.3	1905.1	3637.4	


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-9A Depth: 3-4

Proj. No.: B13-018 Date Sampled:

	Sa	mple No.	1	2	3	
		Water Content, %	30.5	29.8	31.3	
		Dry Density, pcf	98.2	97.3	97.9	
	Initial	Saturation, %	115.1	110.0	117.1	
	<u>-</u>	Void Ratio	0.7158	0.7321	0.7223	
		Diameter, in.	1.343	1.361	1.349	
2		Height, in.	2.800	2.800	2.800	
		Water Content, %	26.5	27.1	26.8	
)ţ	Dry Density, pcf	98.2	97.3	97.9	
4	e,	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	0.7158	0.7321	0.7223	
	1	Diameter, in.	1.343	1.361	1.349	
		Height, in.	2.800	2.800	2.800	
	Str	rain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	ell Pressure, psi	3.110	15.110	27.060	
	Fa	il. Stress, psf	1313.0	1781.2	1270.6	
	5	Strain, %	19.8	19.9	19.9	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	1760.9	3957.0	5167.3	
	σ_3	Failure, psf	447.8	2175.8	3896.6	

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Medium, Tan Lean CLAY with

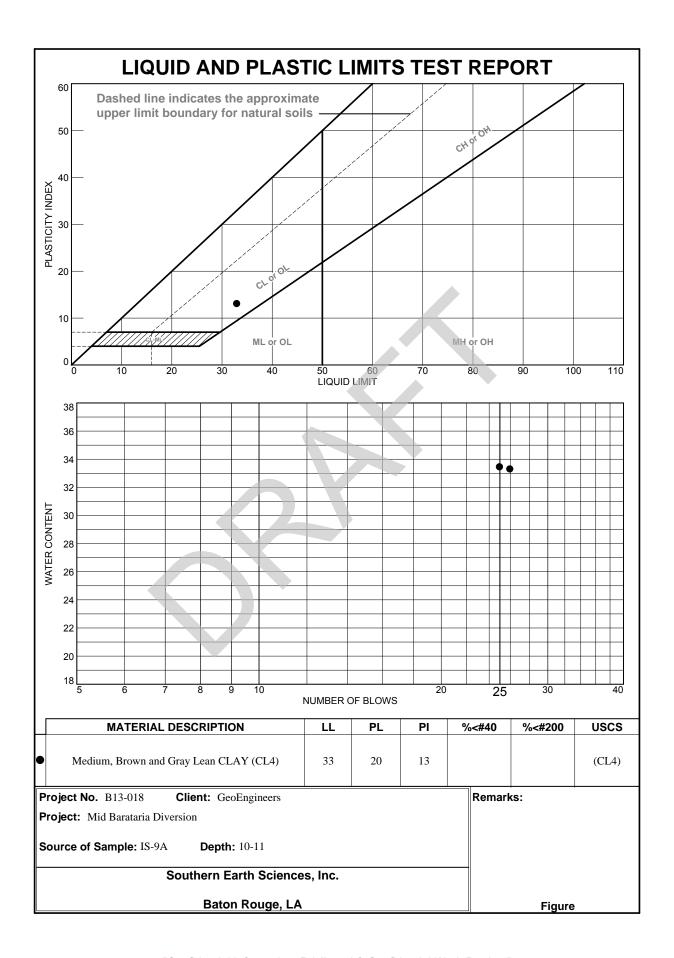
Trace Organics (CL4)

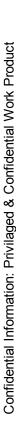
Assumed Specific Gravity= 2.70

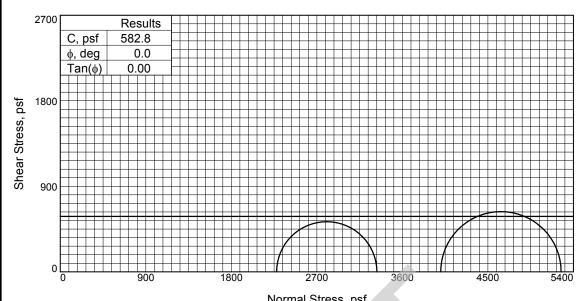
Remarks: Type Failure:

Bulge

(Samples 1, 2, 3) Slumping (Sample 3) Very Disturbed

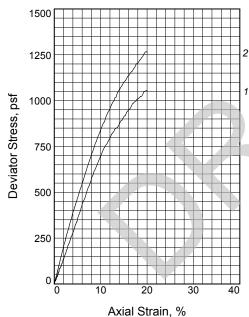

Figure


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-9A Depth: 8.5-9

Proj. No.: B13-018 Date Sampled:



Normal Stress, psf

Sample No.

2	nitial	Water Content, % Dry Density, pcf Saturation, % Void Ratio	28.6 101.3 116.2 0.6641	101.1 114.1	
1	_	Diameter, in.	1.340		
		Height, in.	2.800	2.800	
		Water Content, %	24.6	24.7	
	÷10	Dry Density, pcf	101.3	101.1	
	At Test	Saturation, %	100.0	100.0	
	Ŧ	Void Ratio	0.6641	0.6667	
	1	Diameter, in.	1.340	1.342	
		Height, in.	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	
	Се	Il Pressure, psi	15.810	27.800	
	Fa	il. Stress, psf	1054.6	1267.2	
	5	Strain, %	19.8	19.9	
	Ult	. Stress, psf			
	5	Strain, %			
	σ_{1}	Failure, psf	3331.3	5270.4	
	σ_{3}	Failure, psf	2276.6	4003.2	

1

2

Type of Test:

Unconsolidated Undrained Sample Type: Undisturbed

Description: Medium, Brown and Gray Lean

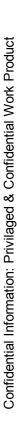
CLAY (CL4)

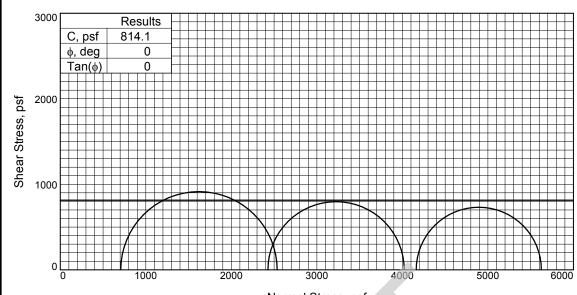
PL= 20 **LL=** 33 **PI=** 13 **Assumed Specific Gravity=** 2.70

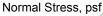
Remarks: Type Failure:

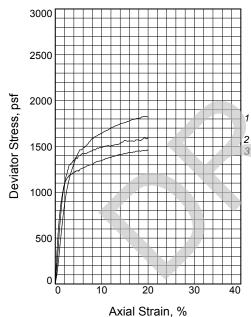
Bulge

Samples 1,2,3) Slumping (Sample 1) No Test


Figure


•			~ -		
CI	ıen	t:	GeoEn	ginee	rs


Project: Mid Barataria Diversion


Source of Sample: IS-9A Depth: 10-11

Proj. No.: B13-018 **Date Sampled:**

Type of 7	est:
-----------	------

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Medium, Gray Fat CLAY with Silt Pockets, Jointed and Brittle (CH3)

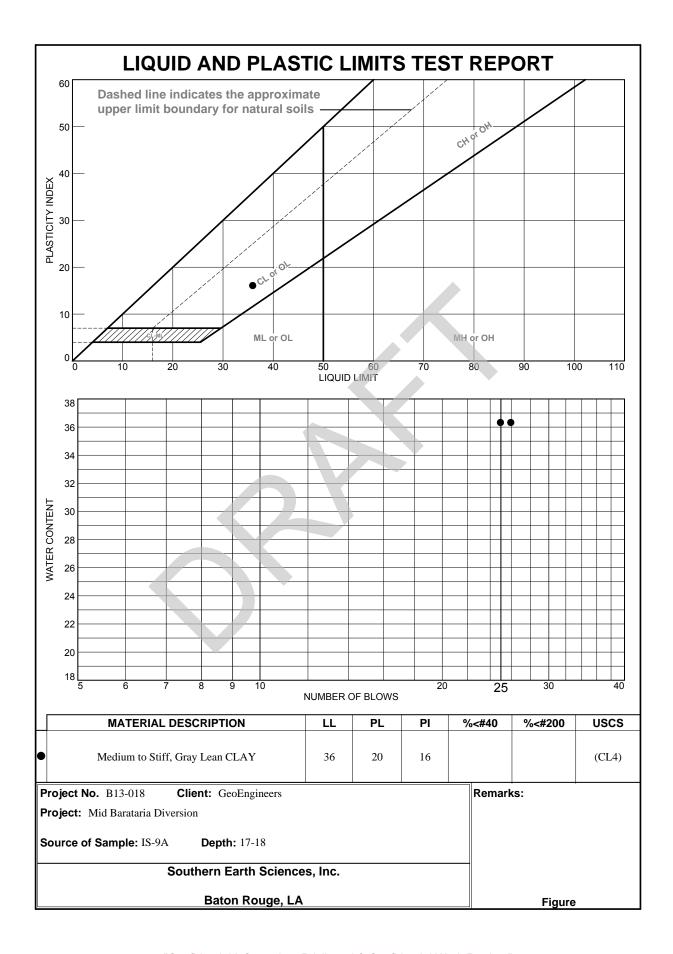
Assumed Specific Gravity= 2.80

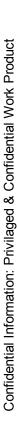
Remarks: Type Failure:

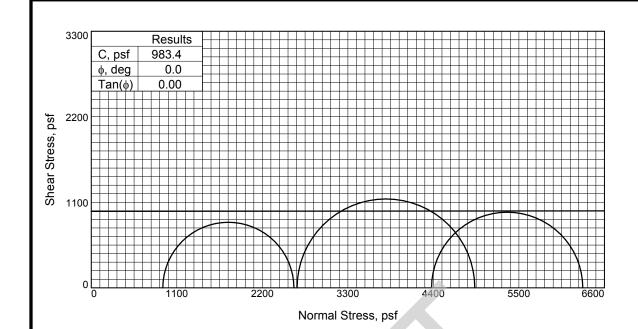
Bulge

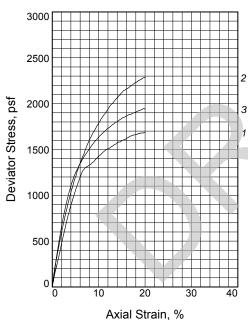
(Sample 1,2,3) Brittle

Figure


	Sa	mple No.	1	2	3	
		Water Content, %	33.8	33.8	35.0	
		Dry Density, pcf	88.8	86.4	86.7	
	Initial	Saturation, %	97.8	92.5	96.6	
	<u>-</u>	Void Ratio	0.9678	1.0238	1.0153	
		Diameter, in.	1.412	1.406	1.401	
1		Height, in.	2.800	2.800	2.800	
2		Water Content, %	34.6	36.6	36.3	
3	st	Dry Density, pcf	88.8	86.4	86.7	
	<u>F</u>	Saturation, %	100.0	100.0	100.0	
	AtTe	Void Ratio	0.9678	1.0238	1.0153	
	`	Diameter, in.	1.412			
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.001	1.000	
	Back Pressure, psi		0.000	0.000	0.000	
	Cell Pressure, psi		4.910	16.860	28.900	
	Fail. Stress, psf		1828.4	1593.2	1463.1	
	Strain, %		19.1	19.4	19.8	
	Ult. Stress, psf					
	5	Strain, %				
	σ1	Failure, psf	2535.4	4021.0	5624.7	
	σ_3	Failure, psf	707.0	2427.8	4161.6	


Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-9A Depth: 13-14

Proj. No.: B13-018 Date Sampled:

	Sa	mple No.	1	2	3	
		Water Content, %	32.5	30.4	31.7	
		Dry Density, pcf	91.4	95.1	89.6	
2	Initial	Saturation, %	104.0	106.4	97.0	
-	2	Void Ratio	0.8449	0.7715	0.8814	
3		Diameter, in.	1.400	1.388	1.443	
-		Height, in.	2.800	2.800	2.800	
1		Water Content, %	31.3	28.6	32.6	
	it	Dry Density, pcf	91.4	95.1	89.6	
	e	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	0.8449	0.7715	0.8814	
	_	Diameter, in.	1.400	1.388	1.443	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	0.999	0.999	0.999	
	Back Pressure, psi		0.000	0.000	0.000	
	Cell Pressure, psi		6.390	18.380	30.390	
	Fail. Stress, psf		1685.2	2285.2	1944.9	
	Strain, %		20.0	20.0	19.6	
	Ult. Stress, psf					
	5	Strain, %				
	σ_1	Failure, psf	2605.3	4932.0	6321.1	
	σ_{3}	Failure, psf	920.2	2646.7	4376.2	

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Medium to Stiff, Gray Lean

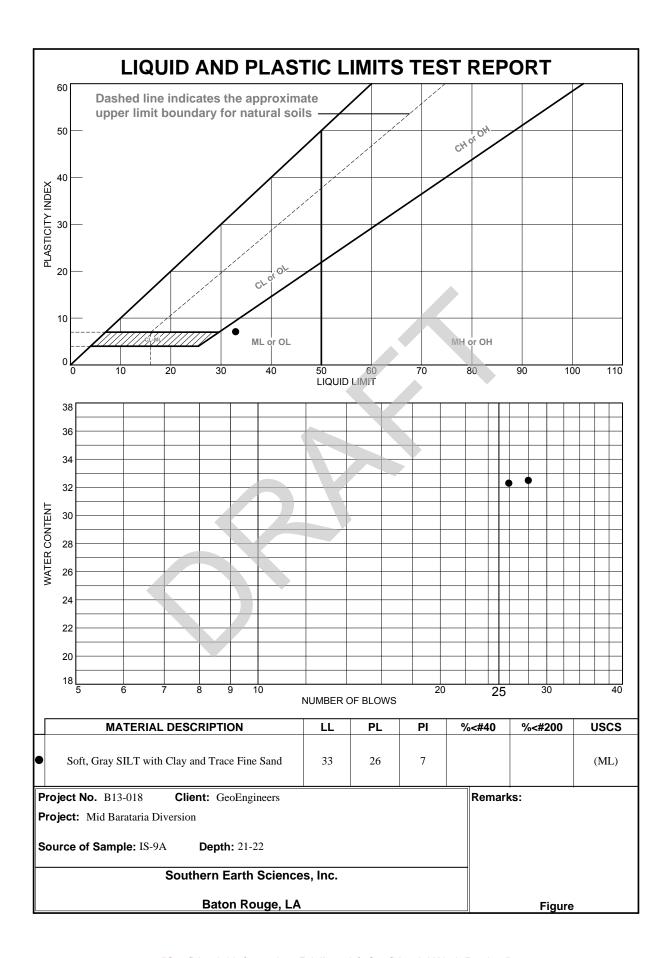
CLAY (CL4)

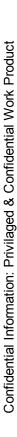
LL= 36 PL= 20 Pl= 16 Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Bulge

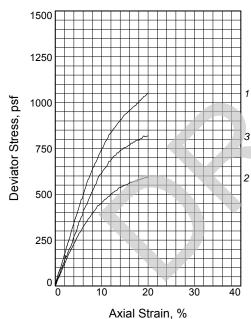
(Sample 1,2,3) Slumping


Figure


Client:	GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: IS-9A Depth: 17-18


Proj. No.: B13-018 Date Sampled:

Normai Stress, psi

	Sa	mple No.	1	2	3	
		Water Content, %	33.3	36.0	34.4	
		Dry Density, pcf	97.9	92.3	94.6	
	Initial	Saturation, %	127.7	120.3	121.8	
1	lпi	Void Ratio	0.6902	0.7932	0.7485	
'		Diameter, in.	1.340	1.352	1.341	
		Height, in.	2.800	2.800	2.800	
3		Water Content, %	26.0	29.9	28.2	
	st	Dry Density, pcf	97.9	92.3	94.6	
	At Test	Saturation, %	100.0	100.0	100.0	
2	۲-	Void Ratio	0.6902	0.7932	0.7485	
	`	Diameter, in.	1.340	1.352	1.341	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	7.850	19.850	31.910	
	Fa	il. Stress, psf	1052.9	594.8	818.7	
	5	Strain, %	20.0	19.9	19.1	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	2183.3	3453.2	5413.8	
	σ_3	Failure, psf	1130.4	2858.4	4595.0	

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Soft, Gray SILT with Clay and

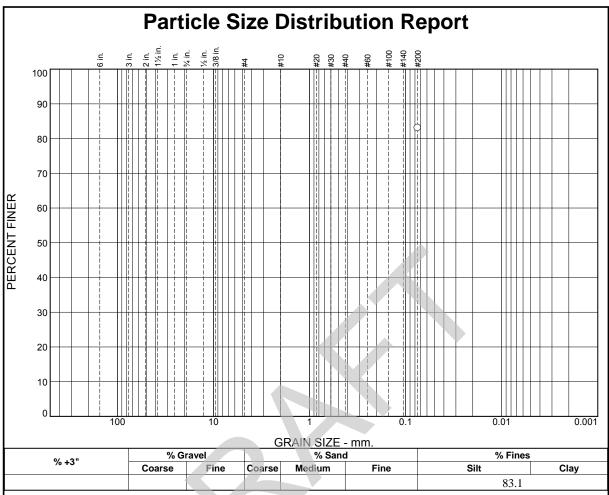
Trace Fine Sand (ML)

LL= 33 PL= 26 Pl= 7 Assumed Specific Gravity= 2.65

Remarks: Type Failure:

Bulge

(Sample 1,2,3) Slumping and Bleeding


Figure

Client: GeoEngineers

Project: Mid Barataria Diversion

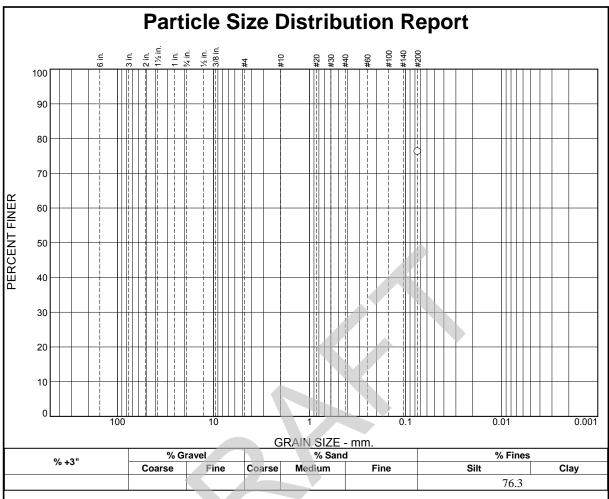
Source of Sample: IS-9A Depth: 21-22

Proj. No.: B13-018 Date Sampled:

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	83.1		
* ,	nacification provide		

Material Description Loose, Gray SILT with Sand and Trace Clay PL= Atterberg Limits LL= PI= Classification AASHTO= Remarks

(no specification provided)


Source of Sample: IS-9A Depth: 27-28

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

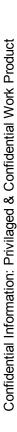
Project No: B13-018 Figure

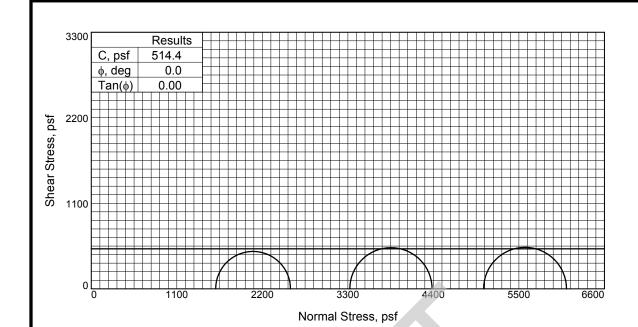
SIZE FINER PERCENT (X=NO) #200 76.3	SIEVE	PERCENT	SPEC.*	PASS?
#200 76.3	SIZE	FINER		(X=NO)

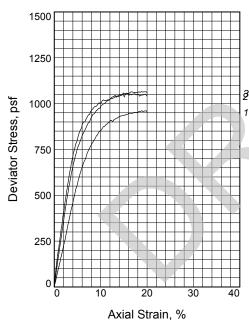
Material Description					
Loose, Gray SILT with Sand and Trace Clay					
, ,	20000, Gray Bibi will baild and rived city				
	Attack and Limite				
PL=	Atterberg Limits	PI=			
FL-	LL-	F1-			
	Classification				
USCS= (ML)	AASHTO=	:			
	<u>Remarks</u>				

(no specification provided)

Source of Sample: IS-9A Depth: 29-30


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

Project No: B13-018 Figure

	Sa	mple No.	1	2	3	
		Water Content, %	33.4			
		Dry Density, pcf	91.5			
	nitial	Saturation, %	106.9	107.2	110.5	
3	<u>-</u>	Void Ratio	0.8428	0.9140	0.8620	
		Diameter, in.	1.380	1.375	1.382	
1		Height, in.	2.800	2.800	2.800	
		Water Content, %	31.2	33.9	31.9	
	ب	Dry Density, pcf	91.5	88.1	90.5	
	At Test	Saturation, %	100.0	100.0	100.0	
	Ή.	Void Ratio	0.8428	0.9140	0.8620	
	4	Diameter, in.	1.380	1.375	1.382	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.001	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	11.110	23.090	35.040	
	Fa	il. Stress, psf	961.4	1058.2	1065.8	
	5	Strain, %	18.8	14.9	18.8	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	2561.3	4383.2	6111.6	
	σ_{3}	Failure, psf	1599.8	3325.0	5045.8	

Unconsolidated Undrained Sample Type: Undisturbed

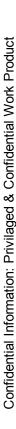
Description: Soft, Gray Lean CLAY wilth

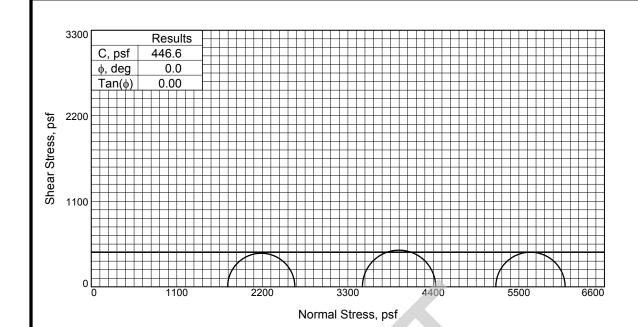
Trace Fine Sand (CL6)

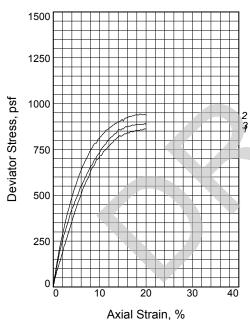
Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Figure


Bulge


Project: Mid Barataria Diversion


Client: GeoEngineers

Source of Sample: IS-9A Depth: 30-31

Proj. No.: B13-018 **Date Sampled:**

	Sa	mple No.	1	2	3	
		Water Content, %	33.9	34.5	34.2	
		Dry Density, pcf	92.9	89.0	90.4	
	Initial	Saturation, %	112.3	104.2	106.6	
	2	Void Ratio	0.8150	0.8939	0.8653	
		Diameter, in.	1.376	1.378	1.375	
3		Height, in.	2.800	2.800	2.800	
9		Water Content, %	30.2	33.1	32.0	
	it	Dry Density, pcf	92.9	89.0	90.4	
	At Test	Saturation, %	100.0	100.0	100.0	
	<u></u>	Void Ratio	0.8150	0.8939	0.8653	
	_	Diameter, in.		1.378		
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	12.180	24.210	36.130	
	Fa	il. Stress, psf	864.0	943.0	891.5	
	5	Strain, %	20.0	18.9	19.8	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	2617.9	4429.2	6094.2	
	σ_3	Failure, psf	1753.9	3486.2	5202.7	

Unconsolidated Undrained

Sample Type: Undisturbed

Description: Soft, Gray Lean CLAY (CL4)

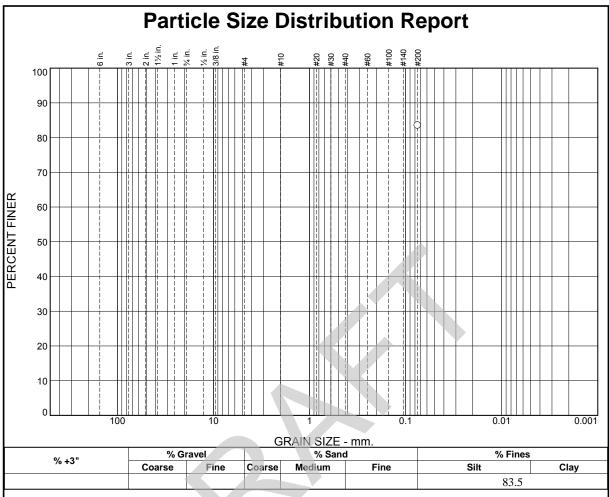
Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Bulge

Figure

Source of Sample: IS-9A


Client: GeoEngineers

Project: Mid Barataria Diversion

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

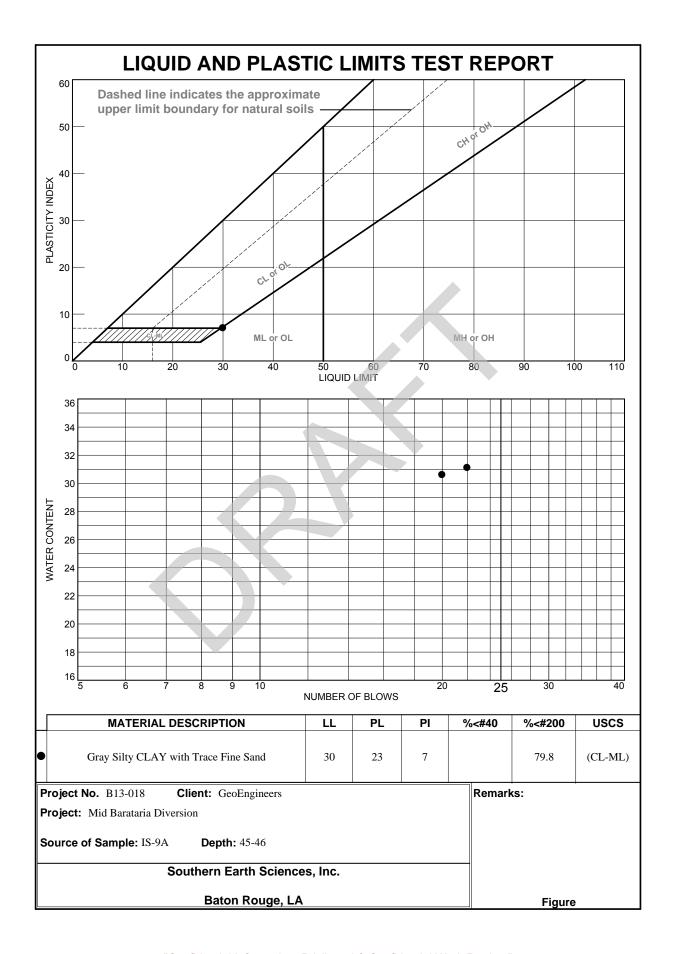
Depth: 33-34

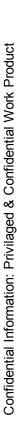
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	83.5		
*			

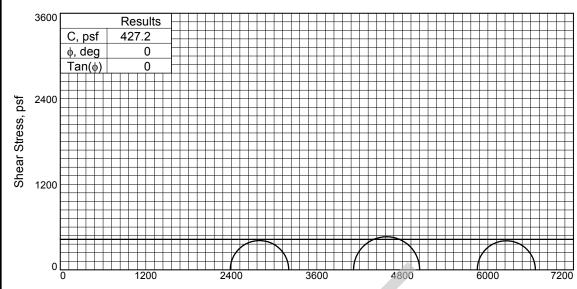
Material Description Gray SILT with Sand and Trace Clay					
PL=	Atterberg Limits LL=	PI=			
USCS= (ML)	Classification AASHTO=				
	<u>Remarks</u>				

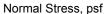
* (no specification provided)

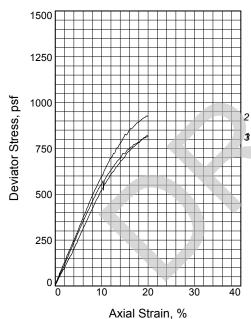
Source of Sample: IS-9A Depth: 41-42


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers


Project: Mid Barataria Diversion


Project No: B13-018 Figure

	Sa	mple No.	1	2	3	
		Water Content, %	31.0	30.0	32.5	
		Dry Density, pcf	96.8	98.7	96.4	
	Initial	Saturation, %	112.9	114.4	117.3	
	<u>-</u>	Void Ratio	0.7409	0.7074	0.7486	
		Diameter, in.	1.352	1.348	1.342	
2		Height, in.	2.800	2.800	2.800	
3		Water Content, %	27.4	26.2	27.7	
);	Dry Density, pcf	96.8	98.7	96.4	
	At Test	Saturation, %	100.0	100.0	100.0	
	\t	Void Ratio	0.7409	0.7074	0.7486	
	`	Diameter, in.	1.352		1.342	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	0.999	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	16.560	28.570	40.630	
	Fa	il. Stress, psf	820.4	927.8	814.7	
	5	Strain, %	19.9	19.8	20.0	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	3205.1	5041.9	6665.4	
	σ_3	Failure, psf	2384.6	4114.1	5850.7	

Type of Test:

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: Gray Silty CLAY with Trace

Fine Sand (CL-ML)

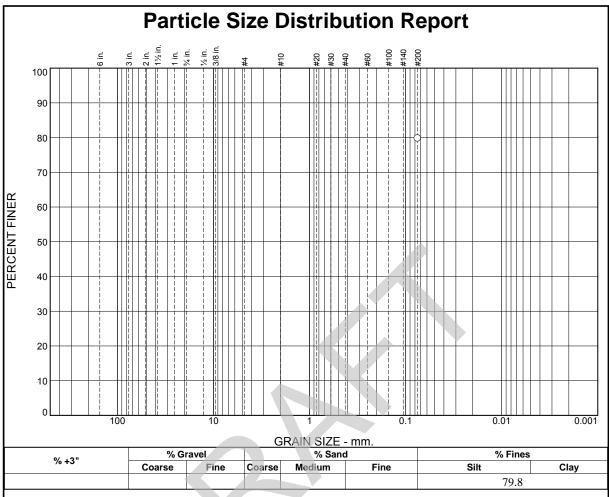
LL= 30 PL= 23 Pl= 7 Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Bulge (Sample 3)

(Sample 1,2,3) Slumping and Bleeding

Figure


\sim 1	:	. 4 -	Geo		•	
	IAN	١т.	1 100	۱Hn	OIL	100rc

Project: Mid Barataria Diversion

Source of Sample: IS-9A Depth: 45-46

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	79.8		

Material Description

Gray Silty CLAY with Trace Fine Sand

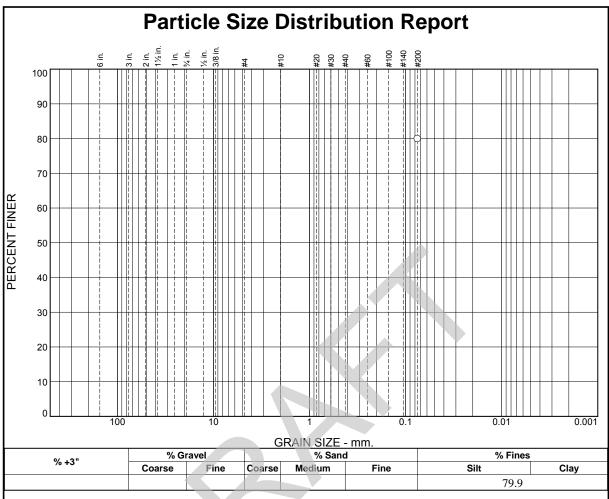
 $\begin{array}{c} \text{USCS=} \ (\text{CL-ML}) & \begin{array}{c} \textbf{Classification} \\ \text{AASHTO=} \end{array} \end{array}$

Remarks

Atterberg Limits
LL= 30

(no specification provided)

Source of Sample: IS-9A Depth: 45-46


Date:

PI= 7

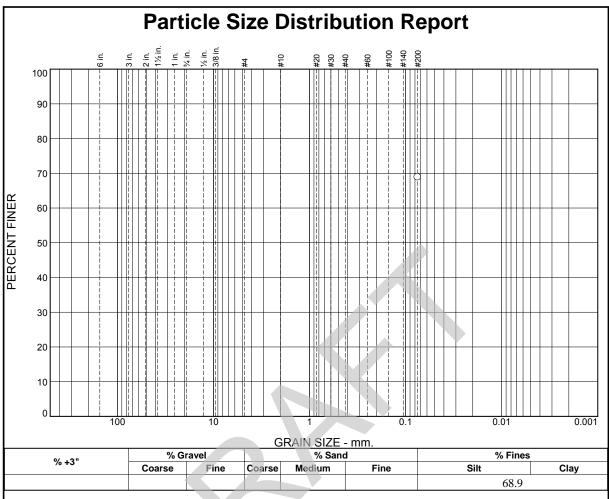
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

PL= 23

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	79.9		

Material Description Gray Sandy SILT with Clay PL= Atterberg Limits LL= PI= Classification USCS= (ML) AASHTO= Remarks


* (no specification provided)

Source of Sample: IS-9A Depth: 47-48

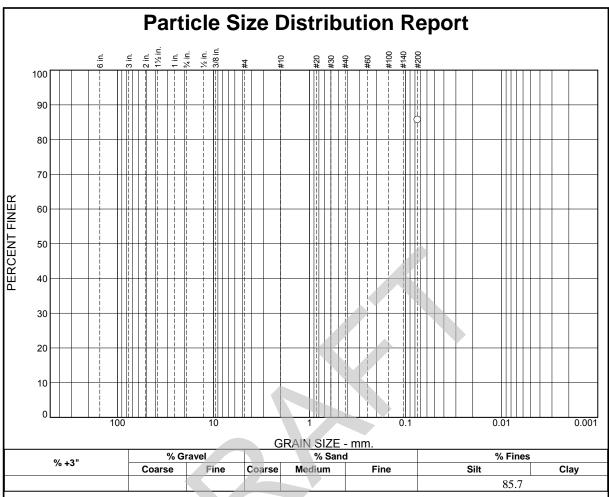
Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	68.9		
*			

Material Description Gray Sandy SILT with Clay PL= Atterberg Limits LL= PI= Classification AASHTO= Remarks


(no specification provided)

Source of Sample: IS-9A Depth: 49-50

Date:

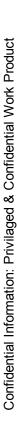
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

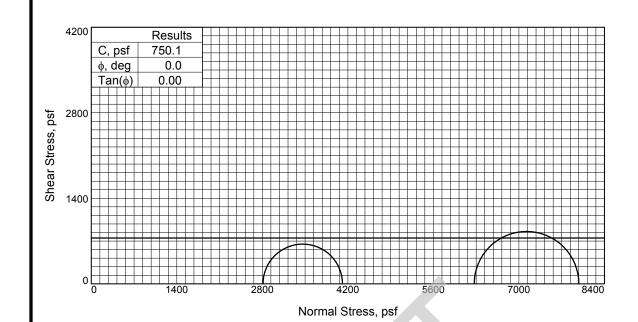
Project: Mid Barataria Diversion

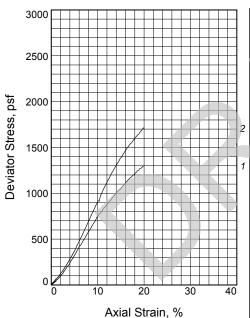
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	85.7		
*			

Material Description Gray Lean CLAY with Sandy Silt Layers				
PL=	Atterberg Limits	PI=		
USCS= (CL4)	Classification AASHTO=			
	<u>Remarks</u>			

(no specification provided)


Source of Sample: IS-9A Depth: 51-52


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

	Sa	mple No.	1	2	
		Water Content, %	28.5		
		Dry Density, pcf	101.3	104.8	
	Initial	Saturation, %	119.2	125.0	
	<u> </u>	Void Ratio	0.6337	0.5779	
		Diameter, in.	1.346	1.317	
		Height, in.	2.800	2.800	
2		Water Content, %	23.9	21.8	
	it	Dry Density, pcf	101.3	104.8	
1	At Test	Saturation, %	100.0	100.0	
	Ę	Void Ratio	0.6337	0.5779	
	4	Diameter, in.	1.346	1.317	
		Height, in.	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	
	Се	ll Pressure, psi	19.520	43.530	
	Fa	il. Stress, psf	1300.5	1712.7	
	5	Strain, %	20.0	19.9	
	Ult	. Stress, psf			
	5	Strain, %			
	σ1	Failure, psf	4111.4	7981.0	
	σ_3	Failure, psf	2810.9	6268.3	

Type of Test:

Unconsolidated Undrained **Sample Type:** Undisturbed

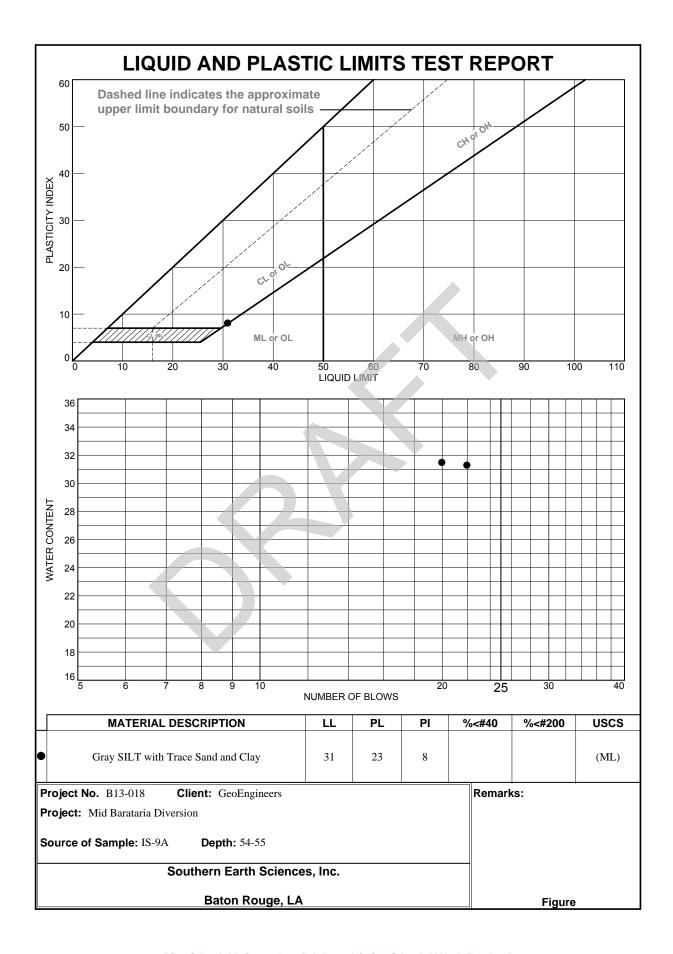
Description: Medium, Gray SILT with Fine

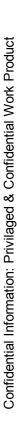
Sand and Clay (ML)

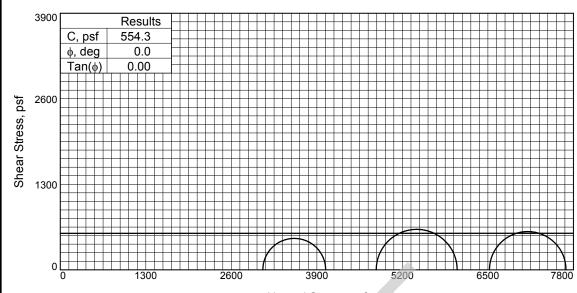
Assumed Specific Gravity= 2.65

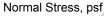
Remarks: Type Failure: Bulge (Sample 1) (Sample 1,3) Slumping

Figure _____

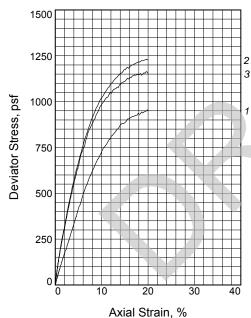

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-9A Depth: 53-54


Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA



Sample No.

¥⊥	Void Ratio	0.840
~	Diameter, in.	1.30
	Height, in.	2.80
Str	ain rate, in./min.	1.00
Ва	ck Pressure, psi	0.00
Се	II Pressure, psi	21.38
Fa	il. Stress, psf	955
5	Strain, %	19
Ult	. Stress, psf	
5	Strain, %	
σ ₁	Failure, psf	4033
σ,	Failure, psf	3078

Type of Test:

Unconsolidated Undrained Sample Type: Undisturbed

Description: Soft to Medium, Gray Lean CLAY with Trace Fine Sand (CL4)

Assumed Specific Gravity= 2.70

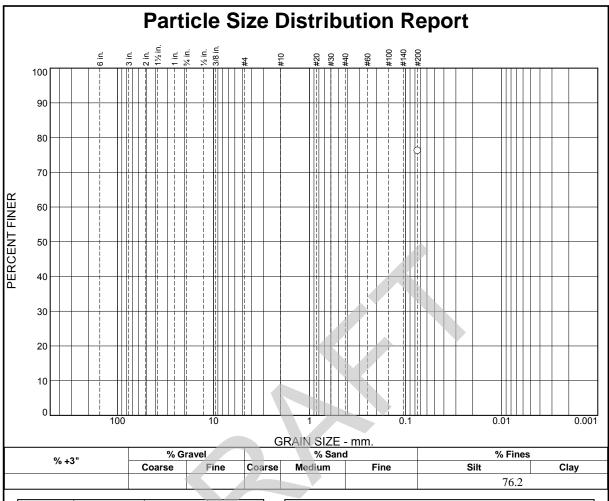
Remarks: Type Failure: Bulge (Sample 1,3) (Sample 1,2,3) Slumping

Figure

		Water Content, % Dry Density, pcf	34.1 91.6	32.6 91.8	33.8 90.8	
2	a	Saturation, %	109.6			
٦	Initial	Void Ratio		0.8356		
		Diameter, in.	1.366	1.376	1.374	
1		Height, in.	2.800	2.800	2.800	
		Water Content, %	31.1	30.9	31.7	
	+	Dry Density, pcf	91.6	91.8	90.8	
	At Test	Saturation, %	100.0	100.0	100.0	
	Ĭ.	Void Ratio	0.8409	0.8356	0.8564	
	1	Diameter, in.	1.366	1.376	1.374	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	21.380	33.350	45.300	
	Fa	il. Stress, psf	955.0	1230.2	1163.4	
	5	Strain, %	19.9	19.6	19.6	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	4033.7	6032.6	7686.6	
	σ_3	Failure, psf	3078.7	4802.4	6523.2	

2

3


Client: GeoEngineers

Project: Mid Barataria Diversion

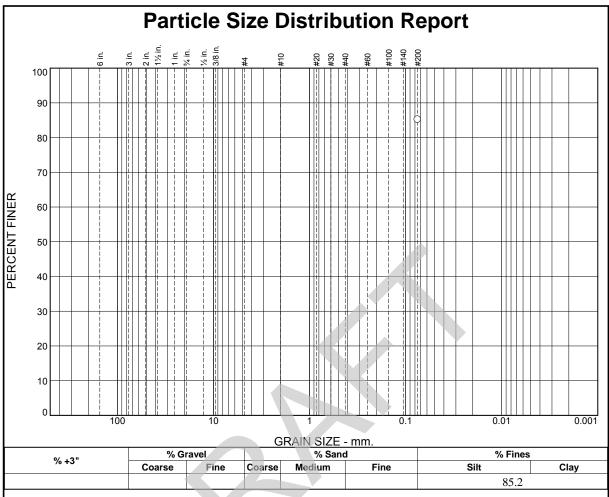
Source of Sample: IS-9A Depth: 58-59

Proj. No.: B13-018 **Date Sampled:**

> TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	76.2		
*			

Material Description Gray Sandy SILT with Clay PL= Atterberg Limits LL= PI= Classification USCS= (ML) AASHTO= Remarks


(no specification provided)

Source of Sample: IS-9A Depth: 61-61.5

Date:

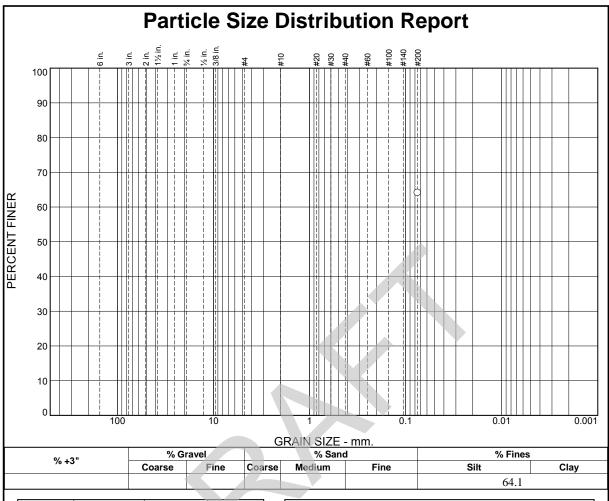
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
-	_		
SIZE	FINER	PERCENT	(X=NO)
#200	85.2		
* ,	nacification provide		

Material Description Gray SILT with Clay and Fine Sand						
PL=	Atterberg Limits LL=	PI=				
USCS= (ML)	Classification AASHTO=					
	<u>Remarks</u>					

(no specification provided)


Source of Sample: IS-9A Depth: 65-66

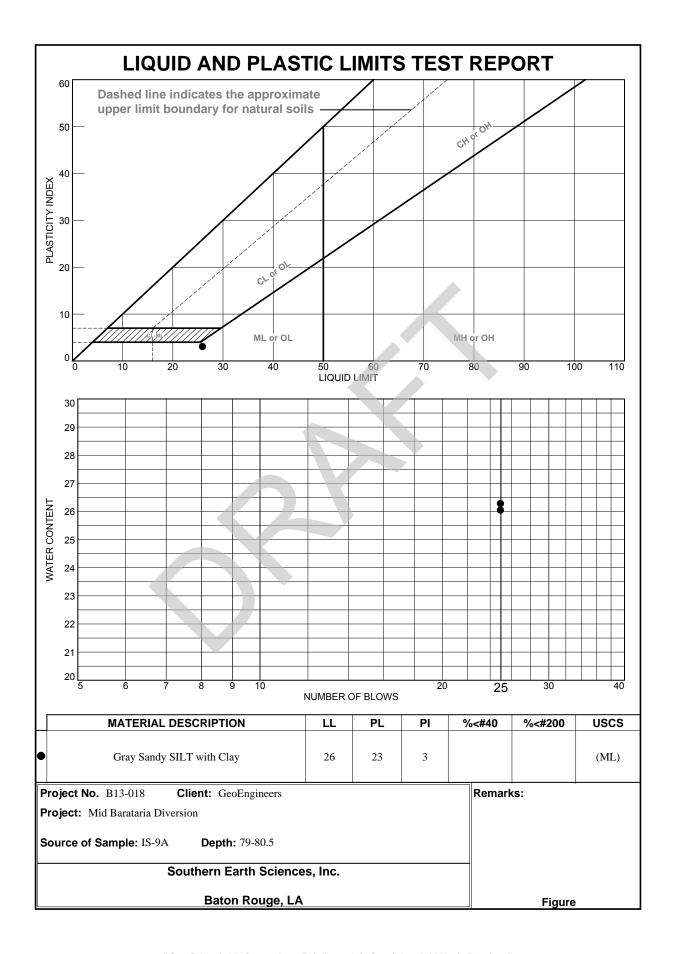
Date:

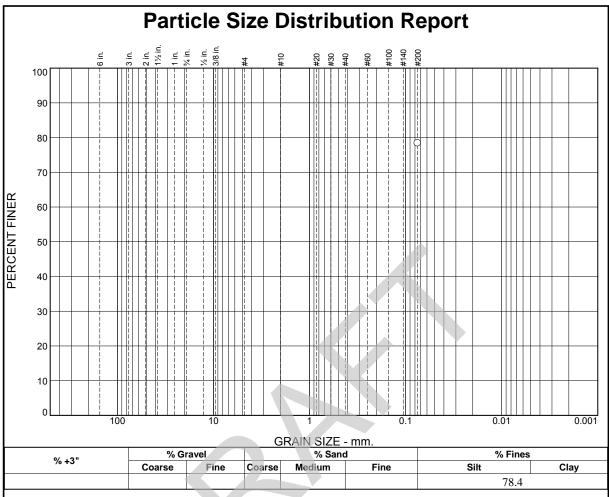
Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	64.1		
* (no sp	ecification provide	ded)	


Material Description Gray Sandy SILT with Clay Atterberg Limits PL= LL= PI= Classification USCS= (ML) AASHTO= Remarks


Source of Sample: IS-9A Depth: 74-75.5

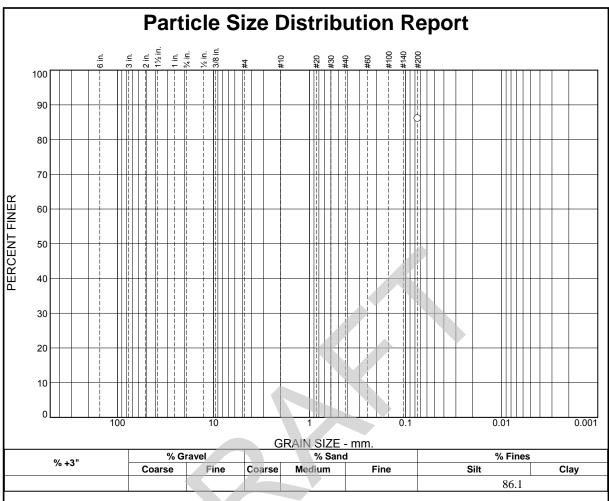
Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
78.4		
	FINER	FINER PERCENT

Material Description Gray SILT with Clay and Sand PL= Atterberg Limits LL= PI= Classification USCS= (ML) AASHTO= Remarks


(no specification provided)

Source of Sample: IS-9A Depth: 89-90.5

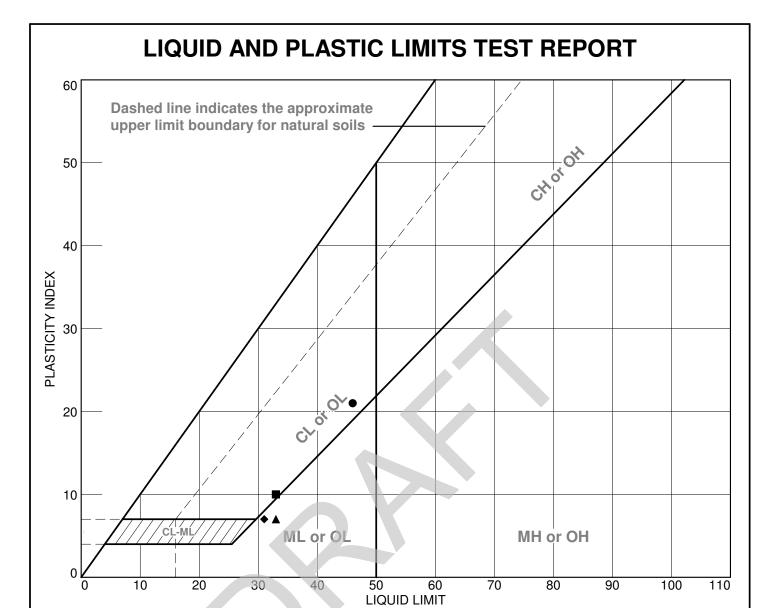
Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	86.1		
		(
* .			

Material Description Tan Lean CLAY with Sand Atterberg Limits PL= LL= PI= Classification USCS= (CL4) AASHTO= Remarks


* (no specification provided)

Source of Sample: IS-9A Depth: 99-100.5

Date:

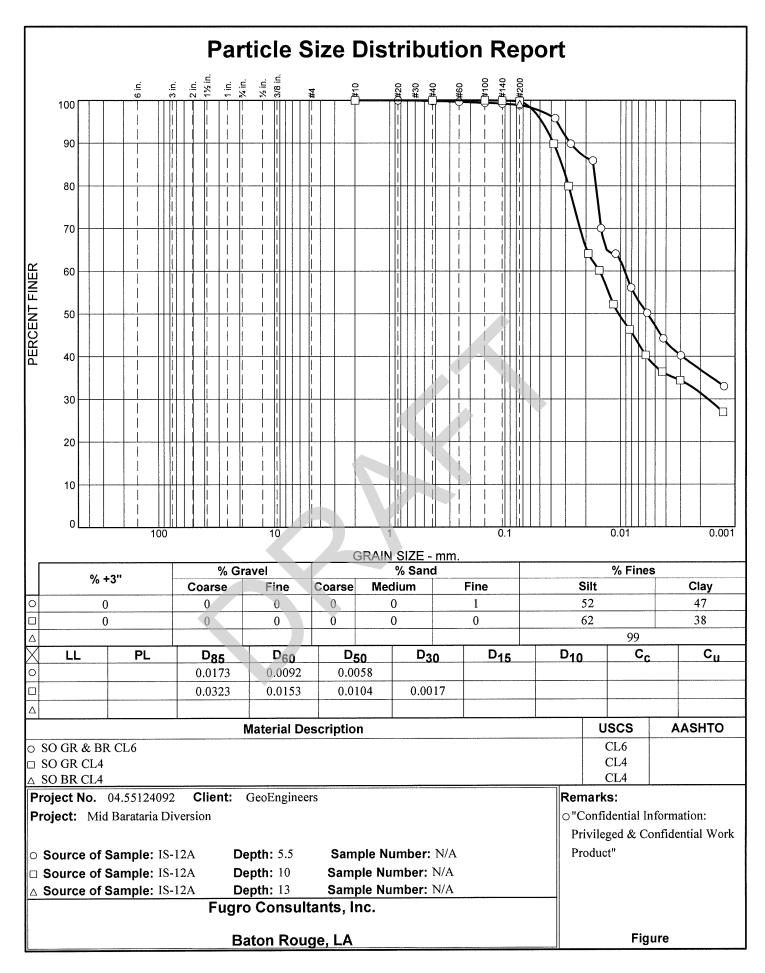
Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

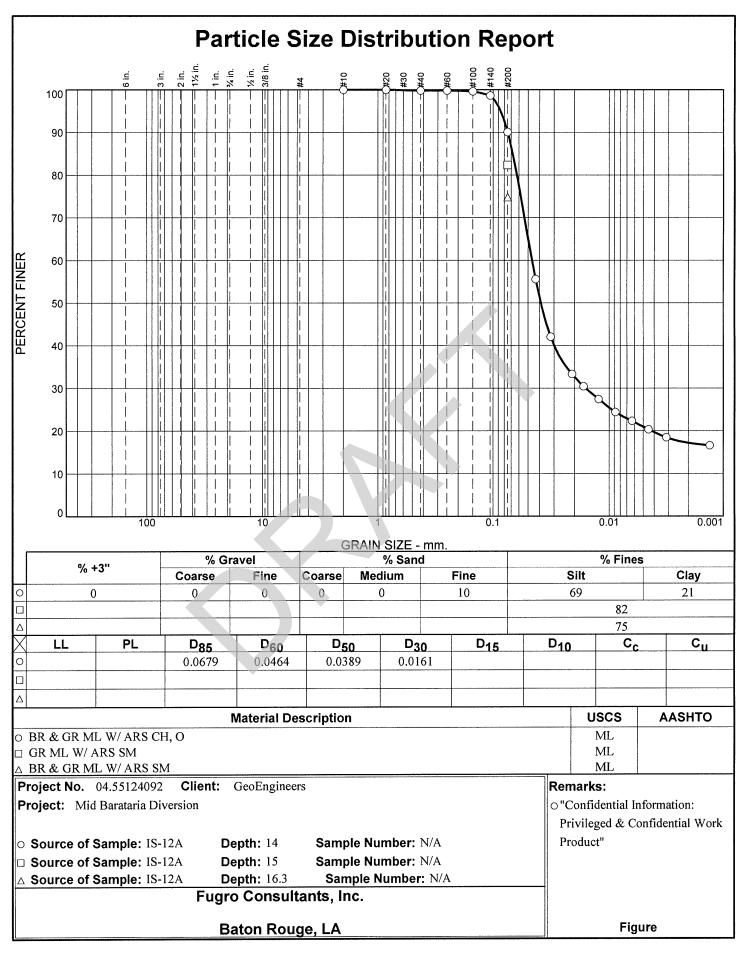
Project: Mid Barataria Diversion

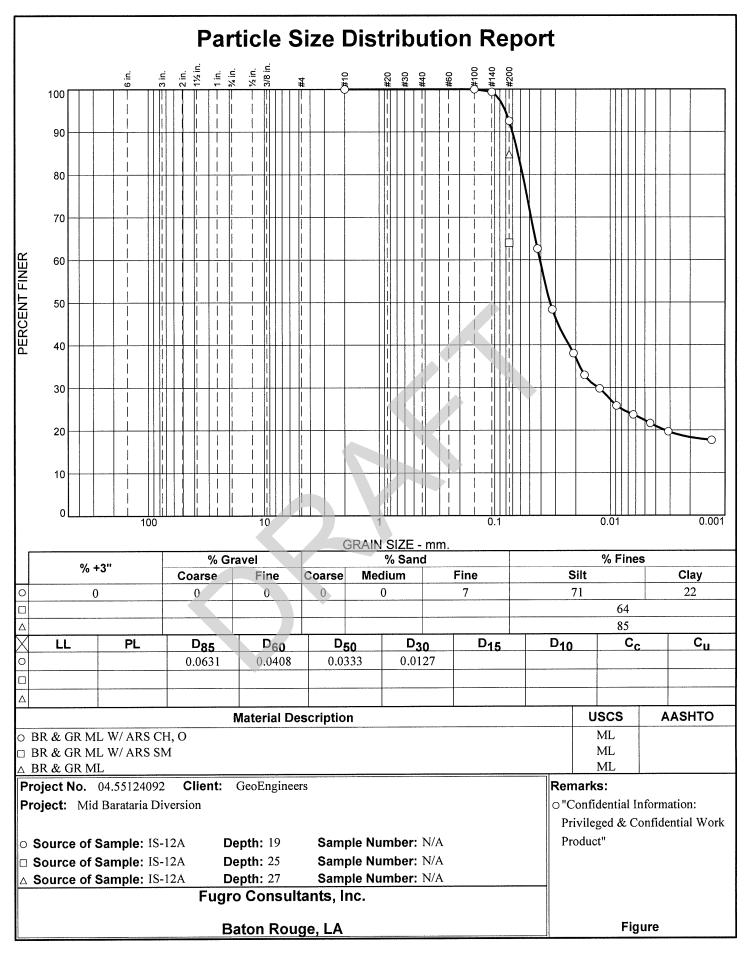
SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	IS-12A	N/A	3		25	46	21	CL6
•	IS-12A	N/A	9		23	33	10	CL4
A	IS-12A	N/A	21		26	33	7	ML
•	IS-12A	N/A	30		24	31	7	ML

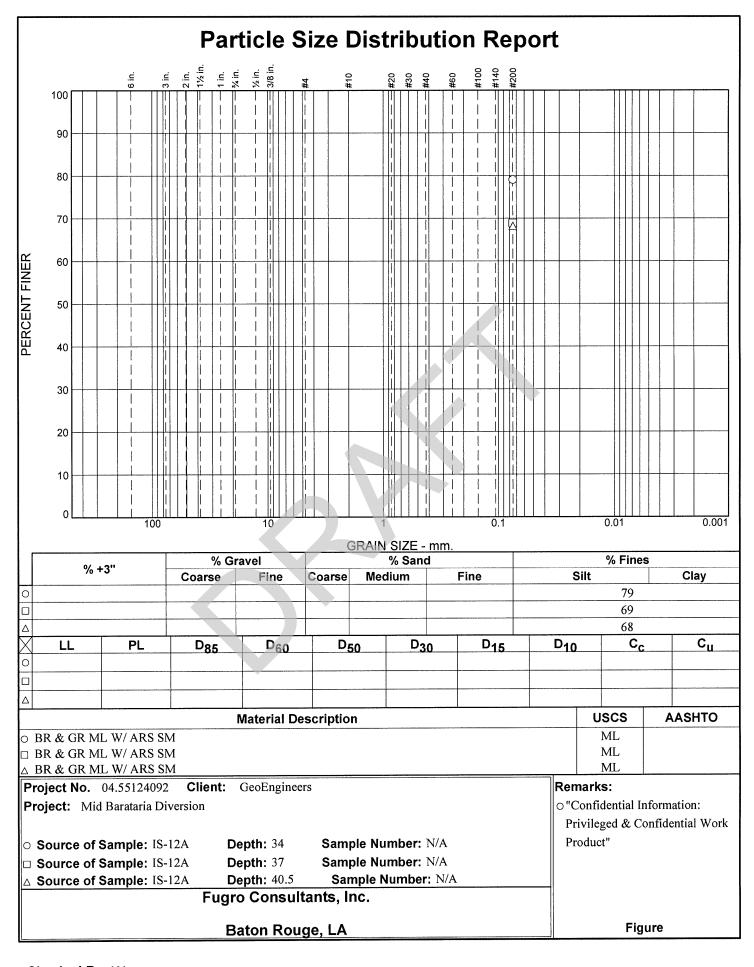
Fugro Consultants, Inc.

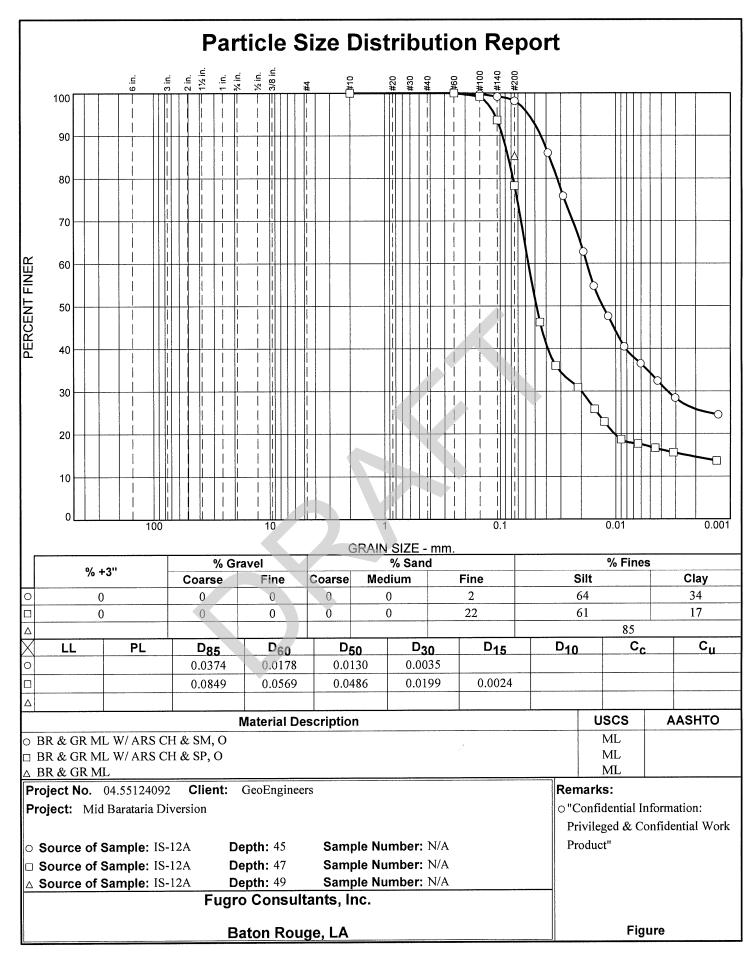
Client: GeoEngineers

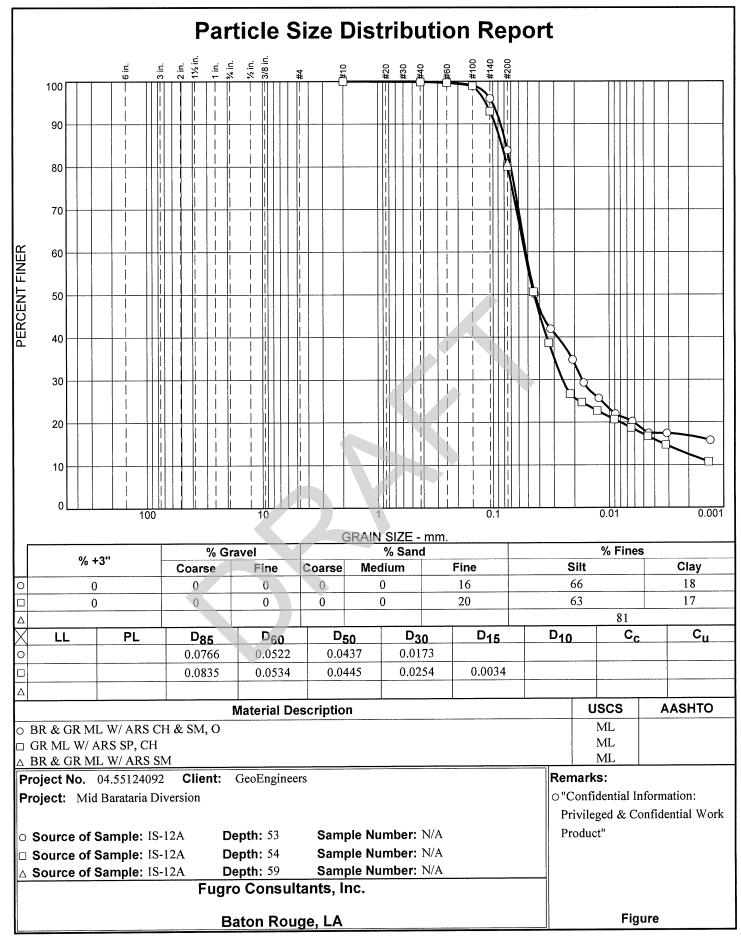

Project: Mid Barataria Diversion


Figure

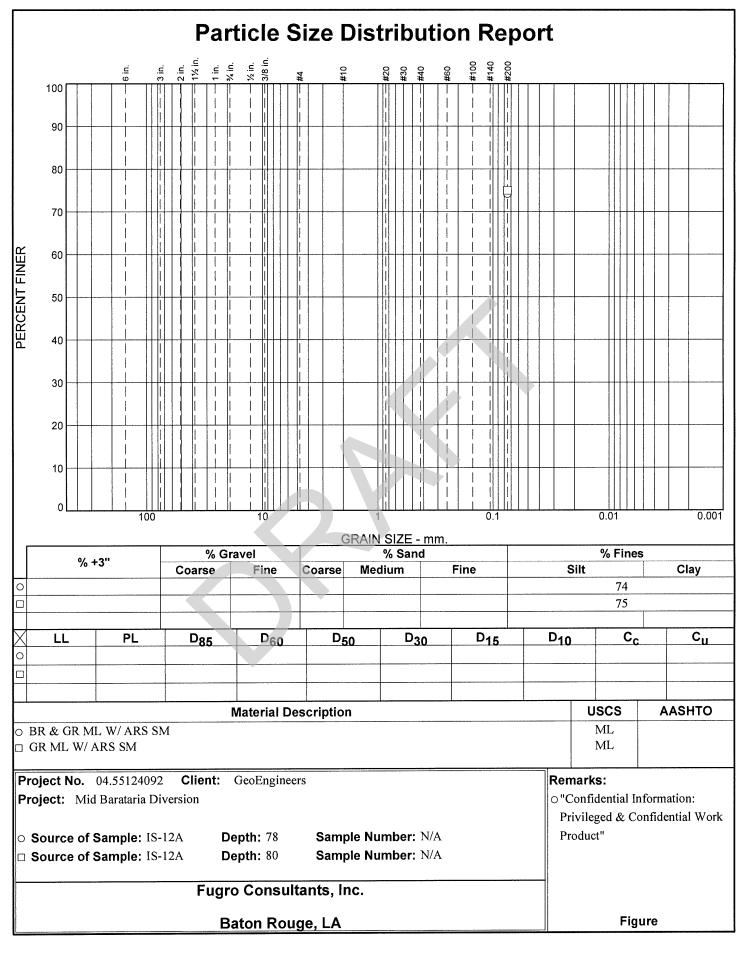

Baton Rouge, LA

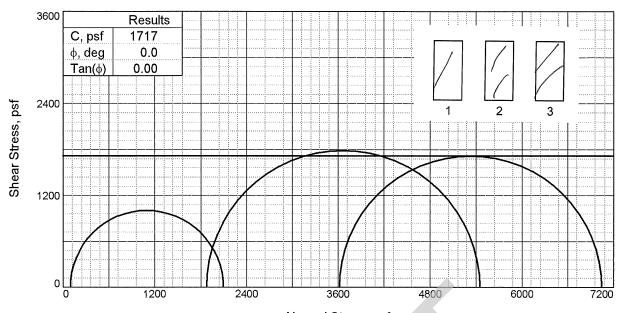

Tested By: AL


Project No.: 04.55124092









Normal Stress, psf

Type	of	Test:
------	----	-------

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: ST RR CL

Description: ST BR CL6

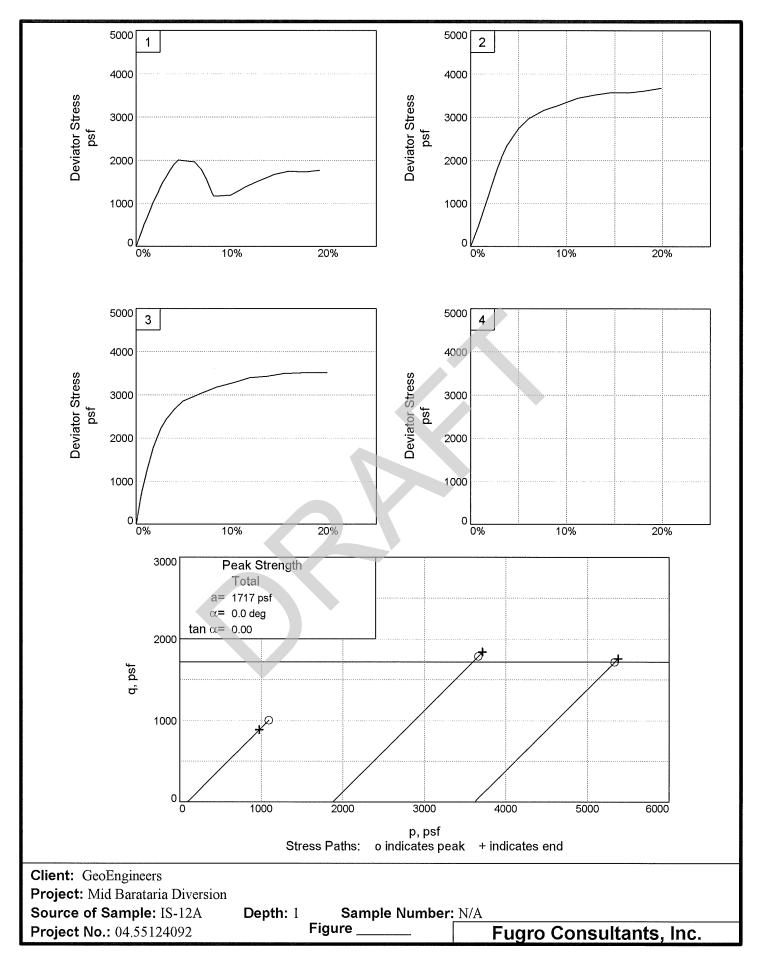
Assumed Specific Gravity= 2.68

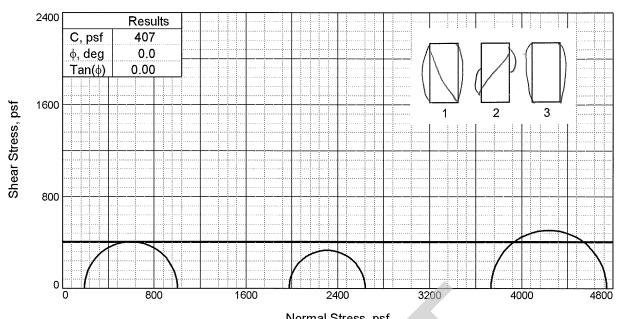
Remarks: Confidential Information: Privileged &

Confidential Work Product"

	Sai	mple No.	1	2	3	
23	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	24.1 97.7 90.7 0.7127 1.37 3.00	23.9 95.4 85.0 0.7536 1.43 3.06	25.8 95.0 90.6 0.7618 1.35 2.98	
1	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	24.1 97.7 90.7 0.7127 1.37 3.00	23.9 95.4 85.0 0.7536 1.43 3.06	95.0 90.6 0.7618 1.35	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	ll Pressure, psi	0.62	13.01	25.09	
	Fail. Stress, psf		2008	3575	3432	
	5	Strain, %	4.4	14.6	13.6	
	Ult. Stress, psf Strain, %		1164	3575	3432	
			8.1	14.6	13.6	
	σ_1	Failure, psf	2097	5448	7044	
	σ_3	Failure, psf	89	1873	3613	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 1

Sample Number: N/A

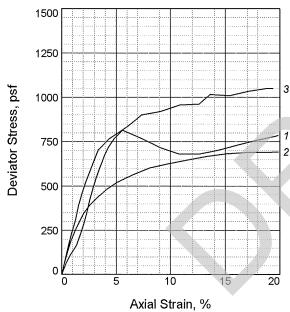

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Normal Stress, psf

Type	of	Test:
------	----	-------

Unconsolidated Undrained Sample Type: UNDISTURBED **Description:** SO BR CL6

LL= 46 **PL=** 25 **PI=** 21

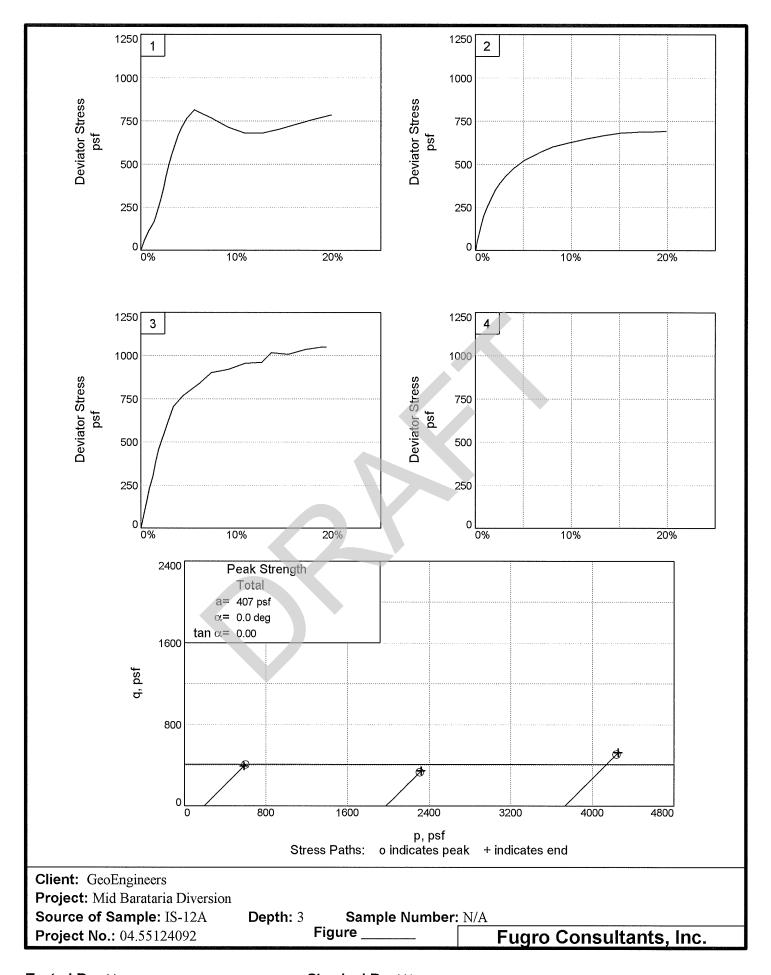
Assumed Specific Gravity= 2.68

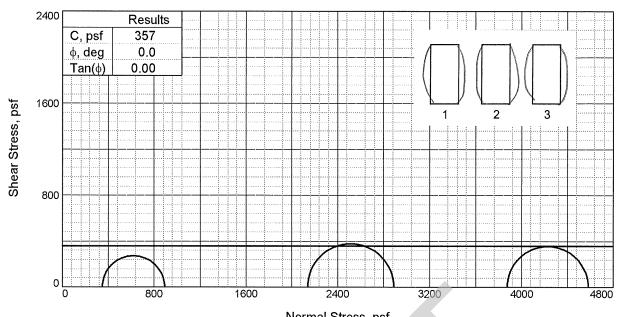
Remarks: Confidential Information: Privileged &

Confidential Work Product"

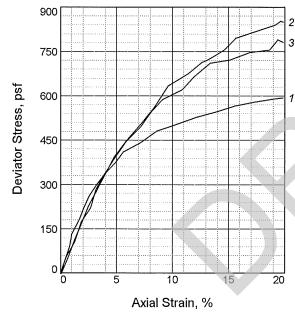
	Sai	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	35.8 82.8	40.3 77.1	37.3 83.9	
	lial	Saturation, %	93.9	92.2	100.6	
3	Initial	Void Ratio	1.0212	1.1712	0.9948	
٥		Diameter, in.	1.35	1.40	1.40	
		Height, in.	3.00	3.00	3.02	
1		Water Content, %	35.8	40.3	37.3	
2	est	Dry Density, pcf	82.8	77.1	83.9	
۷	ě	Saturation, %	93.9	92.2	100.6	
	¥	Void Ratio	1.0212	1.1712	0.9948	
	1	Diameter, in.	1.35	1.40	1.40	
		Height, in.	3.00	3.00	3.02	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	1.32	13.71	25.89	
	Fai	I. Stress, psf	815	667	1017	
	5	Strain, %	5.6	13.3	13.6	
	Ult.	. Stress, psf	680	667	1017	
	5	Strain, %	10.8	13.3	13.6	
-	σ_1	Failure, psf	1005	2641	4745	
	σ_3	Failure, psf	190	1974	3728	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 3

Sample Number: N/A


Proj. No.: 04.55124092 Date Sampled: 8/8/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psf

T	vpe	of	Test:	
•	,,,,	٠.		

Unconsolidated Undrained Sample Type: UNDISTURBED **Description:** SO BR CL4

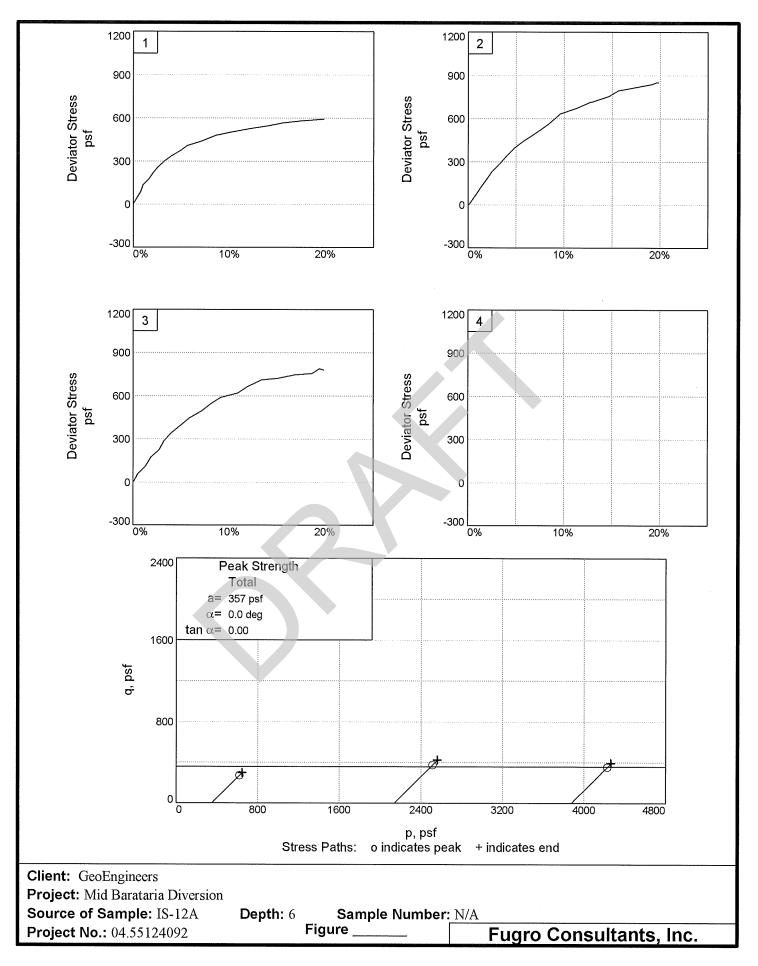
Assumed Specific Gravity= 2.68

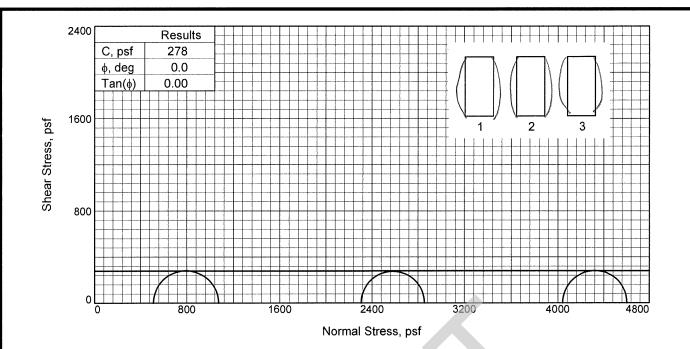
Remarks: Confidential Information: Privileged &

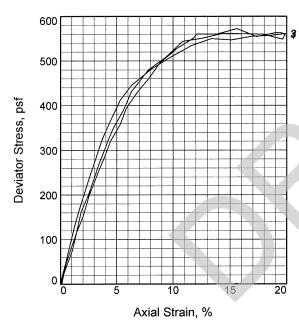
Confidential Work Product"

2	Sa	mple No.	1	2	3	
3 1	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	37.2 84.1 100.9 0.9885 1.38 2.99	33.2 87.0 96.4 0.9227 1.40 3.00	33.8 88.4 101.5 0.8925 1.40 2.97	
	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	37.2 84.1 100.9 0.9885 1.38 2.99	33.2 87.0 96.4 0.9227 1.40 3.00	33.8 88.4 101.5 0.8925 1.40 2.97	
	Ba Ce Fai Ult	ain rate, in./min. ck Pressure, psi Il Pressure, psi il. Stress, psf Strain, % . Stress, psf Strain, %	1.00 0.00 2.41 545 13.8 545 13.8	1.00 0.00 14.83 756 14.6 756 14.6	1.00 0.00 26.89 711 13.3 711 13.3	
		Failure, psf Failure, psf	892 347	2891 2136	4583 3872	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 6


Sample Number: N/A

Date Sampled: 8/8/13 **Proj. No.:** 04.55124092

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

2 3 Sample No. 36.4 36.3 36.0 Water Content, % Dry Density, pcf 86.3 83.6 84.6 Saturation, % 103.9 97.4 98.8 Void Ratio 0.9386 1.0006 0.9771 Diameter, in. 1.38 1.39 1.40 Height, in. 3.01 3.00 3.00 Water Content, % 36.4 36.3 36.0 86.3 84.6 Dry Density, pcf 83.6 est Saturation, % 103.9 97.4 98.8 0.9386 1.0006 0.9771 Void Ratio Diameter, in. 1.39 1.38 1.40 Height, in. 3.01 3.00 3.00 1.00 1.00 1.00 Strain rate, in./min. Back Pressure, psi 0.00 0.00 0.00 16.01 28.07 Cell Pressure, psi 3.56 Fail. Stress, psf 560 550 562 Strain, % 13.8 13.4 14.4 560 550 562 Ult. Stress, psf Strain, % 13.8 13.4 14.4 1073 σ₁ Failure, psf 2855 4604 4042 513 2305 σ₃ Failure, psf

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: SO BR CL4**

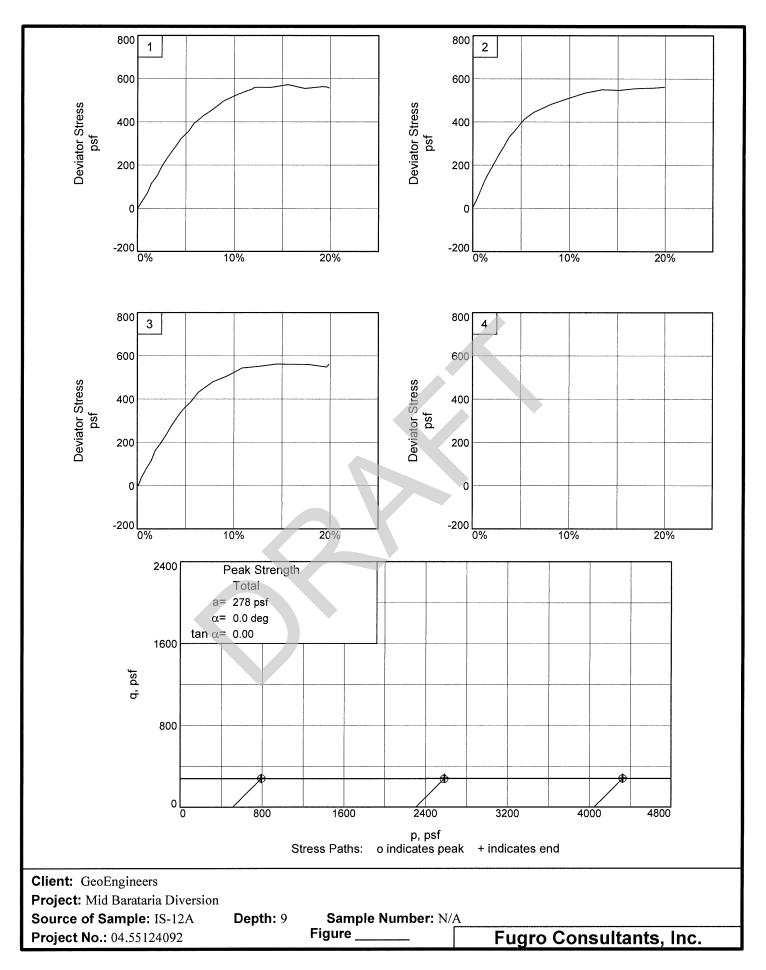
PI= 10 **PL=** 23 **LL=** 33

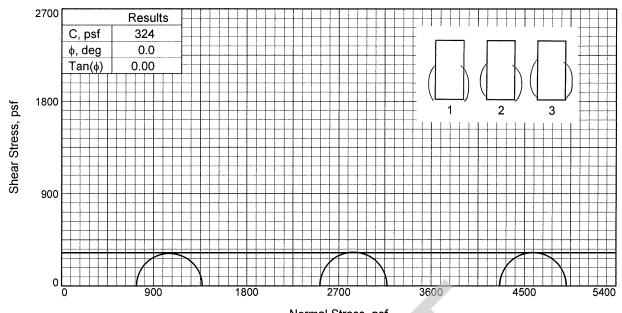
Assumed Specific Gravity= 2.68

Remarks: Confidential Information: Privileged &

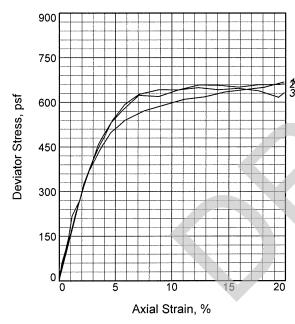
Confidential Work Product"

Client: GeoEngineers


Project: Mid Barataria Diversion


Depth: 9 Source of Sample: IS-12A

Sample Number: N/A


Date Sampled: 8/18/13 **Proj. No.:** 04.55124092

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psf

	Sai	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	40.2 81.0	39.4 81.1	41.4 80.0	
	a	Saturation, %	101.1	99.3	101.7	
2	nitial	Void Ratio	1.0653	1.0622	1.0901	
3	_	Diameter, in.	1.39	1.39	1.39	
		Height, in.	3.00	3.00	3.00	
		Water Content, %	40.2	39.4	41.4	
	+70	Dry Density, pcf	81.0	81.1	80.0	
	Test	Saturation, %	101.1	99.3	101.7	
	¥	Void Ratio	1.0653	1.0622	1.0901	
	1	Diameter, in.	1.39	1.39	1.39	
		Height, in.	3.00	3.00	3.00	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	5.10	17.46	29.58	
	Fai	I. Stress, psf	634	658	649	
	5	Strain, %	14.6	12.3	12.3	
	Ult.	Stress, psf	634	658	649	
	Strain, %		14.6	12.3	12.3	
σ ₁ Failure, psf		Failure, psf	1369	3172	4909	
	σ_3	Failure, psf	734	2514	4260	

Type of Test:

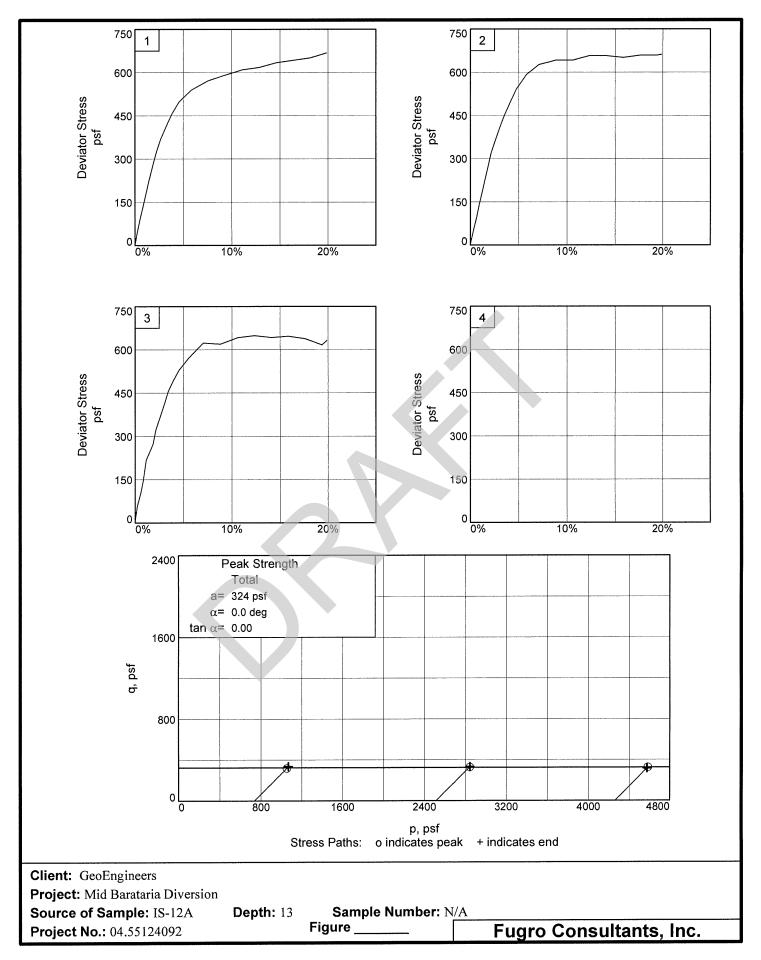
Unconsolidated Undrained
Sample Type: UNDISTURBED
Description: SO BR CL4

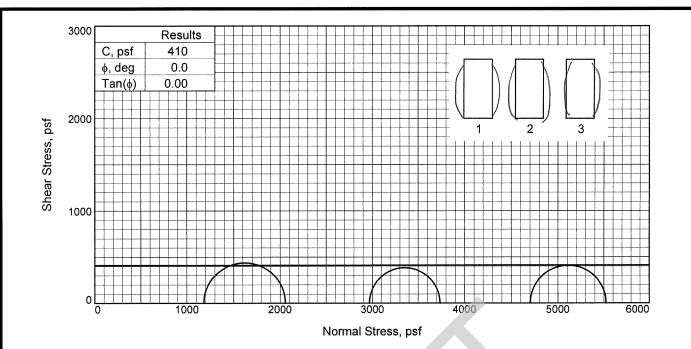
Assumed Specific Gravity= 2.68

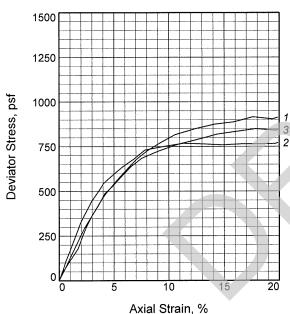
Remarks: Confidential Information: Privileged &

Confidential Work Product"

Confidential Work Froduct


Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 13

Sample Number: N/A

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

,,		
Type of Test:		
Unconsolidated 1	Undrained	
Sample Type: UN	DISTURBED	

Description: BR ML

LL= 33 **PL=** 26 **PI=** 7

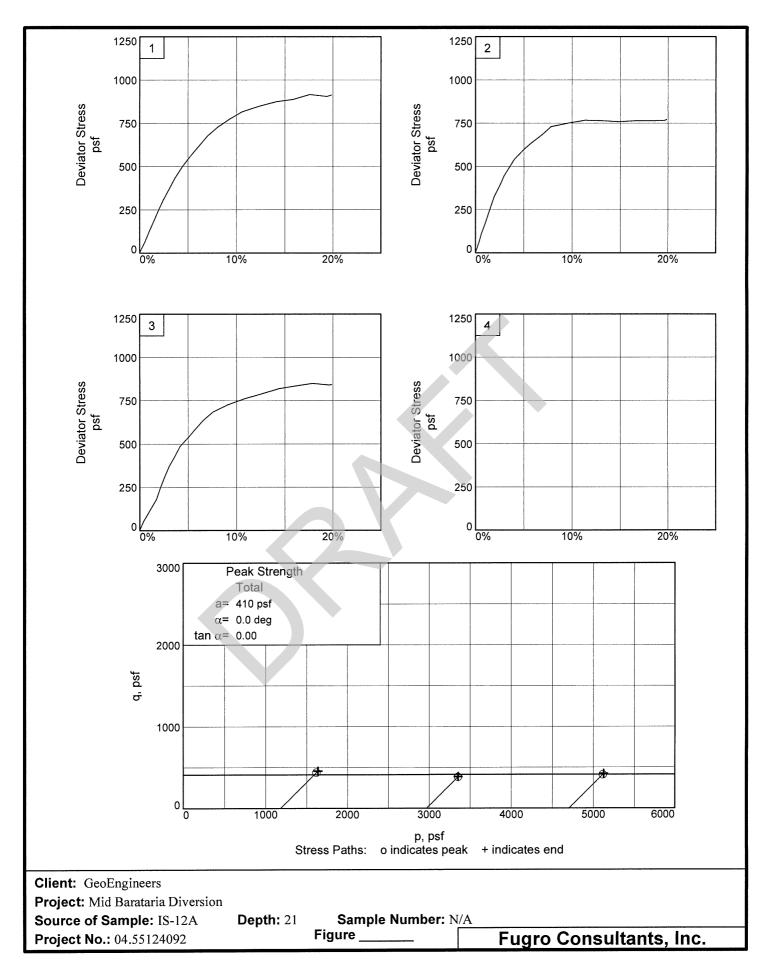
Assumed Specific Gravity= 2.68

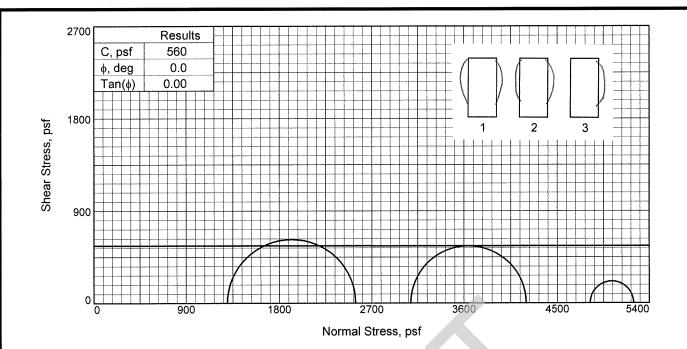
Remarks: "Confidential Information: Privileged &

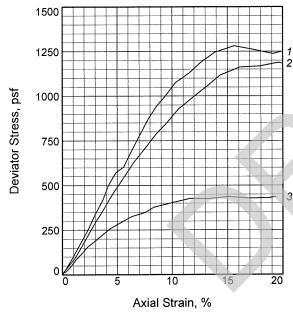
Confidential Work Product"

	Sar	mple No.	1	2	3	
		Water Content, %	32.7	34.4	33.8	
		Dry Density, pcf	88.1	86.3	88.1	
	<u>a</u>	Saturation, %	97.4	98.0	100.7	
	Initia	Void Ratio	0.8992	0.9390	0.8990	
		Diameter, in.	1.40	1.40	1.39	
1		Height, in.	2.99	2.99	3.00	
3		Water Content, %	32.7	34.4	33.8	
2	+	Dry Density, pcf	88.1	86.3	88.1	
	Test	Saturation, %	97.4	98.0	100.7	
	A	Void Ratio	0.8992	0.9390	0.8990	
	۹	Diameter, in.	1.40	1.40	1.39	
		Height, in.	2.99	2.99	3.00	
	Stra	ain rate, in./min.	1.00	1.00	1.00	
	Back Pressure, psi		0.00	0.00	0.00	
	Cell Pressure, psi		8.21	20.61	32.66	
Fail. Stress, psf Strain, %		I. Stress, psf	874	767	819	
		Strain, %	14.1	11.3	14.3	
	Ult. Stress, psf		874	759	819	
	5	Strain, %	14.1	14.8	14.3	
	σ_1	Failure, psf	2057	3735	5522	
	σ_3	Failure, psf	1182	2968	4703	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 21


Sample Number: N/A

Proj. No.: 04.55124092 Date Sampled: 8/9/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Type of Test:

Unconsolidated Undrained
Sample Type: UNDISTURBED

Description: BR ML

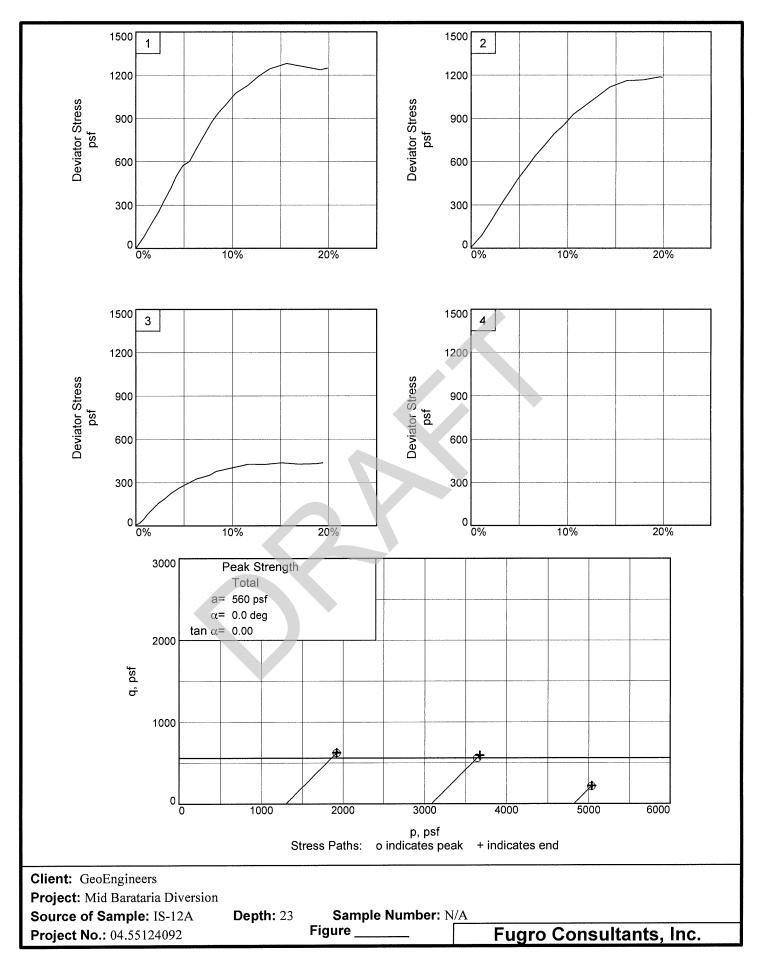
Assumed Specific Gravity= 2.68

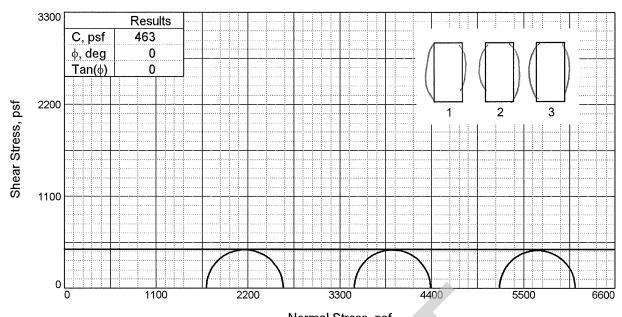
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

	Sar	mple No.	1	2	3	
1		Water Content, %	30.1	29.9	34.9	
		Dry Density, pcf	89.7	88.9	86.1	
2	<u>[</u>	Saturation, %	93.2	90.7	99.3	
	Initial	Void Ratio	0.8653	0.8830	0.9430	
		Diameter, in.	1.40	1.44	1.41	
		Height, in.	2.99	3.00	2.98	
		Water Content, %	30.1	29.9	34.9	
	+	Dry Density, pcf	89.7	88.9	86.1	
	rest	Saturation, %	93.2	90.7	99.3	
	Ą	Void Ratio	0.8653	0.8830	0.9430	
		Diameter, in.	1.40	1.44	1.41	
3		Height, in.	2.99	3.00	2.98	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	II Pressure, psi	9.01	21.40	33.46	
	Fai	I. Stress, psf	1244	1117	426	
	8	Strain, %	13.8	14.3	11.6	
	Ult.	. Stress, psf	1244	1117	425	
	5	Strain, %	13.8	14.3	13.3	
	σ1	Failure, psf	2542	4198	5245	
	σ_3	Failure, psf	1297	3082	4818	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 23

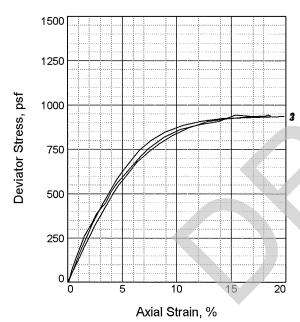
Sample Number: N/A

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Normal Stress, psf

Water Content, %


Dry Density, pcf

Saturation, %

Diameter, in.

Void Ratio

Sample No.

ı	у	p	е	0	t	I	е	S	t	*
---	---	---	---	---	---	---	---	---	---	---

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: BR ML

LL= 31 **PL=** 24 **PI=** 7 **Assumed Specific Gravity=** 2.68

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

		Height, in.	3.01	3.00	2.98	
		Water Content, %	33.2	33.7	33.8	
1	St	Dry Density, pcf	87.7	88.0	87.0	
	e	Saturation, %	98.1	100.2	98.1	
	At Test	Void Ratio	0.9067	0.9017	0.9228	
	1	Diameter, in.	1.41	1.40	1.41	
		Height, in.	3.01	3.00	2.98	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	ll Pressure, psi	11.79	24.08	36.18	
	Fai	l. Stress, psf	924	922	908	
	5	Strain, %	14.1	14.6	13.8	
	Ult.	. Stress, psf	924	922	908	
	5	Strain, %	14.1	14.6	13.8	
_	σ_1	Failure, psf	2621	4389	6118	
	σ_3	Failure, psf	1698	3468	5210	

1

33.2

87.7

98.1

1.41

0.9067

3

33.8

87.0

98.1

1.41

0.9228

2

33.7

88.0

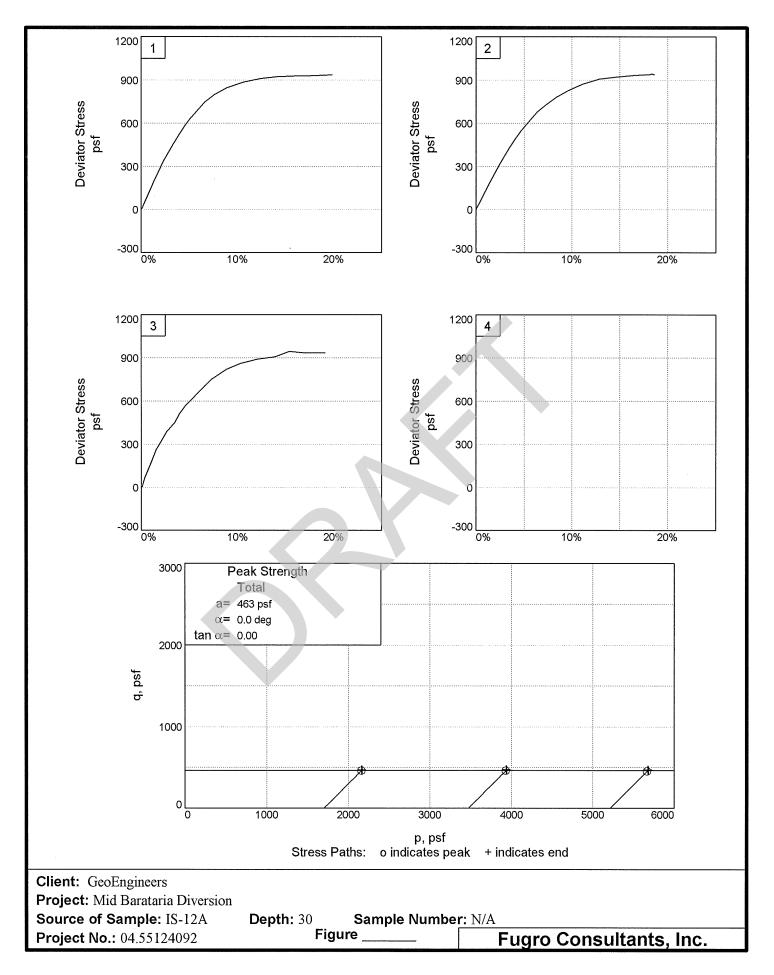
1.40

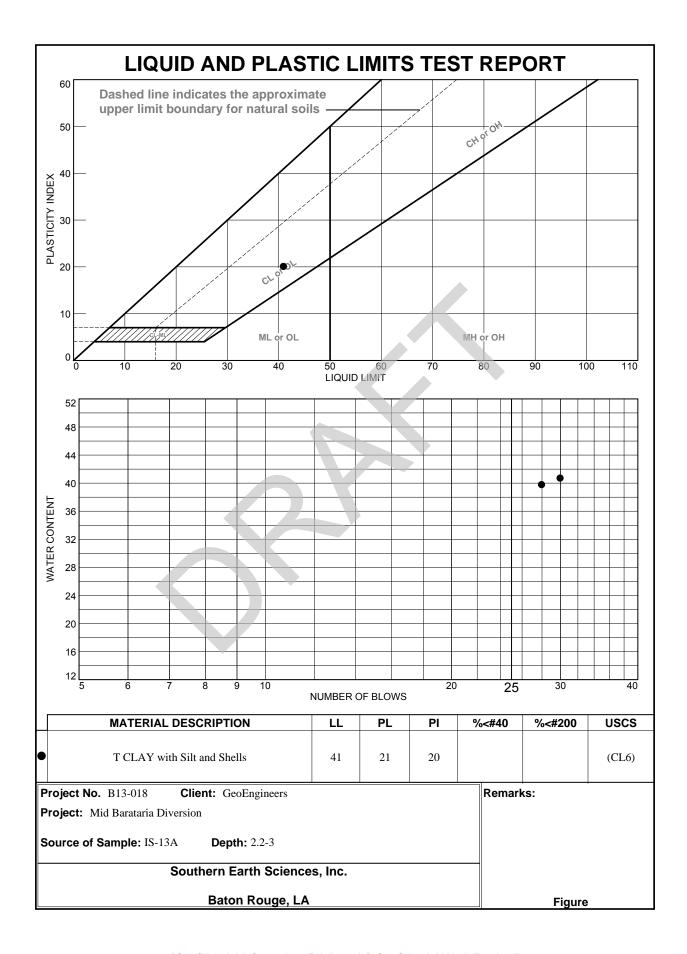
100.2

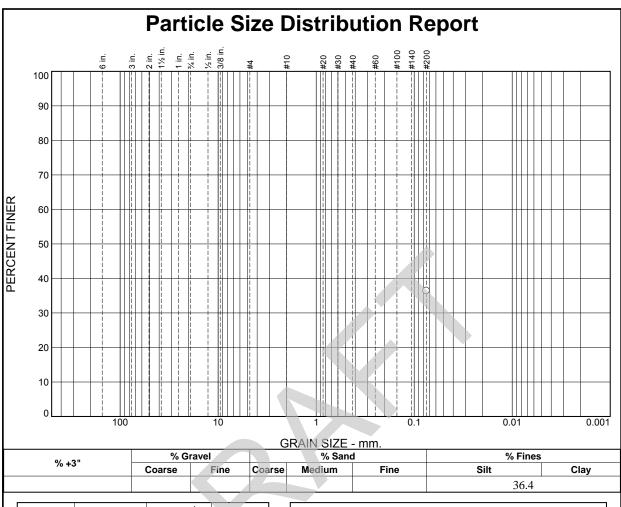
0.9017

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: IS-12A Depth: 30


Sample Number: N/A


Proj. No.: 04.55124092 Date Sampled: 8/9/13

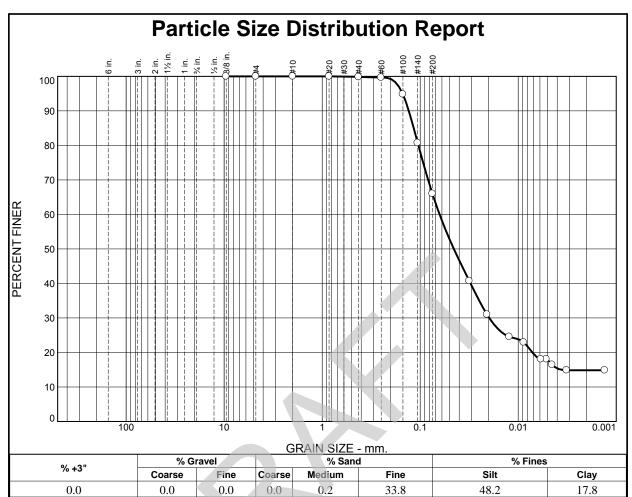
> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	36.4		
*	pecification provid		

Material Description Gr Silty SAND with Tr Clay PL= Classification USCS= (SM) Remarks

" (no specification provided)


Source of Sample: IS-13A Depth: 100.5-102

Date:

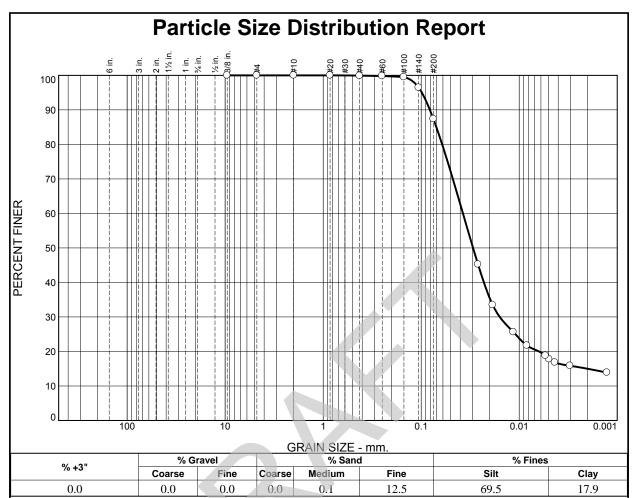
Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

-					
١,					
	SIEVE	PERCENT	SPEC.*	PASS?	
	SIZE	FINER	PERCENT	(X=NO)	Gr S SILT with
	3/8"	100.0]
	#4	100.0			
	#10	100.0			
	#20	100.0			PL=
	#40	99.8			٢٢-
	#60	99.7			
	#100	94.8			USCS= (ML)
	#140	80.7			
	#200	66.0			
					F.M.=0.06

Material Description					
Gr S SILT with	Gr S SILT with Clay				
PL=	Atterberg Limits LL=	PI=			
USCS= (ML)	Classification AASHTO=				
F.M.=0.06	Remarks				


Source of Sample: IS-13A Depth: 93-94.5

Date:

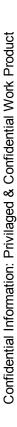
Southern Earth Sciences, Inc. Baton Rouge, LA

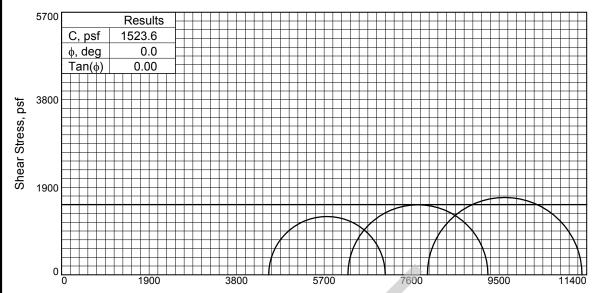
Client: GeoEngineers

Project: Mid Barataria Diversion

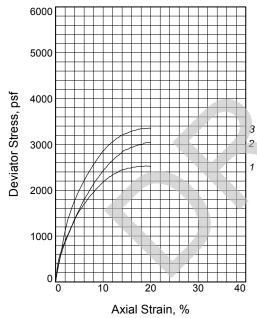
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#60	99.8		
#100	99.5		
#140	96.5		
#200	87.4		

Material Description Gr SILT with Clay and Fine Sand					
Atterberg Limits LL=	PI=				
Classification AASHTO=					
<u>Remarks</u>					
	Clay and Fine Sand Atterberg Limits LL= Classification AASHTO=				


Source of Sample: IS-13A Depth: 88-89.5


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

Type	of	Test:
------	----	-------

Sample Type: Undisturbed

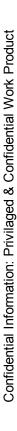
Description: St, Gr Laminating Fat CLAY with S Silt and Silty Clay (CH2)

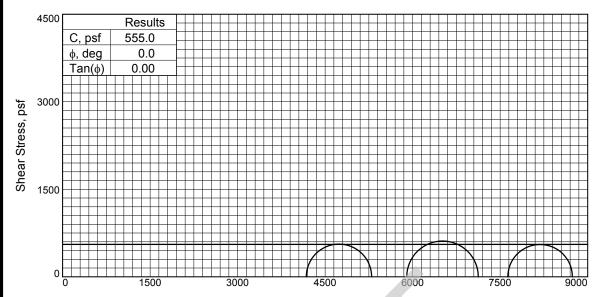
Assumed Specific Gravity= 2.80

Remarks: Type Failure:

Bulge

Figure	
_	


	Sa	mple No.	1	2	3	
		Water Content, %	30.5	31.5	31.1	
		Dry Density, pcf	94.2	94.4	92.8	
	Initial	Saturation, %	99.8	103.8	98.7	
	lui	Void Ratio	0.8563	0.8511	0.8835	
		Diameter, in.	1.386	1.365	1.402	
3 2		Height, in.	2.800	2.800	2.800	
		Water Content, %	30.6	30.4	31.6	
	st	Dry Density, pcf	94.2	94.4	92.8	
	ω.	Saturation, %	100.0	100.0	100.0	
	AtT	Void Ratio	0.8563	0.8511	0.8835	
		Diameter, in.	1.386	1.365	1.402	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	0.999	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	31.230	43.170	55.150	
	Fa	il. Stress, psf	2529.8	3040.2	3357.4	
	5	Strain, %	18.9	19.4	19.6	
Ult. Stres		. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	7027.0	9256.7	11299.0	
	σ_3	Failure, psf	4497.1	6216.5	7941.6	


Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: IS-13A **Depth:** 85-86

Proj. No.: B13-018 Date Sampled:

Normal Stress, psf

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Sample Type: Undisturbed

Description: M, Gr Fat CLAY with Silty SS

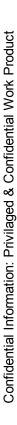
(CH3)

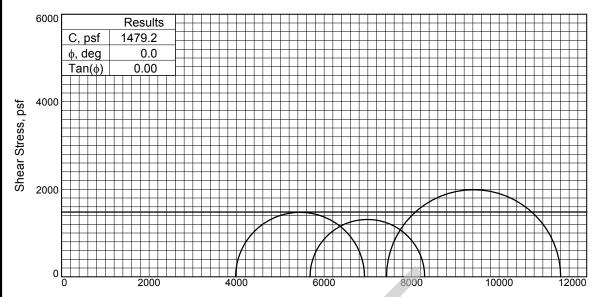
Assumed Specific Gravity= 2.80

Remarks: Type Failure:

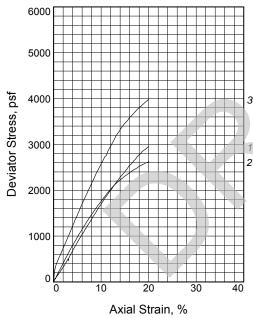
Bulge

Figure	
•	


	Sa	mple No.	1	2	3	
	7	Water Content, %	49.4			
		Dry Density, pcf	72.1		72.9	
2	Initial	Saturation, %	97.1	94.0	93.5	
3	lni	Void Ratio	1.4252	1.3704	1.3982	
		Diameter, in.	1.414	1.416	1.414	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	50.9	48.9	49.9	
	بز	Dry Density, pcf	72.1	73.7	72.9	
	e.	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	1.4252	1.3704	1.3982	
	٩	Diameter, in.	1.414	1.416	1.414	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	0.999	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	29.010	40.970	53.000	
	Fa	il. Stress, psf	1119.7	1225.7	1106.4	
	5	Strain, %	14.8	8.1	17.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	5297.1	7125.4	8738.4	
	σ_3	Failure, psf	4177.4	5899.7	7632.0	
			·	<u> </u>		


Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: IS-13A Depth: 79-80

Proj. No.: B13-018 Date Sampled:

Normal Stress, psf

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: St, Gr Lean CLAY with Fine

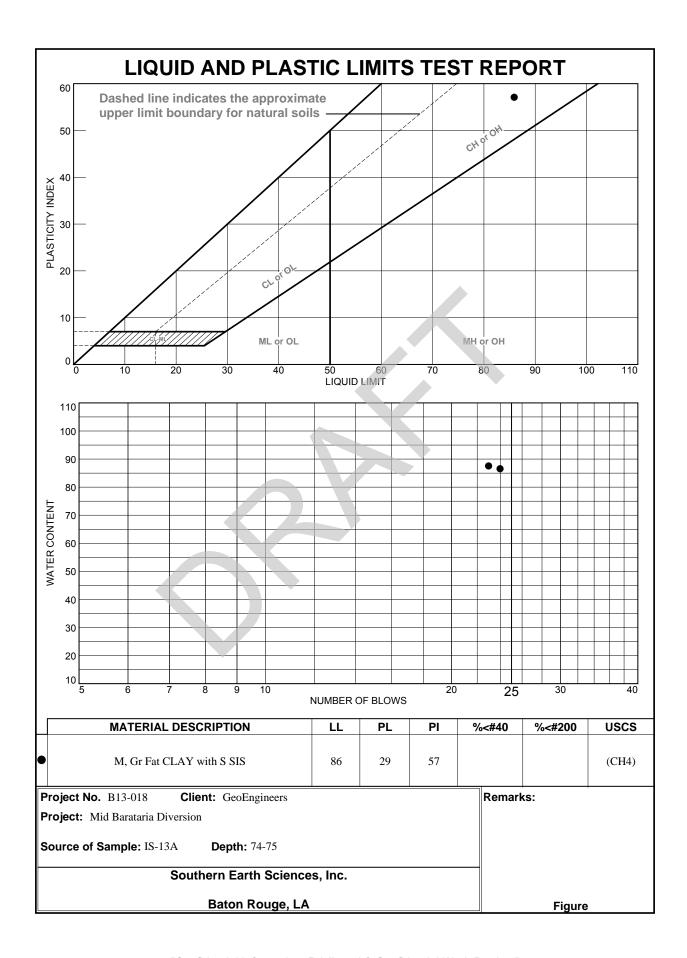
Sand (CL4)

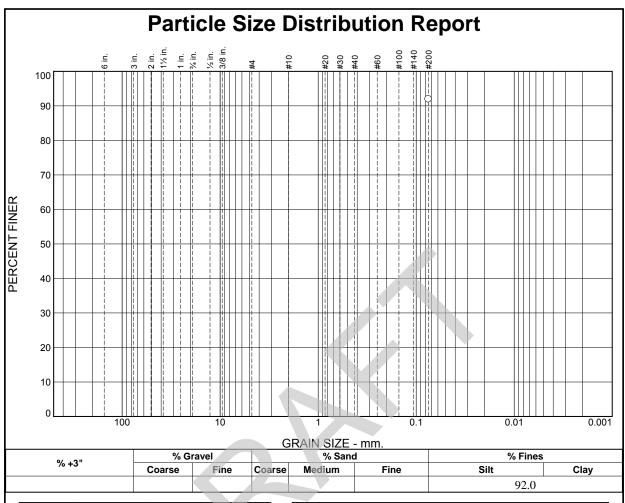
Assumed Specific Gravity= 2.70

Remarks: Type Failure:

Bulge

Figure	
_	


	Sa	mple No.	1	2	3	
		Water Content, %	29.0	29.0	29.4	
		Dry Density, pcf	95.4	94.9	97.9	
	Initial	Saturation, %	102.2	100.9	110.1	
	lпi	Void Ratio	0.7660	0.7764	0.7210	
3	\ 	Diameter, in.	1.355	1.376	1.367	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	28.4	28.8	26.7	
1	it	Dry Density, pcf	95.4	94.9	97.9	
2	At Test	Saturation, %	100.0	100.0	100.0	
	_	Void Ratio	0.7660	0.7764	0.7210	
	`	Diameter, in.	1.355	1.376	1.367	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	27.620	39.430	51.570	
	Fai	il. Stress, psf	2946.3	2620.2	3979.9	
	5	Strain, %	20.0	20.0	20.0	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	6923.6	8298.1	11406.0	
	σ_3	Failure, psf	3977.3	5677.9	7426.1	
	_					


Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 75-76

Proj. No.: B13-018 Date Sampled:

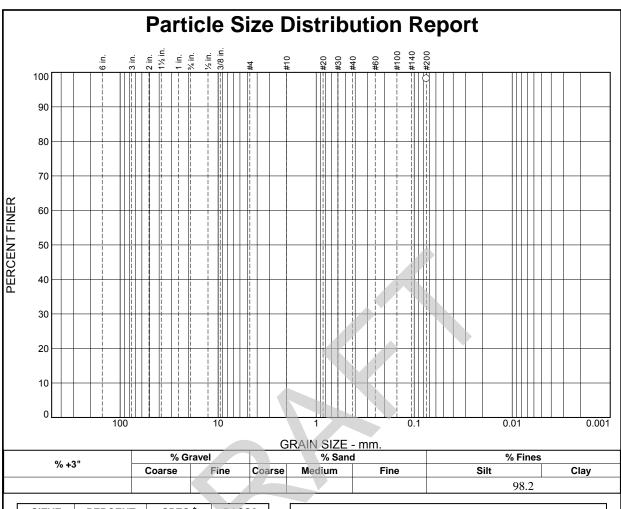
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	92.0		
11200	72.0		
*	: 6"	l	

Material Description Gr SILT with Fine Sand and Clay Pockets

PL= Atterberg Limits
LL= PI=

Classification
AASHTO=
Remarks

(no specification provided)


Source of Sample: IS-13A Depth: 66-67

Date:

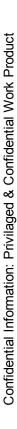
Southern Earth Sciences, Inc. Baton Rouge, LA

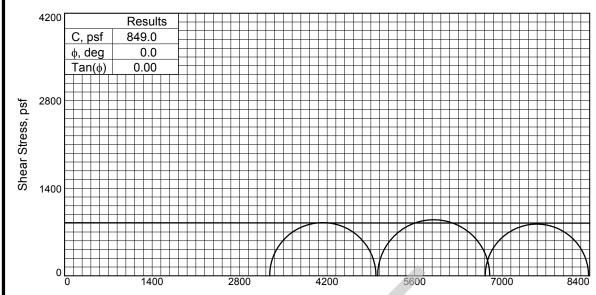
Client: GeoEngineers

Project: Mid Barataria Diversion

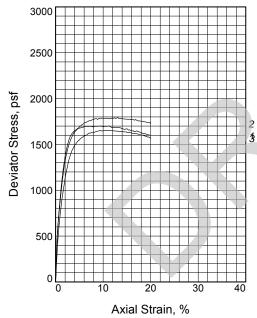
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	98.2		
*			

Material Description Gr Lean CLAY with S Silty Pockets PL= LL= Classification WSCS= (CL4) AASHTO= Remarks


Source of Sample: IS-13A Depth: 65.3-66


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

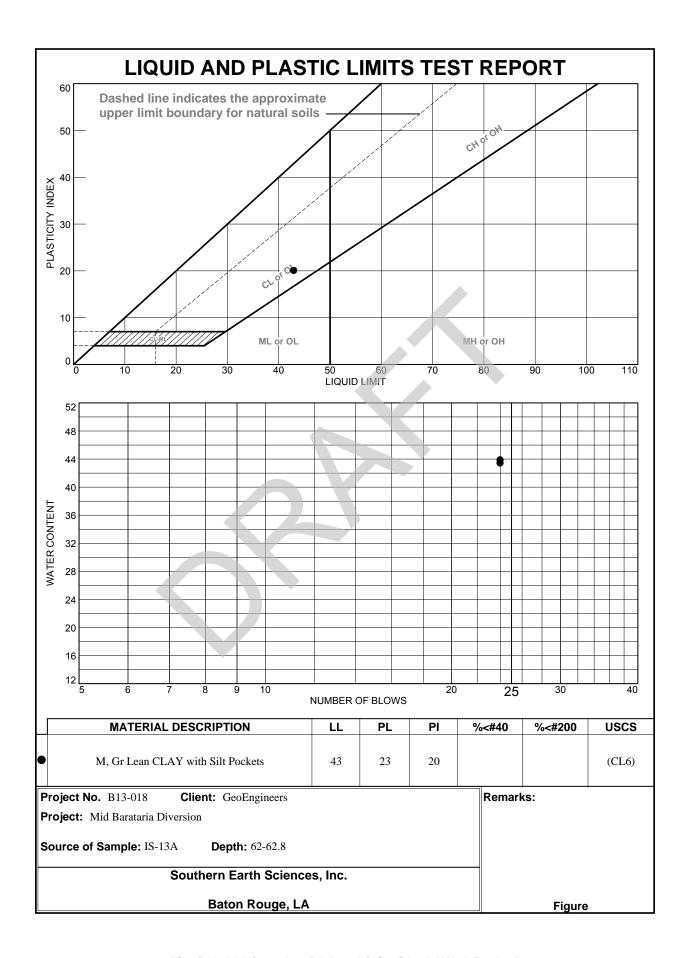
Sample Type: Undisturbed **Description:** M, Gr Lean CLAY with Silt

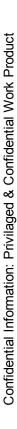
Pockets (CL6)

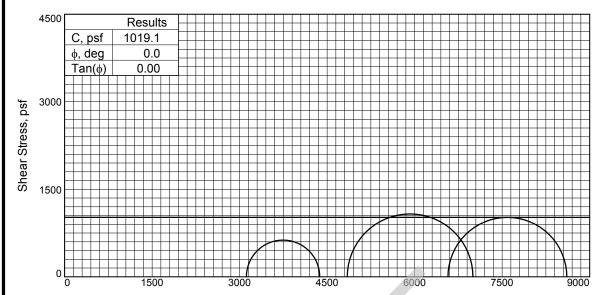
LL= 43 PL= 23 Pl= 20 Assumed Specific Gravity= 2.80

Remarks: Type Failure:

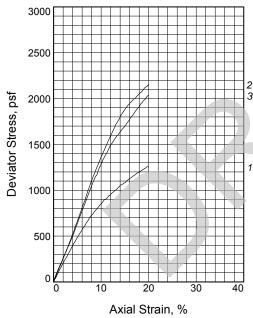
Bulge


	Sa	mple No.	1	2	3	
		Water Content, %	36.0	35.5	35.3	
		Dry Density, pcf	84.9	86.2	86.0	
	Initial	Saturation, %	95.2	96.6	95.8	
	Ιυ	Void Ratio	1.0581	1.0279	1.0323	
	\ 	Diameter, in.	1.414	1.412	1.417	
_		Height, in.	2.800	2.800	2.800	
2 3		Water Content, %	37.8	36.7	36.9	
,	st	Dry Density, pcf	84.9	86.2	86.0	
	ě	Saturation, %	100.0	100.0	100.0	
	At Te	Void Ratio	1.0581	1.0279	1.0323	
	`	Diameter, in.	1.414	1.412	1.417	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	0.999	1.000	0.999	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	22.780	34.780	46.730	
	Fa	il. Stress, psf	1701.0	1793.3	1653.9	
	5	Strain, %	9.6	13.1	11.6	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	4981.3	6801.6	8383.0	
	σ_3	Failure, psf	3280.3	5008.3	6729.1	


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 62-62.8


Proj. No.: B13-018 Date Sampled:

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

Unconsolidated Undrained **Sample Type:** Undisturbed

Description: M to St, Gr SILT with Clay and

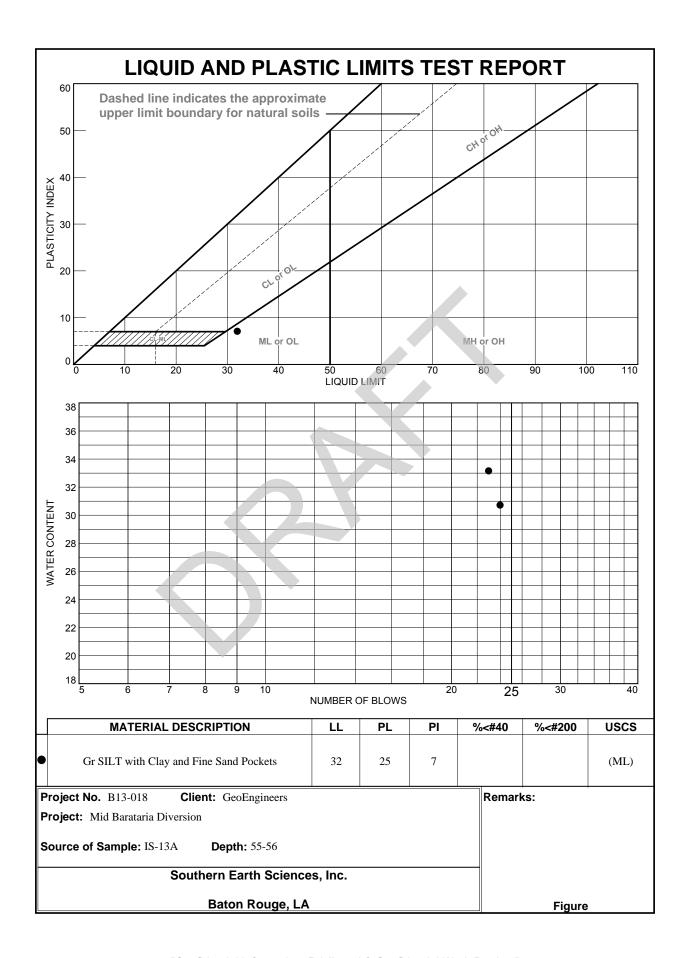
Fine Sand (ML)

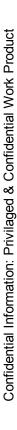
Assumed Specific Gravity= 2.65

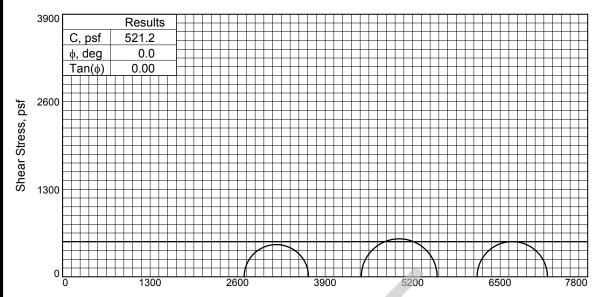
Remarks: Type Failure:

Bulge Slumping

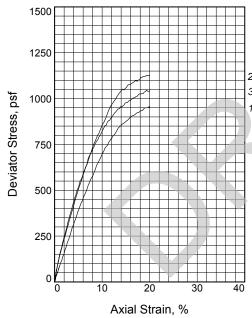
F	iq	ure)	


	Sa	mple No.	1	2	3	
		Water Content, %	32.5	32.3		
		Dry Density, pcf	90.8	94.0	93.0	
	Initial	Saturation, %	104.7	112.7	112.4	
2	lni	Void Ratio	0.8222	0.7604	0.7781	
3		Diameter, in.	1.396	1.392	1.375	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	31.0	28.7	29.4	
	st	Dry Density, pcf	90.8	94.0	93.0	
1	At Test	Saturation, %	100.0	100.0	100.0	
	٩ŧ -	Void Ratio	0.8222	0.7604	0.7781	
		Diameter, in.	1.396	1.392		
		Height, in.	2.800	2.800	2.800	
	Strain rate, in./min.		1.000	1.001	1.000	
	Back Pressure, psi		0.000	0.000	0.000	
	Cell Pressure, psi		21.640	33.650	45.640	
	Fail. Stress, psf		1256.6	2153.4	2036.1	
	5	Strain, %	19.9	20.0	20.0	
	Ult. Stress, psf					
	5	Strain, %				
	σ1	Failure, psf	4372.8	6999.0	8608.2	
	σ_3	Failure, psf	3116.2	4845.6	6572.2	
	_					


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 59-59.7


Proj. No.: B13-018 Date Sampled:

Normal Stress, psf

_		
Tyne	Ωf	Test:
	•	

Figure

Unconsolidated Undrained

Sample Type: Undisturbed

Description: So to M, Gr Lean CLAY with Tr

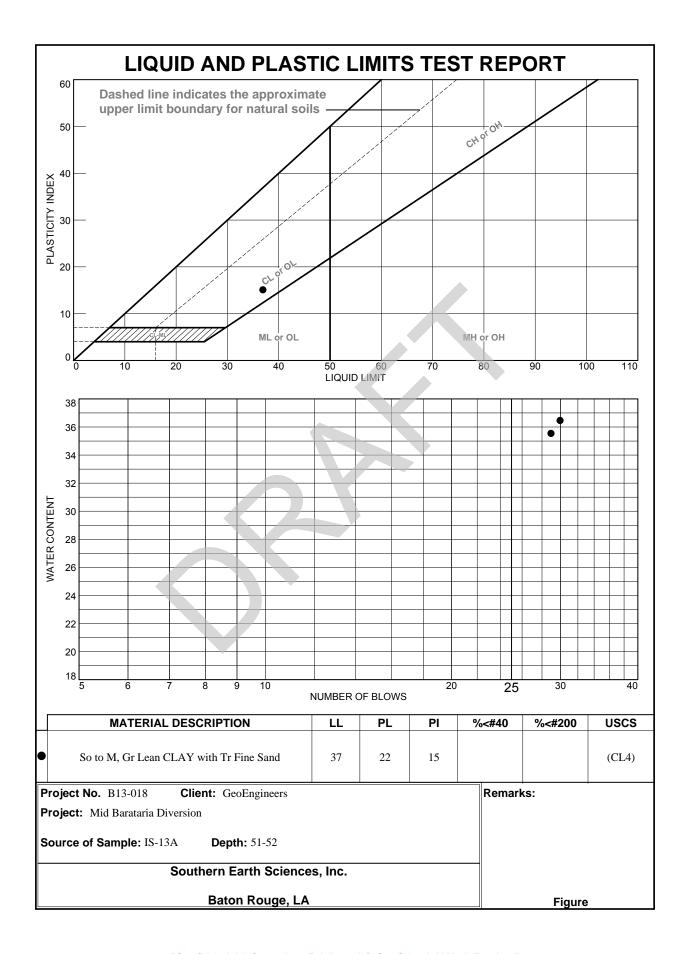
Fine Sand (CL4)

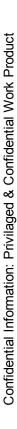
LL= 37 **PL=** 22 **PI=** 15

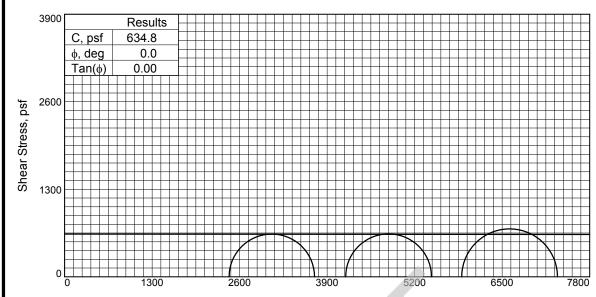
Assumed Specific Gravity= 2.70

Remarks: Type Failure:

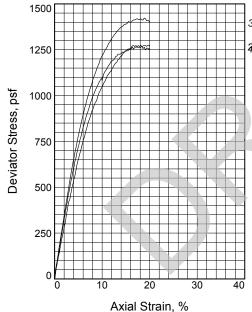
Ciliai KS.	Type Panuic.
Bulge	


	Sample No.		1	2	3	
		Water Content, %	32.2	31.4	32.7	
ļ		Dry Density, pcf	91.7	91.9	91.3	
2	Initial	Saturation, %	103.5	101.7	104.4	
3	<u>-</u>	Void Ratio	0.8384	0.8332	0.8466	
		Diameter, in.	1.380	1.380	1.368	
1		Height, in.	2.800	2.800	2.800	
		Water Content, %	31.1	30.9	31.4	
	ot	Dry Density, pcf	91.7	91.9	91.3	
	At Test	Saturation, %	100.0	100.0	100.0	
	Ţ.	Void Ratio	0.8384	0.8332		
	1	Diameter, in.		1.380		
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	0.999	
	Back Pressure, psi		0.000	0.000	0.000	
	Се	Il Pressure, psi	18.730	30.810	42.760	
	Fai	I. Stress, psf	956.0	1127.6	1045.4	
	5	Strain, %	19.9	19.4	19.4	
	Ult. Stress, psf					
	5	Strain, %				
\dashv	σ_1	Failure, psf	3653.1	5564.2	7202.8	
	σ_3	Failure, psf	2697.1	4436.6	6157.4	


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 51-52


Proj. No.: B13-018 Date Sampled:

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Sample Type: Undisturbed

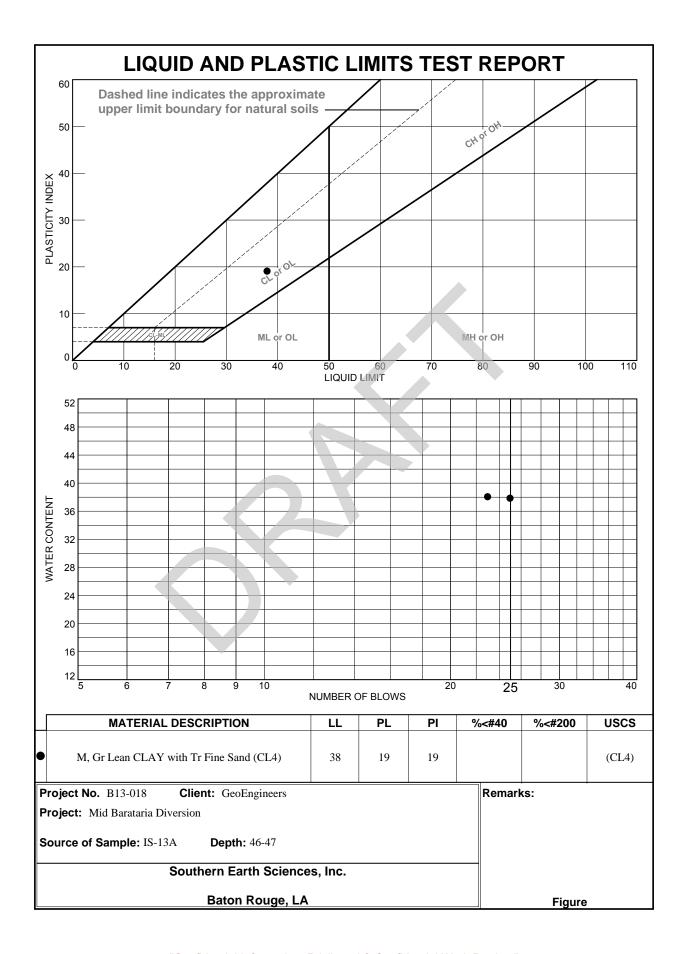
Description: M, Gr Lean CLAY with Tr Fine

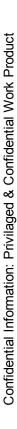
Sand (CL4)

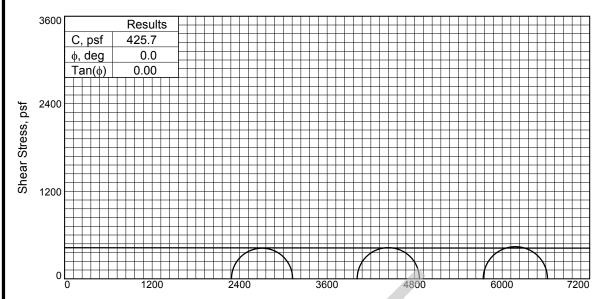
LL= 38 PL= 19 Pl= 19 Assumed Specific Gravity= 2.70

Remarks: Type Failure:

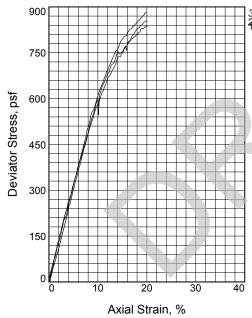
Bulge


3	Sa	Sample No. 1 2 3				
2		Water Content, % Dry Density, pcf	31.6 94.2	31.5 92.5	31.7 93.4	
•	a	Saturation, %	108.4	103.3		
	Initial	Void Ratio	0.7885	0.8224	0.8041	
	_\	Diameter, in.	1.378	1.395	1.398	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	29.2	30.5	29.8	
	st	Dry Density, pcf	94.2	92.5	93.4	
	AtTest	Saturation, %	100.0	100.0	100.0	
	- -	Void Ratio	0.7885	0.8224	0.8041	
	`	Diameter, in.	1.378	1.395	1.398	
		Height, in.	2.800	2.800	2.800	
	Strain rate, in./min.		1.000	1.001	1.002	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	16.970	29.000	40.970	
	Fail. Stress, psf		1268.9	1274.3	1422.5	
	5	Strain, %	18.4	19.9	18.9	
	Ult. Stress, psf					
	5	Strain, %				
	σ1	Failure, psf	3712.6	5450.3	7322.2	
	σ_3	Failure, psf	2443.7	4176.0	5899.7	
		_				


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 46-47


Proj. No.: B13-018 Date Sampled:

Normal Stress, psf

T	- 6	T 1
LVDE	Ωt	Lest:

Unconsolidated Undrained

Sample Type: Undisturbed

Description: So, Gr SILT with Clay and Fine

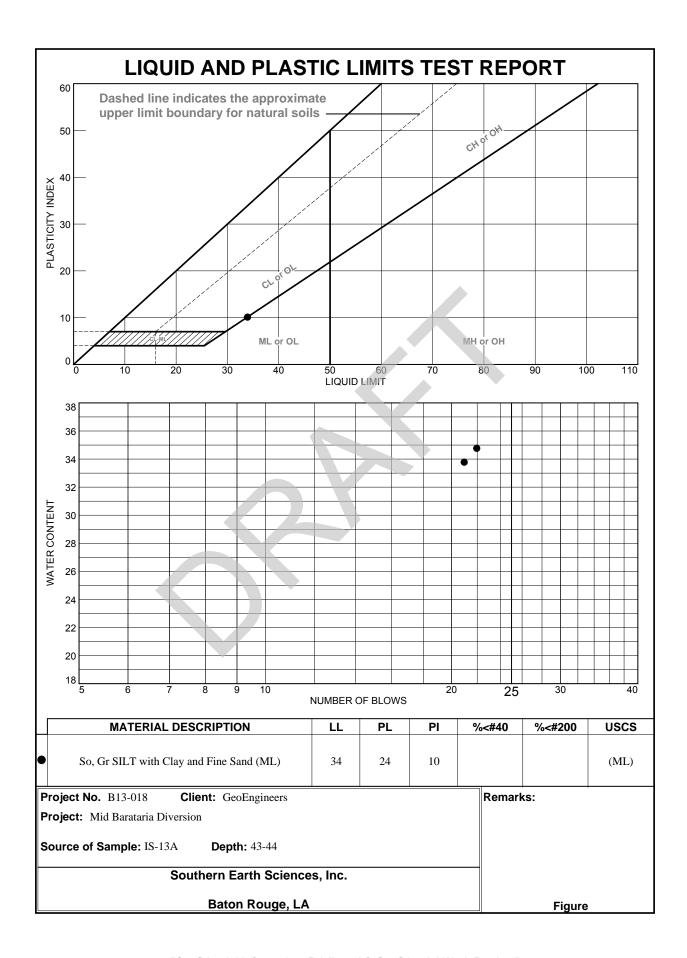
Sand (ML)

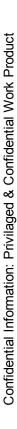
LL= 34 PL= 24 Pl= 10 Assumed Specific Gravity= 2.65

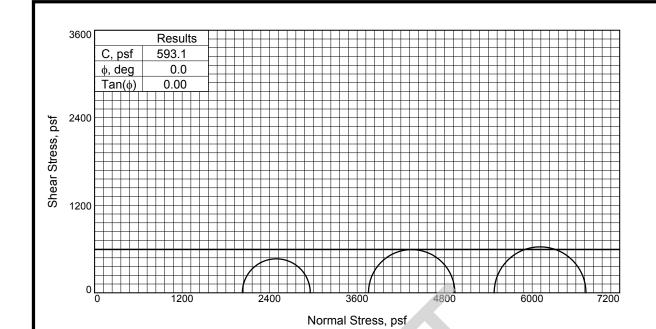
Remarks: Tykpe Failure:

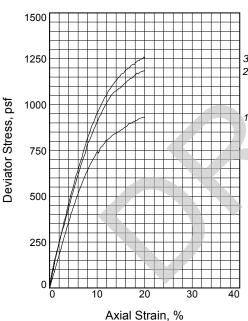
Bluge Slumping

Figure	


3	Sa	mple No.	1	2	3	
		Water Content, %	31.7	31.4	31.2	
		Dry Density, pcf	92.2	91.7	90.8	
	Initial	Saturation, %	105.9	103.4	100.6	
	lni	Void Ratio	0.7935	0.8042	0.8224	
		Diameter, in.	1.374	1.363	1.386	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	29.9	30.3	31.0	
)ţ	Dry Density, pcf	92.2	91.7	90.8	
	At Test	Saturation, %	100.0	100.0	100.0	
	٦ť	Void Ratio	0.7935	0.8042	0.8224	
	`	Diameter, in.	1.374		1.386	
		Height, in.	2.800	2.800	2.800	
	Strain rate, in./min.		1.000	1.000	1.000	
	Back Pressure, psi		0.000	0.000	0.000	
	Cell Pressure, psi		15.890	27.860	39.870	
	Fail. Stress, psf		838.7	853.9	880.8	
	5	Strain, %	20.0	19.9	20.0	
	Ult. Stress, psf					
	5	Strain, %				
	σ ₁	Failure, psf	3126.8	4865.7	6622.1	
	σ_3	Failure, psf	2288.2	4011.8	5741.3	


Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-13A Depth: 43-44

Proj. No.: B13-018 Date Sampled:

Туре	of	Test:

Sample Type: Undisturbed

Description: M, Gr CLAY with Silt and Fine

Sand (CL4)

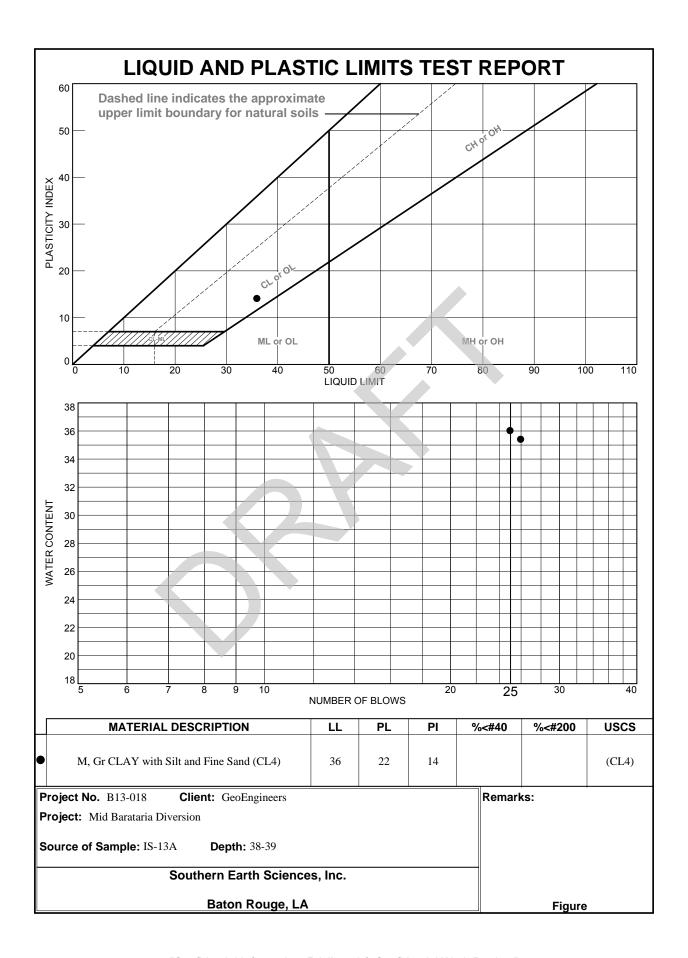
LL= 36 PL= 22 Pl= 14 Assumed Specific Gravity= 2.70

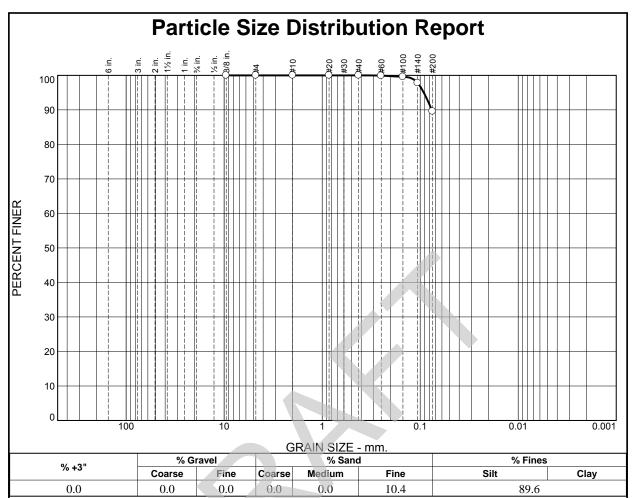
Remarks: Type Failure:

Bulge

Laminations

igure	


	Sa	mple No.	1	2	3	
3		Water Content, % Dry Density, pcf	31.8 94.7			
2	ial	Saturation, %	110.1			
	Initial	Void Ratio	0.7793	0.7977	0.7614	
		Diameter, in.	1.354	1.369	1.354	
1		Height, in.	2.800	2.800	2.800	
		Water Content, %	28.9	29.5	28.2	
	it	Dry Density, pcf	94.7	93.8	95.7	
	At Test	Saturation, %	100.0	100.0	100.0	
	_	Void Ratio	0.7793	0.7977	0.7614	
	`	Diameter, in.		1.369		
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	14.070	26.080	38.050	
	Fa	il. Stress, psf	931.5	1184.6	1259.1	
	5	Strain, %	20.0	19.8	19.8	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	2957.6	4940.1	6738.3	
	σ_{3}	Failure, psf	2026.1	3755.5	5479.2	
	=					


Client: GeoEngineers

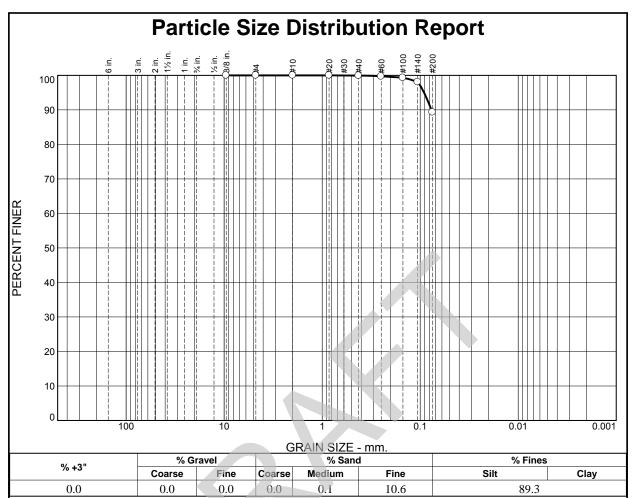
Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 38-39

Proj. No.: B13-018 Date Sampled:

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	99.6		
#140	97.8		
#200	89.6		

Material Description Gr SILT with Sand and Clay				
PL=	Atterberg Limits LL=	PI=		
USCS= (ML)	Classification AASHTO=			
F.M.=0.00	<u>Remarks</u>			


Source of Sample: IS-13A **Depth:** 35-36

Date:

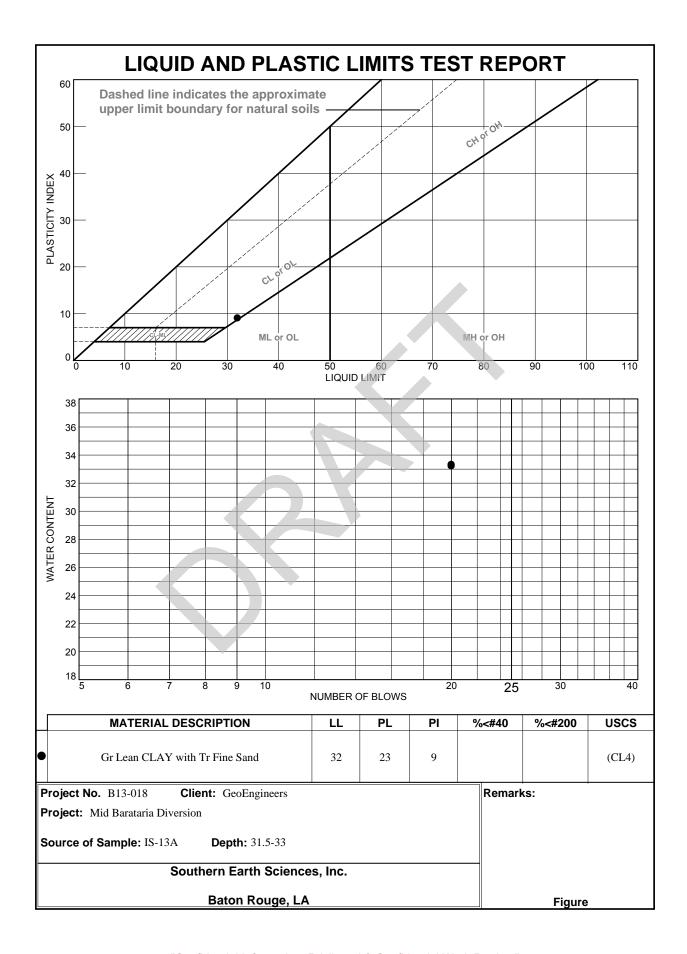
Southern Earth Sciences, Inc. Baton Rouge, LA

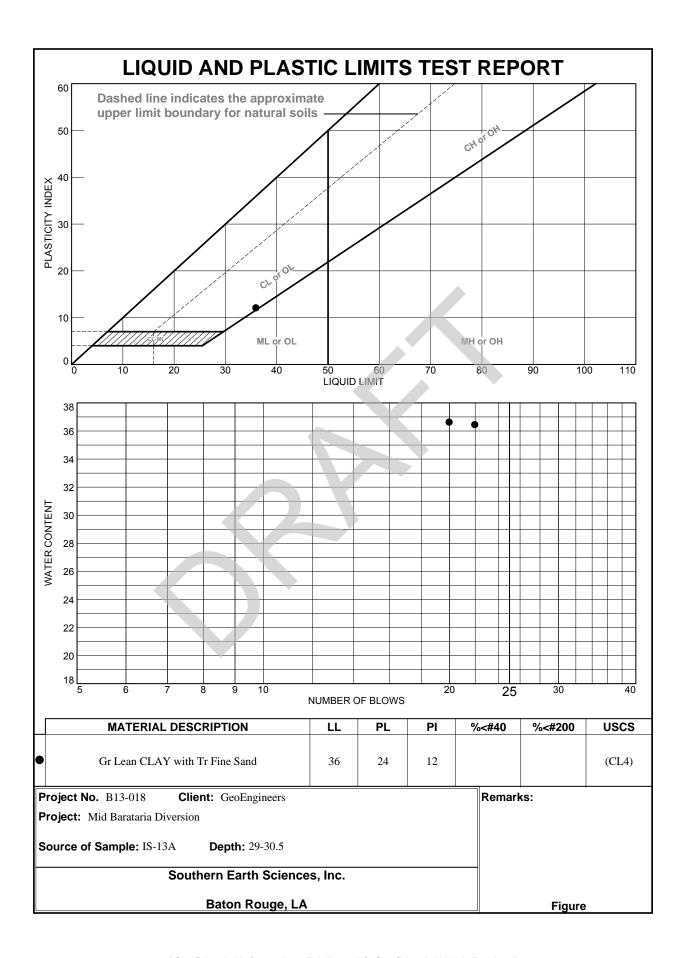
Client: GeoEngineers

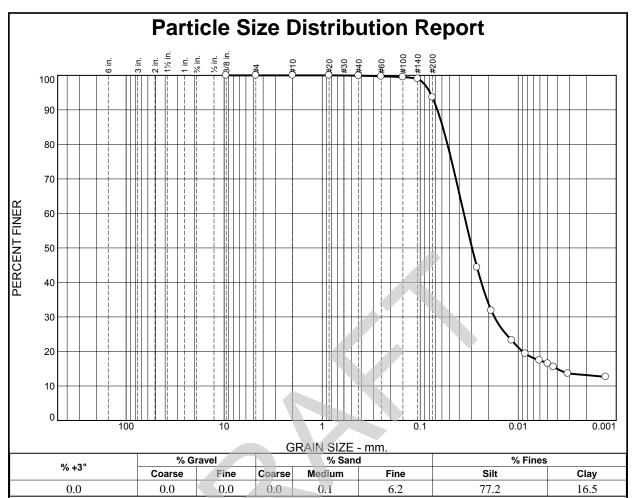
Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#60	99.7		
#100	99.3		
#140	98.1		
#200	89.3		

Material Description Gr SILT with Sand and Clay				
PL=	Atterberg Limits LL=	PI=		
USCS= (ML)	Classification AASHTO=			
F.M.=0.01	<u>Remarks</u>			


Source of Sample: IS-13A Depth: 33-34


Date:

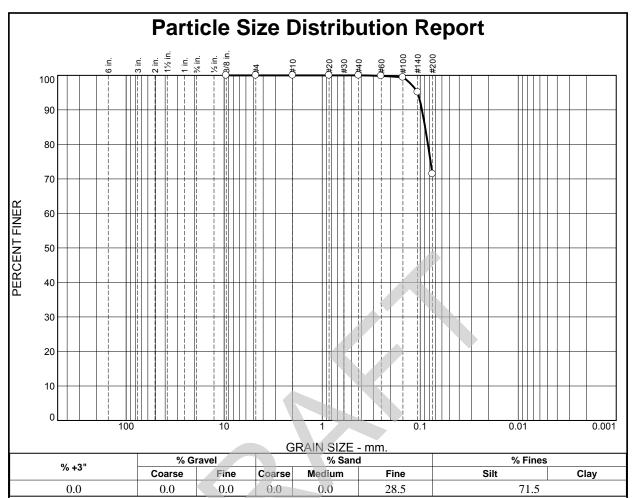

Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	99.9		
#60	99.7		
#100	99.5		
#140	99.0		
#200	93.7		

Material Description Gr SILT with Sand and Clay					
PL=	Atterberg Limits LL=	PI=			
USCS= (ML)	Classification AASHTO=				
F.M.=0.01	<u>Remarks</u>				


Source of Sample: IS-13A Depth: 24-25.5

Date:

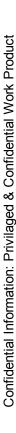
Southern Earth Sciences, Inc. Baton Rouge, LA

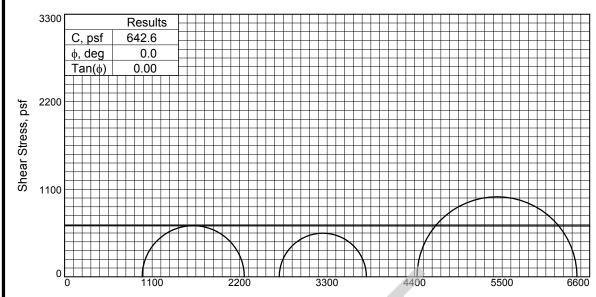
Client: GeoEngineers

Project: Mid Barataria Diversion

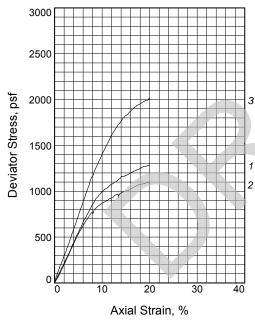
SIEVE	PERCENT	SPEC.*	PASS?
1	_		
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.8		
#100	99.4		
#140	95.1		
#200	71.5		

Material Description Gr SILT with Sand and Tr Clay				
PL=	Atterberg Limits LL=	PI=		
USCS= (ML)	Classification AASHTO=			
F.M.=0.01	<u>Remarks</u>			


Source of Sample: IS-13A Depth: 23.5-24


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Sample Type: Undisturbed

Description: M, Gr Silty CLAY with S Silt

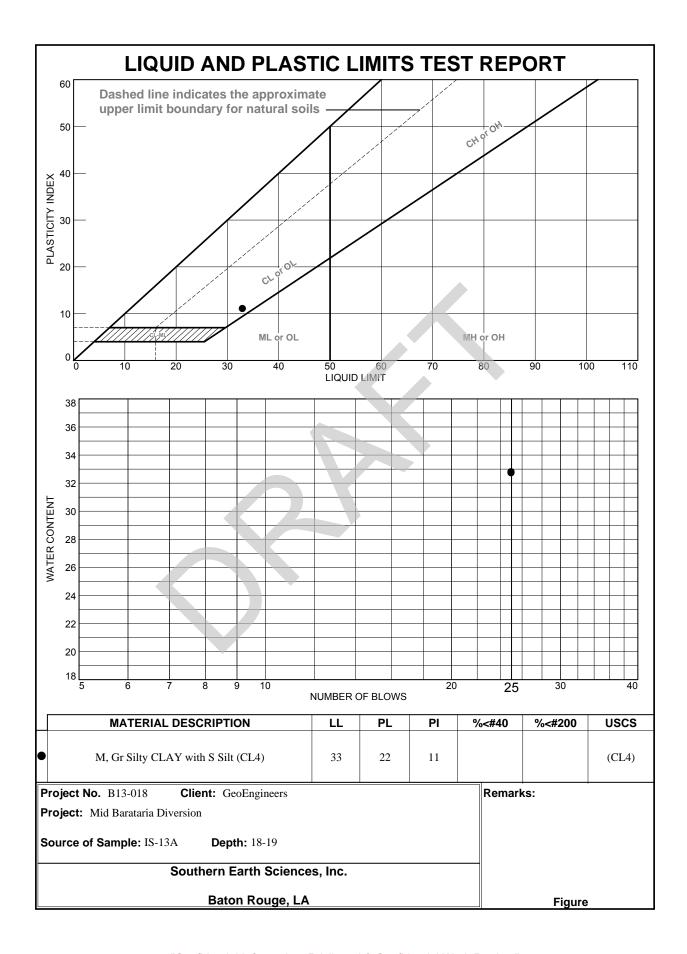
(CL4)

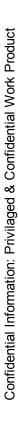
LL= 33 PL= 22 Pl= 11 Assumed Specific Gravity= 2.65

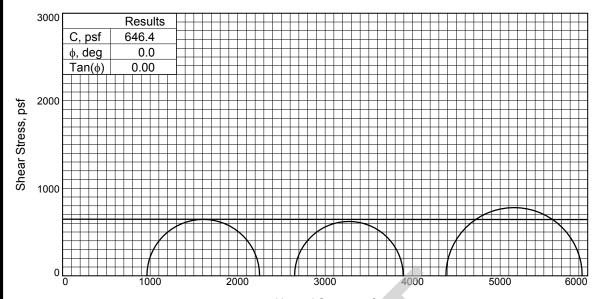
Remarks: Type Failure:

Bulge Slumping

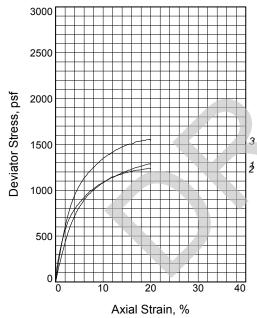
Figure _____


	Sa	mple No.	1	2	3	
		Water Content, %	30.1	30.9	31.5	
		Dry Density, pcf	95.6	94.4	96.6	
	Initial	Saturation, %	109.0	108.7	117.0	
	-i-	Void Ratio	0.7310	0.7526	0.7123	
3	\ \	Diameter, in.	1.367	1.361	1.356	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	27.6	28.4	26.9	
	st	Dry Density, pcf	95.6	94.4		
1	At Test	Saturation, %	100.0	100.0	100.0	
2	¥	Void Ratio	0.7310	0.7526		
_	`	Diameter, in.		1.361		
		Height, in.	2.800	2.800	2.800	
	Strain rate, in./min.		0.999	1.000	1.000	
	Back Pressure, psi		0.000	0.000	0.000	
	Cell Pressure, psi		6.770	18.740	30.770	
	Fail. Stress, psf		1283.9	1095.3	2010.2	
	Strain, %		19.8	19.9	19.8	
	Ult. Stress, psf					
	5	Strain, %				
	σ ₁	Failure, psf	2258.7	3793.8	6441.1	
	σ_3	Failure, psf	974.9	2698.6	4430.9	


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-13A Depth: 18-19


Proj. No.: B13-018 Date Sampled:

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

Sample Type: Undisturbed

Description: M, Gr Lean CLAY with O

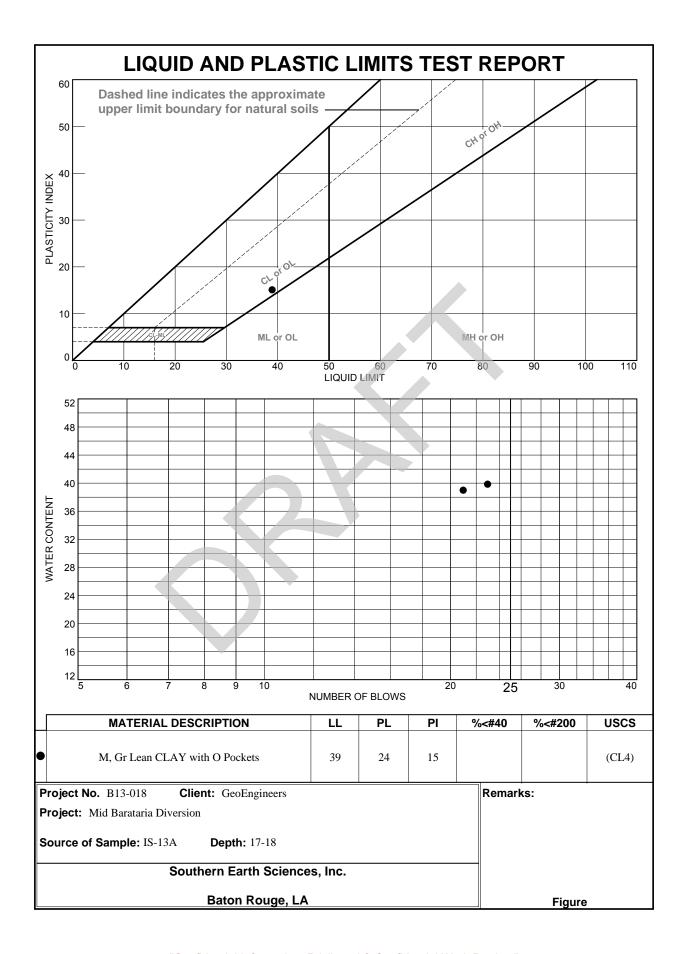
Pockets

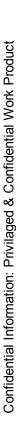
LL= 39 PL= 24 Pl= 15 Assumed Specific Gravity= 2.70

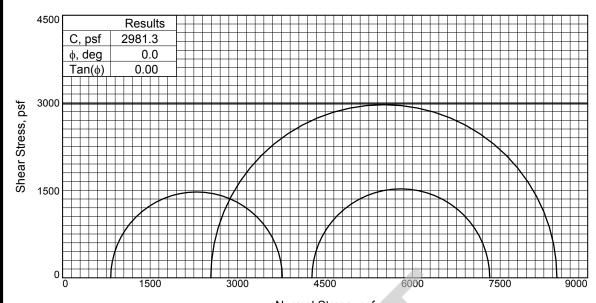
Remarks: Type Failure:

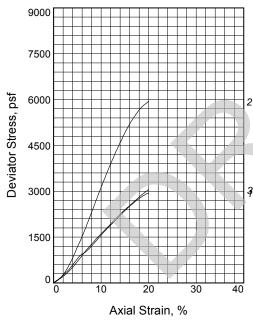
Bulge

rigure	
_	


	Sa	mple No.	1	2	3	
3 12		Water Content, %	33.9	33.8	36.1	
		Dry Density, pcf	86.9	85.7	88.7	
	ial	Saturation, %	97.3	94.4	108.1	
	Initial	Void Ratio	0.9397	0.9667	0.9005	
	\	Diameter, in.	1.393	1.396	1.355	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	34.8	35.8	33.4	
	st	Dry Density, pcf	86.9	85.7	88.7	
	Φ	Saturation, %	100.0	100.0	100.0	
	At T	Void Ratio	0.9397	0.9667	0.9005	
	1	Diameter, in.	1.393	1.396	1.355	
		Height, in.	2.800	2.800	2.800	
	Strain rate, in./min.		1.001	1.000	1.000	
	Back Pressure, psi		0.000	0.000	0.000	
	Cell Pressure, psi		6.690	18.410	30.420	
	Fail. Stress, psf		1288.0	1241.4	1557.5	
	Strain, %		19.9	19.6	19.8	
	Ult. Stress, psf					
	5	Strain, %				
	σ₁ Failure, psf		2251.4	3892.5	5938.0	
	σ_3	Failure, psf	963.4	2651.0	4380.5	


Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-13A Depth: 17-18

Proj. No.: B13-018 Date Sampled:

Unconsolidated Undrained

Sample Type: Undisturbed

Description: St, Gr SILT with Sand and Tr

Clay (ML)

LL= 28 PL= 26 Pl= 2 Assumed Specific Gravity= 2.65

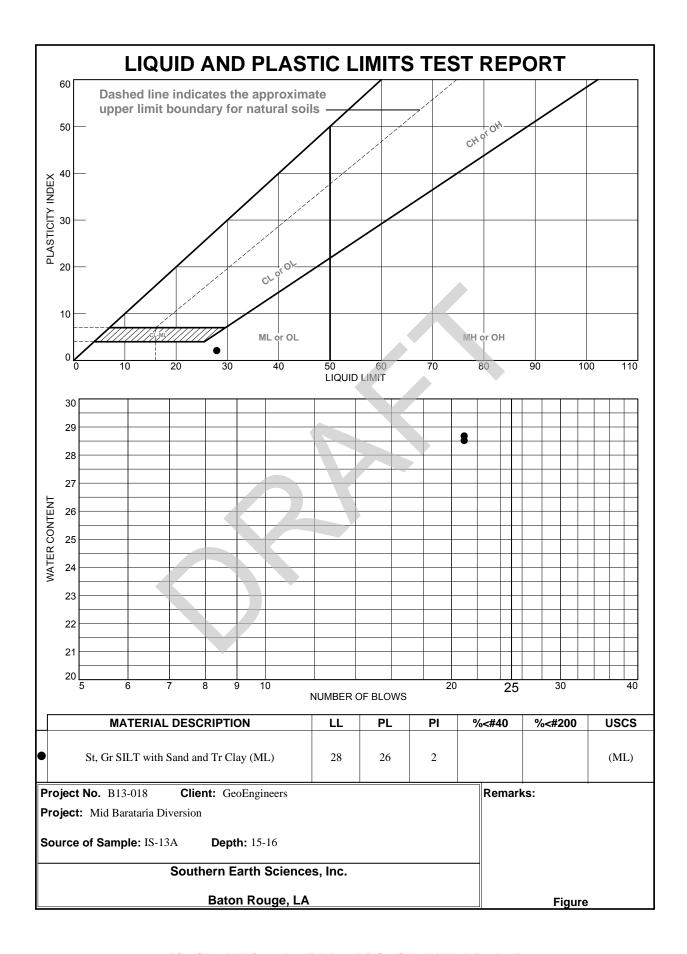
Remarks: Type Failure:

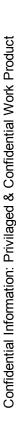
Bulge

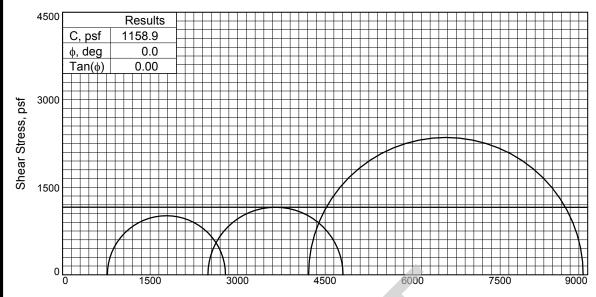
Slumping (Sample 1,2,3)

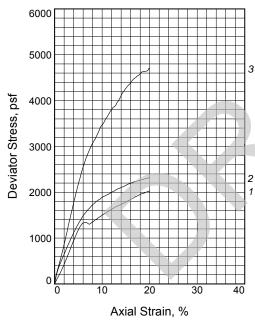
Figure	

Dry Density, pcf 94.1 91.4 8 Saturation, % 94.8 97.1 9 Void Ratio 0.7572 0.8105 1.0 Diameter, in. 1.410 1.410 1.4 Height, in. 2.800 2.800 2.8 Water Content, % 28.6 30.6 3 Dry Density, pcf 94.1 91.4 8	3
Saturation, % 94.8 97.1 9 Void Ratio 0.7572 0.8105 1.0 Diameter, in. 1.410 1.410 1.4 Height, in. 2.800 2.800 2.8 Water Content, % 28.6 30.6 3 Dry Density, pcf 94.1 91.4 8 Saturation, % 100.0 100.0 10 Void Ratio 0.7572 0.8105 1.0 Void Ratio 0.7572	37.2
Diameter, in. Height, in. 2.800 2.800 2.80 2.80 2.80 2.80 2.80 2	31.9
Diameter, in. Height, in. 2.800 2.800 2.80 2.80 2.80 2.80 2.80 2	96.7
Height, in. 2.800 2.800 2.8 Water Content, % 28.6 30.6 3 Dry Density, pcf 94.1 91.4 8 Saturation, % 100.0 100.0 10 Void Ratio 0.7572 0.8105 1.0	196
Water Content, % 28.6 30.6 3 Dry Density, pcf 94.1 91.4 8 Saturation, % 100.0 100.0 10 Void Ratio 0.7572 0.8105 1.00	410
Dry Density, pcf 94.1 91.4 8 Saturation, % 100.0 100.0 10 Void Ratio 0.7572 0.8105 1.01	800
Saturation, % 100.0 100.0 10 Void Ratio 0.7572 0.8105 1.01	38.5
Saturation, % 100.0 100.0 10 Void Ratio 0.7572 0.8105 1.0	31.9
Void Ratio 0.7572 0.8105 1.01	0.00
3 Diameter in 1.410 1.410 1.	196
· '	
Height, in. 2.800 2.800 2.8	800
Strain rate, in./min. 1.000 1.001 1.001	001
Back Pressure, psi 0.000 0.000 0.00	000
Cell Pressure, psi 5.730 17.640 29.6	680
Fail. Stress, psf 2941.0 5933.4 304	7.2
Strain, % 20.0 20.0 2	20.0
Ult. Stress, psf	
Strain, %	
σ_1 Failure, psf 3766.1 8473.5 732	21.1
σ_3 Failure, psf 825.1 2540.2 427	73.9


Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-13A Depth: 15-16


Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

Tv	рe	of	Test:

Unconsolidated Undrained

Sample Type: Undisturbed

Description: St, O Clay with Silt and Sand

(CL6)

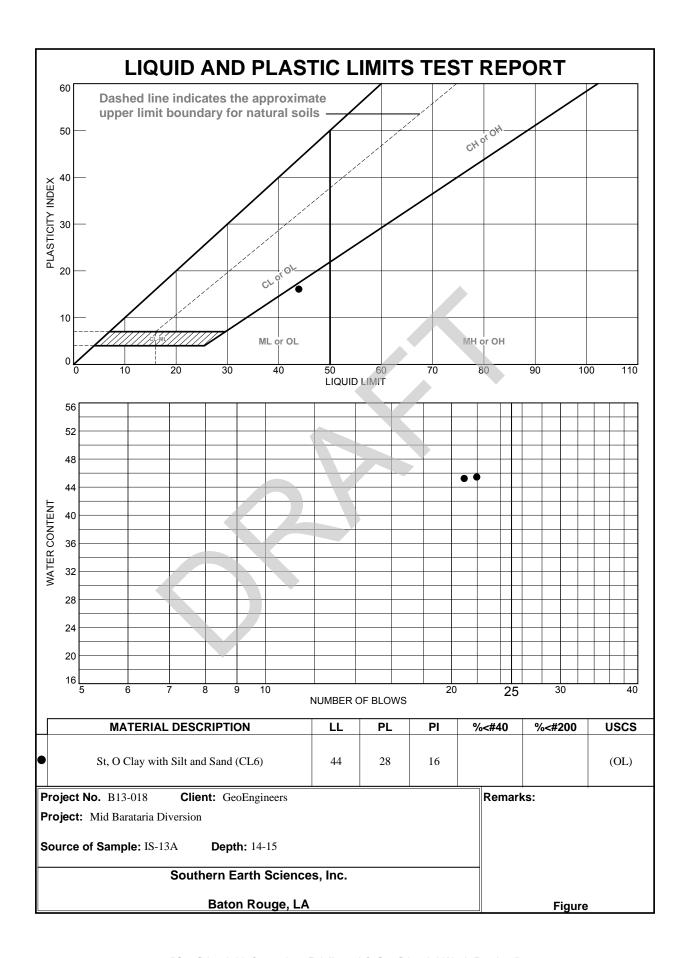
LL= 44 PL= 28 Pl= 16 Assumed Specific Gravity= 2.70

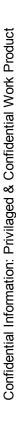
Remarks: Type Failure: Multi Shear (Sample 1, 3)

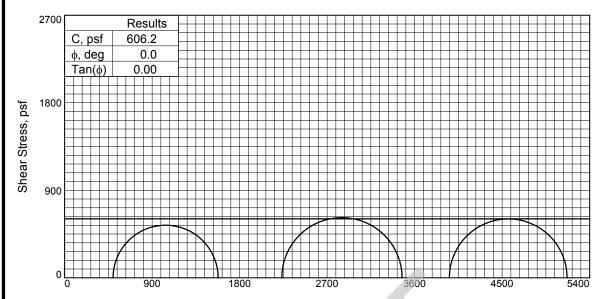
Bulge (Sample 2)

Figure _____

	Sa	mple No.	1	2	3	
		Water Content, %	41.2	45.6	34.5	
		Dry Density, pcf	81.0	77.3	91.7	
3	nitial	Saturation, %	102.8	104.3	110.9	
	Ϊ́	Void Ratio	1.0819	1.1811	0.8387	
	\ 	Diameter, in.	1.378	1.354	1.347	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	40.1	43.7	31.1	
	ţ.	Dry Density, pcf	81.0	77.3	91.7	
	At Test	Saturation, %	100.0	100.0	100.0	
2	7	Void Ratio	1.0819	1.1811	0.8387	
1	`	Diameter, in.	1.378	1.354	1.347	
		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.001	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Cell Pressure, psi Fail. Stress, psf Strain, %		5.330	17.300	29.280	
			2024.3	2315.1	4706.8	
			19.9	19.9	19.9	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	2791.8	4806.3	8923.2	
	σ_3	Failure, psf	767.5	2491.2	4216.3	

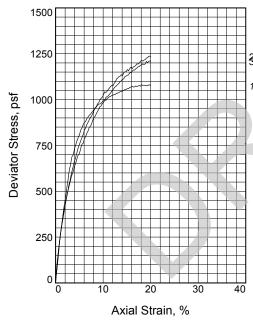

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: IS-13A Depth: 14-15

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA



Water Content, %

Dry Density, pcf

Saturation, %

Sample No.

1	Inif	Void Ratio	0.9828	0.9507	0.8878	
	\ 	Diameter, in.	1.388	1.377	1.348	
		Height, in.	2.800	2.800	2.800	
		Water Content, %	36.4	35.2	32.9	
	يب	Dry Density, pcf	85.0	86.4	89.3	
	e.	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	0.9828	0.9507	0.8878	
	_	Diameter, in.	1.388	1.377	1.348	
,		Height, in.	2.800	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.001	1.001	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	3.460	15.510	27.480	
	Fa	il. Stress, psf	1080.9	1237.3	1211.0	
	5	Strain, %	18.1	19.9	19.8	
	Ult	. Stress, psf				
	5	Strain, %				

2

36.3

86.4

103.1

1579.2 3470.7 5168.2

498.2 2233.4 3957.1

Depth: 9-10

Date Sampled:

37.4

85.0

102.8

3

37.7

89.3

114.8

Type of Test:

Unconsolidated Undrained Sample Type: Undisturbed

Description: M, Gr Lean CLAY with O

Pockets (CL4)

Assumed Specific Gravity= 2.70

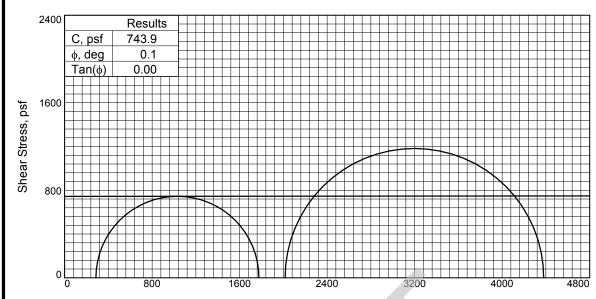
Remarks: Type Failure:

Bulge

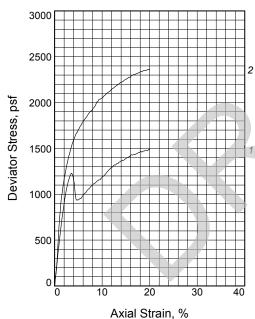
TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. **Figure** Baton Rouge, LA

σ₁ Failure, psf

σ₃ Failure, psf


Client: GeoEngineers

Proj. No.: B13-018


Project: Mid Barataria Diversion

Source of Sample: IS-13A

Type	of	Te	st:
------	----	----	-----

Unconsolidated Undrained

Sample Type: Undisturbed

Description: M to St, T and Gr Lean CLAY

with Ferrous Nodules (CL4)

Assumed Specific Gravity= 2.70

Remarks: Type Failure:

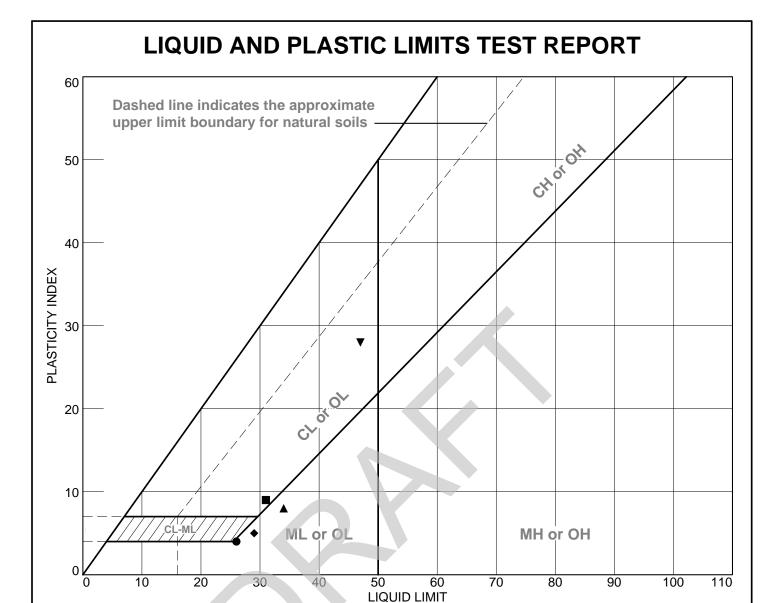
45 Degree Shear (Sample 1)

Bulge (Sample 2)

Sample Cracked while Trimming (Sample 3)

Figure ____

	Sa	mple No.	1	2	
		Water Content, %	27.9		
2	<u></u>	Dry Density, pcf Saturation, %	92.8 92.5		
-	nitial	Void Ratio	/	0.8003	
	=	Diameter, in.		1.376	
		Height, in.	2.800		
		Water Content, %	30.2	29.6	
1	+	Dry Density, pcf	92.8	93.6	
	es	Saturation, %	100.0	100.0	
	AtTest	Void Ratio	0.8155	0.8003	
		Diameter, in.	1.377	1.376	
		Height, in.	2.800	2.800	
	Str	ain rate, in./min.	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	
	Се	II Pressure, psi	1.990	14.000	
	Fa	il. Stress, psf	1489.7	2363.8	
	5	Strain, %	19.8	19.9	
	Ult	. Stress, psf			
	5	Strain, %			
	σ_1	Failure, psf	1776.3	4379.8	
	σ_3	Failure, psf	286.6	2016.0	


Client: GeoEngineers

Project: Mid Barataria Diversion

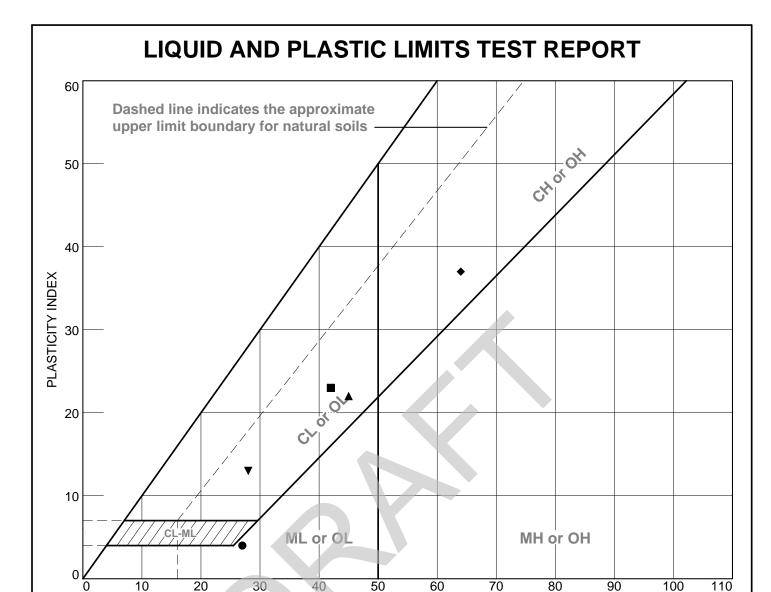
Source of Sample: IS-13A Depth: 5-6

Proj. No.: B13-018 Date Sampled:

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	IS-17A	N/A	3	26	22	26	4	ML
•	IS-17A	N/A	5.3	31	22	31	9	CL
A	IS-17A	N/A	13.3	31	26	34	8	ML
•	IS-17A	N/A	18	33	24	29	5	ML
▼	IS-17A	N/A	23	41	19	47	28	CL6

Fugro Consultants, Inc.


Client: GeoEngineers

Project: Mid Barataria Diversion

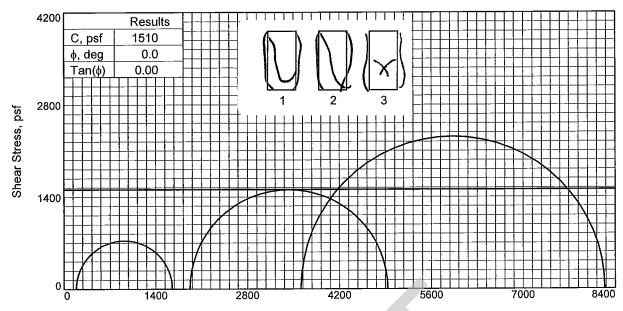
Figure

Baton Rouge, LA

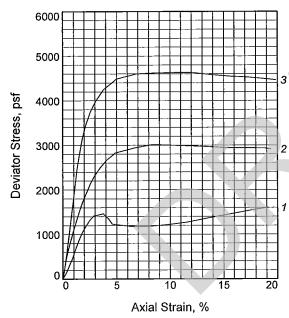
Project No.: 04.55124092

SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	IS-17A	N/A	29		23	27	4	CL
•	IS-17A	N/A	30		19	42	23	CL6
A	IS-17A	N/A	58		23	45	22	CL6
•	IS-17A	N/A	98	32.3	27	64	37	СНЗ
▼	IS-17A	N/A	100.5		15	28	13	CL

LIQUID LIMIT


Fugro Consultants, Inc.

Client: GeoEngineers


Project: Mid Barataria Diversion

Baton Rouge, LA

Project No.: 04.55124092

Normal Stress, psf

	Saı	mple No.	1	2	3	
		Water Content, %	25.3 97.0	26.5 96.0	25.8 97.9	
	O	Dry Density, pcf Saturation, %	93.6	95.5	97.9 97.6	
3	nitia	Void Ratio	0.7247	0.7427	0.7082	
		Diameter, in.	1.40	1.40	1.41	
		Height, in.	3.01	3.01	3.02	
		Water Content, %	25.3	26.5	25.8	
2	#	Dry Density, pcf	97.0	96.0	97.9	
	est	Saturation, %	93.6	95.5	97.6	
	Aŧ	Void Ratio	0.7247	0.7427	0.7082	
	7	Diameter, in.	1.40	1.40	1.41	
1		Height, in.	3.01	3.01_	3.02	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	li Pressure, psi	1.27	13.34	25.08	
	Fai	il. Stress, psf	1469	3016	4632	
	5	Strain, %	3.8	8.3	10.3	
	Ult	. Stress, psf	1181	2969	4583	
	5	Strain, %	6.3	13.6	13.8	
	σ ₁	Failure, psf	1652	4937	8243	
	σ_3	Failure, psf	183	1921	3612	

Type of Test:

Unconsolidated Undrained **Sample Type:** UNDISTURBED

Description: BR ML

LL= 26

PL= 22

PI= 4

Assumed Specific Gravity= 2.68

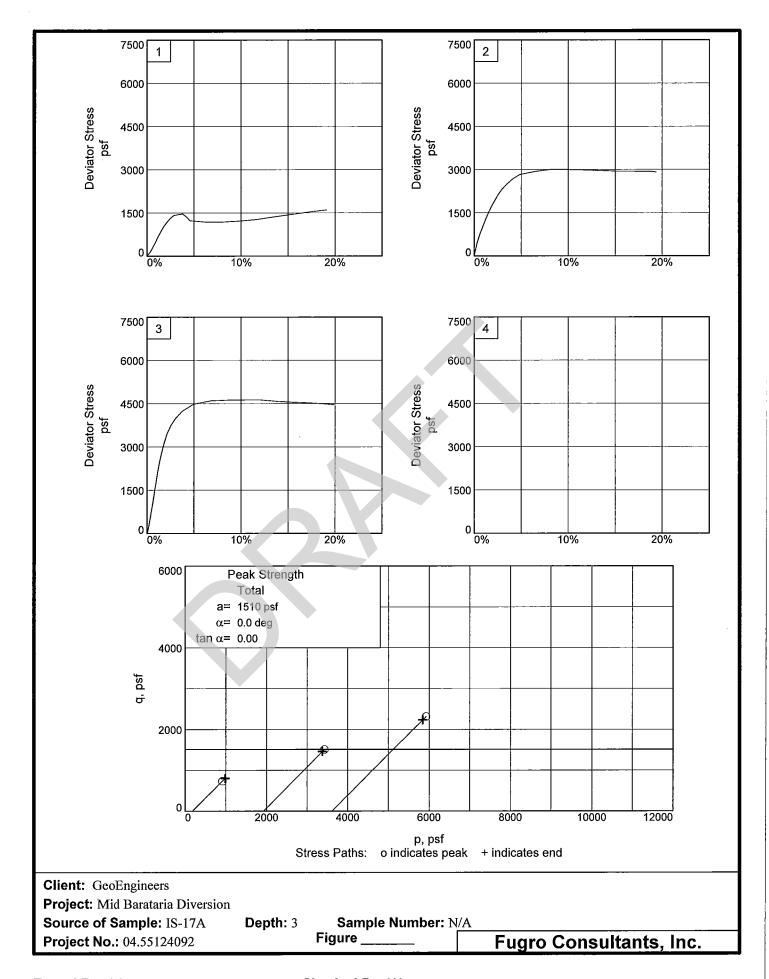
Remarks: "Confidential Information: Privileged &

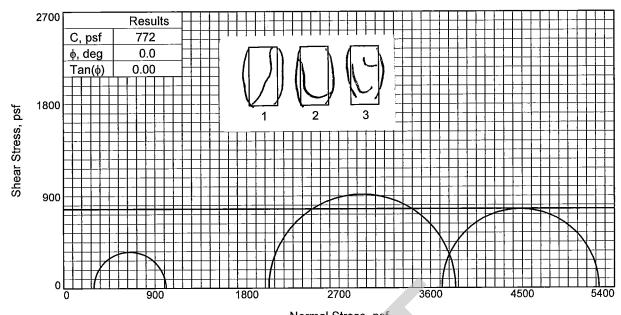
Confidential Work Product"

Client: GeoEngineers

Project: Mid Barataria Diversion

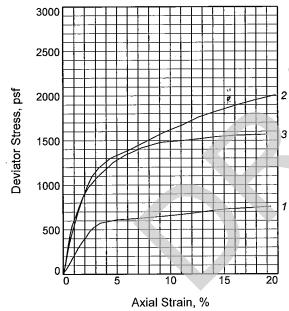
Source of Sample: IS-17A Depth: 3


Sample Number: N/A


Proj. No.: 04.55124092


Date Sampled:

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA


Figure ____

Sample No.

		•				
2	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	30.5 91.2 98.1 0.8336 1.40 3.00	28.5 94.6 99.5 0.7688 1.40 3.01	32.6 88.1 96.9 0.9000 1.39 2.99	
3	At⊤est	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	30.5 91.2 98.1 0.8336 1.40 3.00	28.5 94.6 99.5 0.7688 1.39 3.01	32.6 88.1 96.9 0.9000 1.39 2.99	
•	Strain rate, in./min. Back Pressure, psi Cell Pressure, psi Fail. Stress, psf Strain, % Ult. Stress, psf Strain, % σ ₁ Failure, psf σ ₃ Failure, psf		1.00 0.00 2.06 710 13.8	1.00 0.00 13.98 1831 14.4	1.00 0.00 25.76 1542 14.3	
			710 13.8 1007 297	1831 14.4 3844 2013	1542 14.3 5252 3709	

1

2

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M BR CL

LL= 31

PL= 22

PI= 9

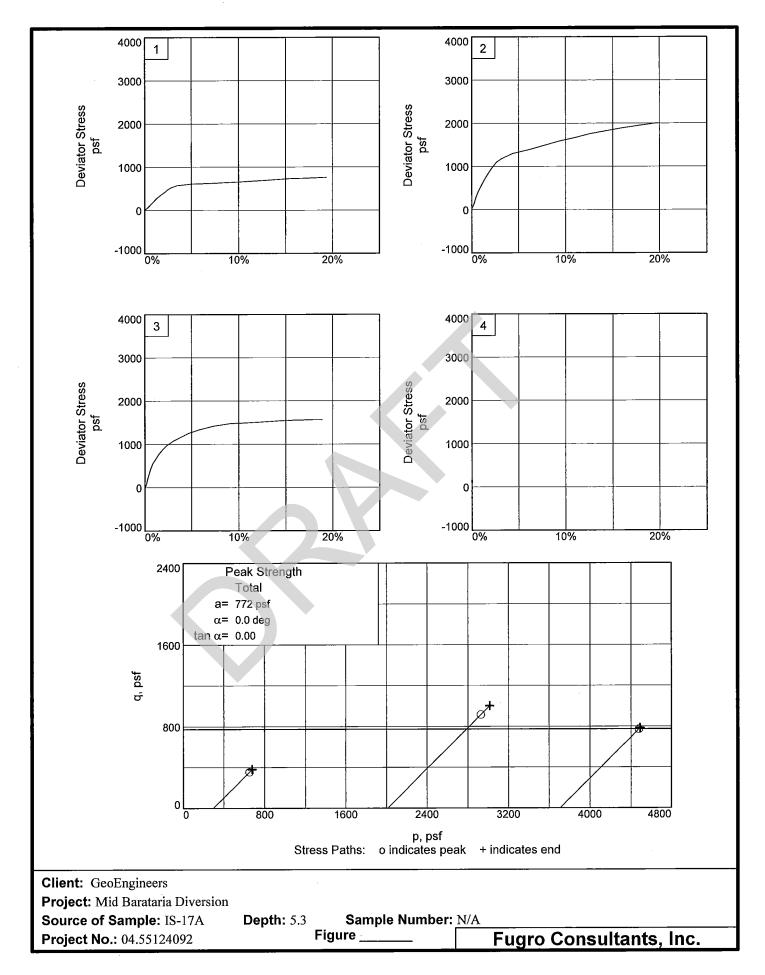
Assumed Specific Gravity= 2.68

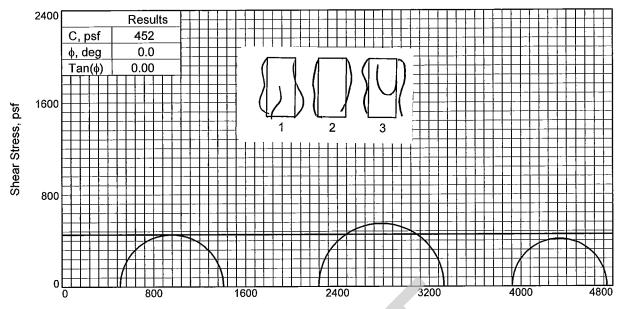
Remarks: "Confidential Information: Privileged &

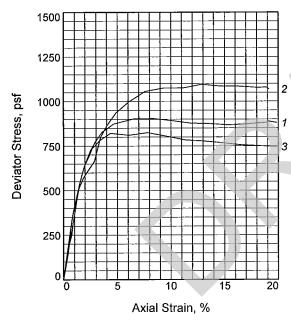
Confidential Work Product"

Project: Mid Barataria Diversion

Depth: 5.3 **Source of Sample: IS-17A**


Sample Number: N/A


Client: GeoEngineers


Proj. No.: 04.55124092

Date Sampled: 8/2/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

	Sai	mple No.	1	2	3	
	Initial	Water Content, % Dry Density, pcf Saturation, %	48.7 70.2 93.7	52.1 68.2 95.7	52.8 66.2 92.3	
2	Ë	Void Ratio	1.4027 1.40	1.4715 1.39	1.5454 1.40	
,		Diameter, in. Height, in.	3.02	3.01	3.01	
'		Water Content, %	48.7	52.1	52.8	
3	St.	Dry Density, pcf	70.2	68.2	66.2	
	Test	Saturation, %	93.7	95.7	92.3	
	¥	Void Ratio	1.4027	1.4715	1.5454	
	1	Diameter, in.	1.40		1.40	
		Height, in.	3.02	3.01	3.01	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	II Pressure, psi	3.50	15.52	27.24	
	Fai	l. Stress, psf	904	1095	825	
	5	Strain, %	8.3	12.8	7.8	
	Ult.	. Stress, psf	875	1085	768	
	5	Strain, %	13.6	14.6	14.8	
	σ_1	Failure, psf	1408	3330	4748	
	σ_3	Failure, psf	504	2235	3923	

Type of Test:

Unconsolidated Undrained **Sample Type:** UNDISTURBED

Description: SO DGR CH3 W/O, ARS ML, WD

Assumed Specific Gravity= 2.70

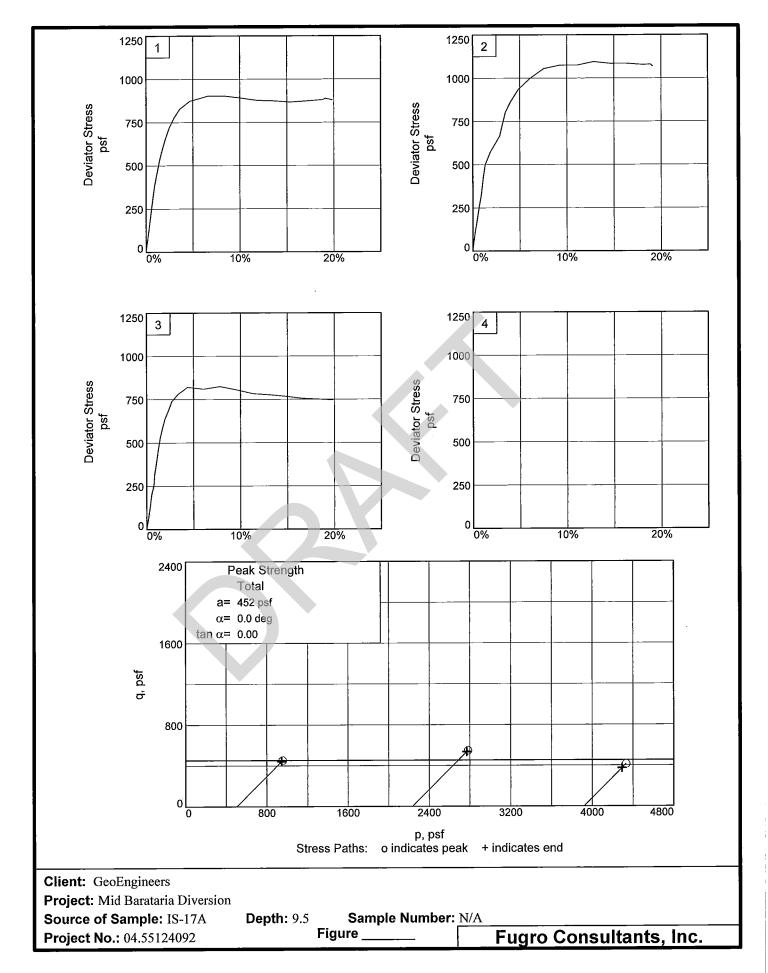
Remarks: "Confidential Information: Privileged &

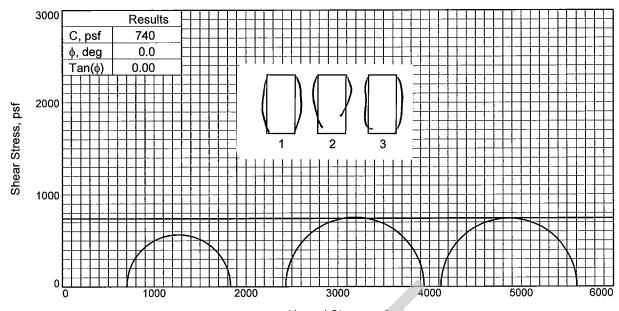
Confidential Work Product"

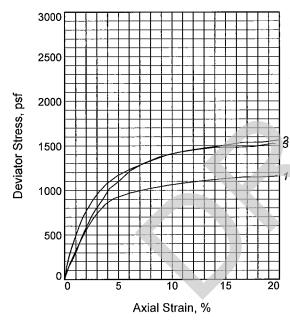
Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: IS-17A Depth: 9.5


Sample Number: N/A


Proj. No.: 04.55124092


Date Sampled: 8/2/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Water Content, % Dry Density, pcf 33.4 30.2 30.5 Saturation, % Void Ratio Diameter, in. Height, in. 0.9037 0.8321 0.8022		Sai	mple No.	1	2	3	
Dry Density, pcf Saturation, % 98.9 97.4 101.7 Void Ratio Diameter, in. 1.39 1.40 1.39 Height, in. 3.01 3.01 3.00 Water Content, % 33.4 30.2 30.5 Dry Density, pcf 87.9 91.3 92.8 Saturation, % 98.9 97.4 101.7 Void Ratio Diameter, in. 1.39 1.40 1.39 Height, in. 3.01 3.01 3.00 Strain rate, in./min. 1.00 1.00 1.00 Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 O₁ Failure, psf 1831 3940 5605 Saturation, % 98.9 97.4 101.7 O₁ Failure, psf 1831 3940 5605 Strain strain, % 14.8 14.9 14.1 O₁ Failure, psf 1831 3940 5605 Saturation, % 30.2 30.5 Saturation, % 30.2 30.5 Saturation, % 30.1 3.01 Strain, % 14.8 14.9 14.1 O₁ Failure, psf 1831 3940 5605 Saturation, % 30.2 30.5 Saturation, % 30.1 3.00 Strain strain, % 30.2 30.5 Saturation, % 30.2 30.5 Saturation, % 30.1 3.01 Saturation, % 30.2 30.5 Saturation, % 30.2 30.5 Saturation, % 30.1 3.01 Saturation, % 30.1 3.01 Saturation, % 30.1 3.01 Saturation, % 30.1 3.01 Saturation, % 30.1 Saturation, %			Water Content, %	33.4	30.2	30.5	
Diameter, in. 1.39 1.40 1.39				87.9	91.3	92.8	
Diameter, in. 1.39 1.40 1.39		ia	Saturation, %	98.9	97.4	101.7	
Height, in. 3.01 3.01 3.00	V	三	Void Ratio	0.9037	0.8321	0.8022	
Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Strain rate, in./min. Back Pressure, psi Cell Pressure, psi Strain, % 14.8 Strain, % Ult. Stress, psf Strain, % 14.8 Strain, % 14.8 14.9 14.1 Ult. Stress, psf Strain, % 14.8 14.8 14.9 14.1 □ 1831 3940 5605			Diameter, in.	1.39	1.40	1.39	
B To by Density, pcf 87.9 91.3 92.8 Saturation, % 98.9 97.4 101.7 Void Ratio 0.9037 0.8321 0.8022 Diameter, in. 1.39 1.40 1.39 Height, in. 3.01 3.01 3.00 Strain rate, in./min. 1.00 1.00 1.00 Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ₁ Failure, psf 1831 3940 5605			Height, in.	3.01	3.01	3.00	
Saturation, % 98.9 97.4 101.7 Void Ratio 0.9037 0.8321 0.8022 Diameter, in. 1.39 1.40 1.39 Height, in. 3.01 3.01 3.00 Strain rate, in./min. 1.00 1.00 1.00 Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ₁ Failure, psf 1831 3940 5605	,		Water Content, %	33.4	30.2	30.5	
Void Ratio 0.9037 0.8321 0.8022 Diameter, in. 1.39 1.40 1.39 Height, in. 3.01 3.01 3.00 Strain rate, in./min. 1.00 1.00 1.00 Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ₁ Failure, psf 1831 3940 5605	3	; ;	Dry Density, pcf	87.9	91.3	92.8	
Void Ratio 0.9037 0.8321 0.8022 Diameter, in. 1.39 1.40 1.39 Height, in. 3.01 3.01 3.00 Strain rate, in./min. 1.00 1.00 1.00 Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ₁ Failure, psf 1831 3940 5605		ĕ	Saturation, %		97.4	101.7	
Diameter, in. 1.39 1.40 1.39	1		Void Ratio	0.9037	0.8321		
Strain rate, in./min. 1.00 1.00 1.00 Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ ₁ Failure, psf 1831 3940 5605		1	Diameter, in.		1.40		
Back Pressure, psi 0.00 0.00 0.00 Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ ₁ Failure, psf 1831 3940 5605			Height, in.	3.01	3.01	3.00	
Cell Pressure, psi 4.86 16.90 28.62 Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ ₁ Failure, psf 1831 3940 5605		Str	ain rate, in./min.	1.00	1.00	1.00	
Fail. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ ₁ Failure, psf 1831 3940 5605		Ba	ck Pressure, psi	0.00	0.00	0.00	
Strain, % 14.8 14.9 14.1 Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ ₁ Failure, psf 1831 3940 5605		Се	ll Pressure, psi	4.86	16.90	28.62	
Ult. Stress, psf 1132 1506 1484 Strain, % 14.8 14.9 14.1 σ₁ Failure, psf 1831 3940 5605		Fai	I. Stress, psf	1132	1506	1484	
Strain, % 14.8 14.9 14.1 σ_1 Failure, psf 1831 3940 5605		8	Strain, %	14.8	14.9	14.1	
σ ₁ Failure, psf 1831 3940 5605		Ult.	. Stress, psf	1132	1506	1484	
		5	Strain, %	14.8	14.9	14.1	
σ ₃ Failure, psf 700 2434 4121	_	σ ₁	Failure, psf	1831	3940	5605	
		σ_3	Failure, psf	700	2434	4121	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: GR ML

LL= 34

PL= 26

PI= 8

Assumed Specific Gravity= 2.68

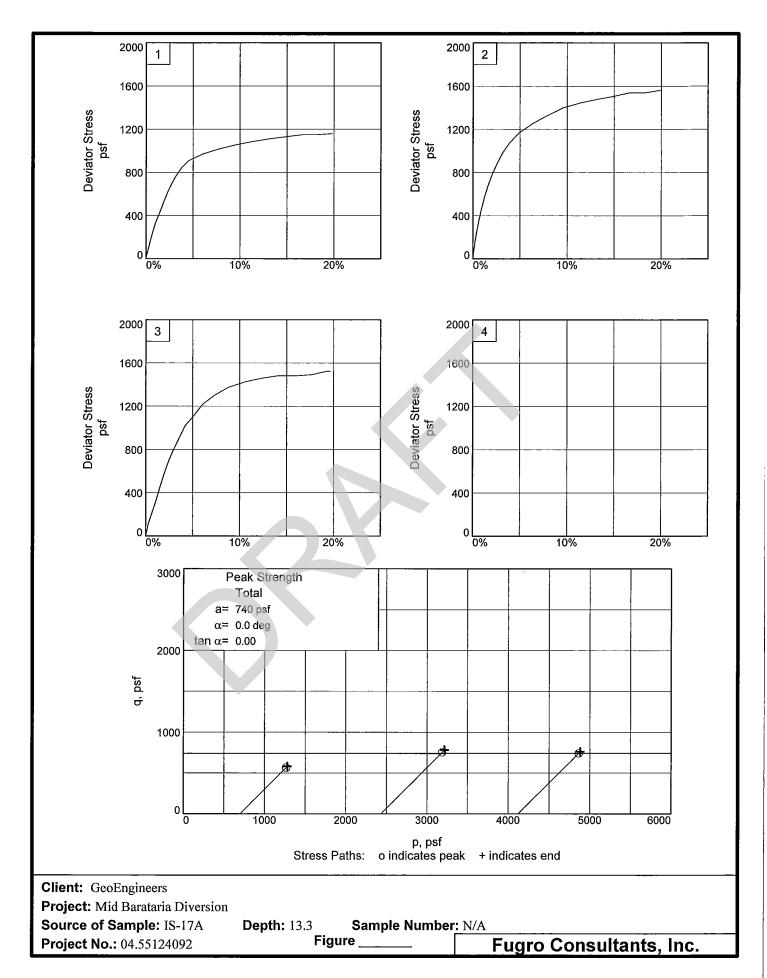
Remarks: "Confidential Information: Privileged &

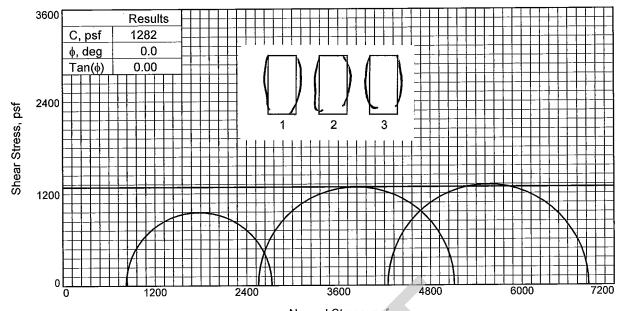
Confidential Work Product"

Client: GeoEngineers

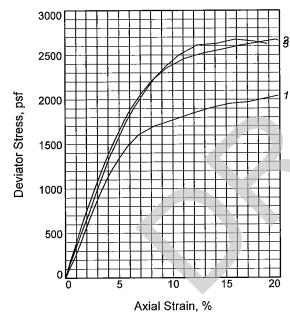
Project: Mid Barataria Diversion

Source of Sample: IS-17A


Depth: 13.3


Sample Number: N/A

Proj. No.: 04.55124092


Date Sampled: 8/2/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psf

Type of Test:	
Unconsolidated Un	ndrained

Sample Type: UNDISTURBED

Description: GR ML W/ ARS CH

Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

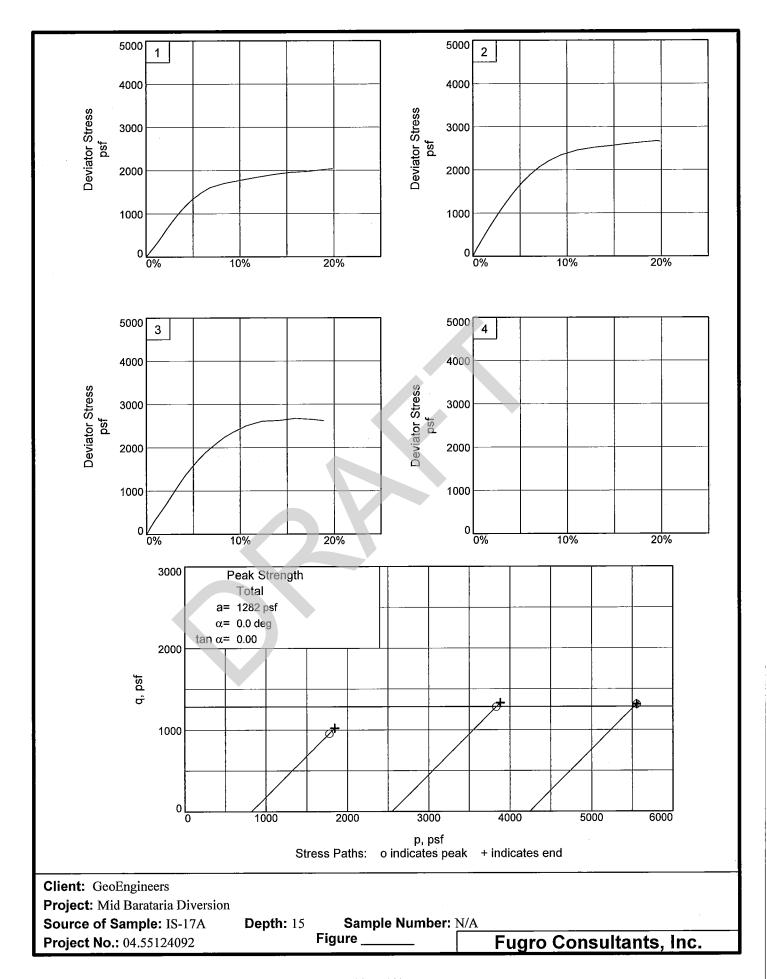
Confidential Work Product"

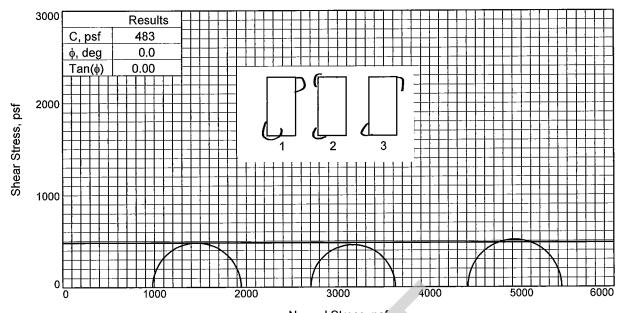
	Sai	mple No.	1	2	3	
3		Water Content, %	 27.7	27.8	26.9	
		Dry Density, pcf	96.2	96.6	99.5	
	ia	Saturation, %	100.5	101.7	105.8	
1	Initial	Void Ratio	0.7395	0.7328	0.6820	
1		Diameter, in.	1.39	1.38	1.39	
		Height, in.	3.03	3.03	3.02	
		Water Content, %	27.7	27.8	26.9	
	يد	Dry Density, pcf	96.2	96.6	99.5	
	Test	Saturation, %	100.5	101.7	105.8	
	¥	Void Ratio	0.7395	0.7328	0.6820	
	4	Diameter, in.	1.39	1.38	1.39	
		Height, in.	3.03	3.03	3.02	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ва	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	5.70	17.72	29.46	
	Fai	il. Stress, psf	1910	2562	2627	
		Strain, %	13.6	14.6	14.1	
	Ult	. Stress, psf	1910	2562	2627	
		Strain, %	13.6	14.6	14.1	
_	σ_1	Failure, psf	2731	5114	6869	
	σ_3	Failure, psf	821	2552	4242	

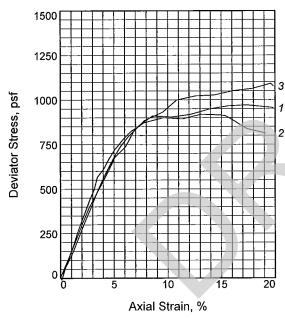
Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: IS-17A Depth: 15


Sample Number: N/A


Proj. No.: 04.55124092


Date Sampled: 8/2/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

	Sai	mple No.		1	2	3	
		Water Content, %		33.3 89.5	33.4 89.8	32.7 88.2	
	<u>la</u>	Dry Density, pcf Saturation, %		102.6	103.7	97.8	
3 1	Initia	Void Ratio		0.8690	0.8633	0.8969	
		Diameter, in.		1.40	1.38	1.40	
1		Height, in.		2.93	2.96	2.92	
2		Water Content, %		33.3	33.4	32.7	
i	*	Dry Density, pcf		89.5	89.8	88.2	
	Test	Saturation, %		102.6	103.7	97.8	
	At	Void Ratio		0.8690	0.8633	0.8969	
	4	Diameter, in.		1.40	1.38	1.40	
		Height, in.		2.93	2.96	2.92	
	Str	ain rate, in./min.	_	1.00	1.00	1.00	
	Ва	ck Pressure, psi		0.00	0.00	0.00	
	Се	II Pressure, psi		6.79	18.77	30.63	
	Fai	I. Stress, psf		966	919	1027	
	5	Strain, %		15.6	13.1	14.3	
	Ult	. Stress, psf		966	916	1027	
		Strain, %		15.6	14.8	14.3	
	σ_1	Failure, psf		1944	3622	5438	
	σ_3	Failure, psf		978	2703	4411	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: DGR ML

LL= 29

PL= 24

PI= 5

Assumed Specific Gravity= 2.68

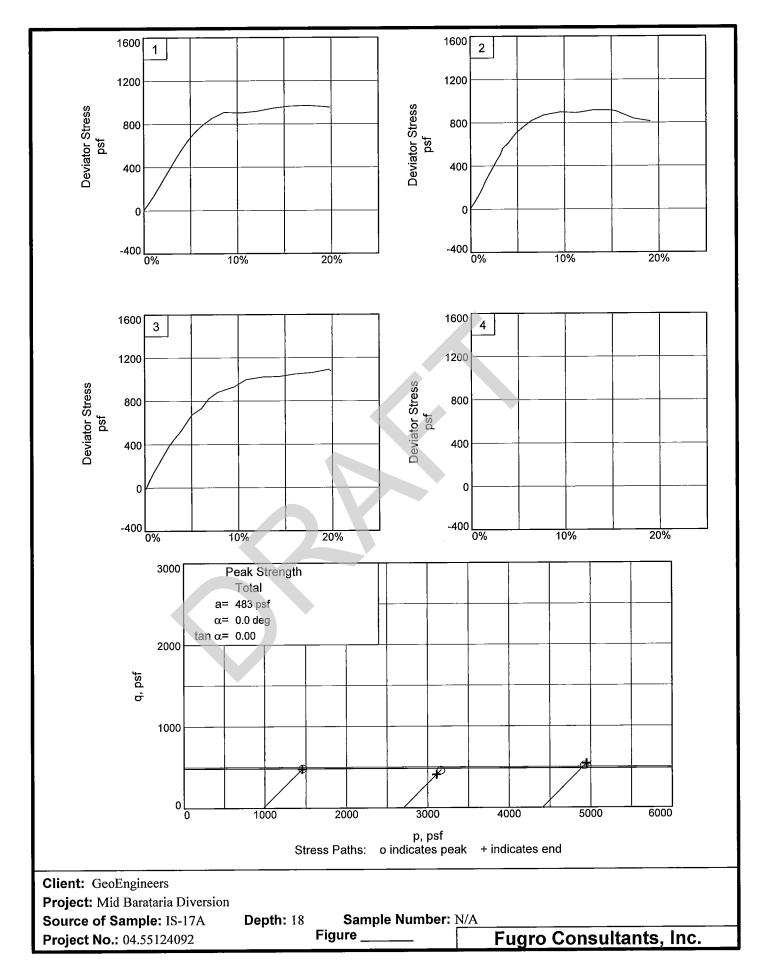
Remarks: "Confidential Information: Privileged &

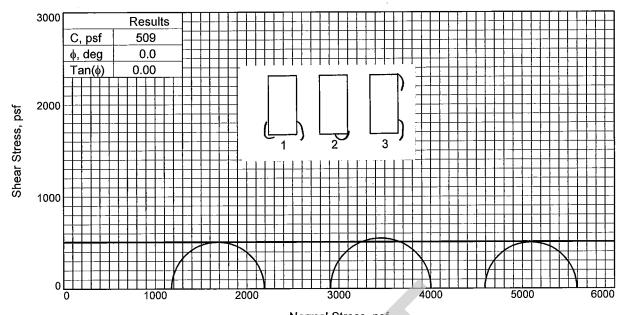
Confidential Work Product"

Source of Sample: IS-17A

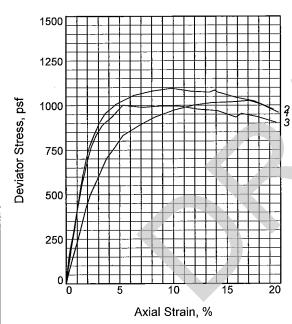
Project: Mid Barataria Diversion

Depth: 18


Sample Number: N/A


Client: GeoEngineers

Proj. No.: 04.55124092


Date Sampled: 8/5/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psf

Туре	of	Test:
------	----	-------

Unconsolidated Undrained
Sample Type: UNDISTURBED

Description: DGR ML

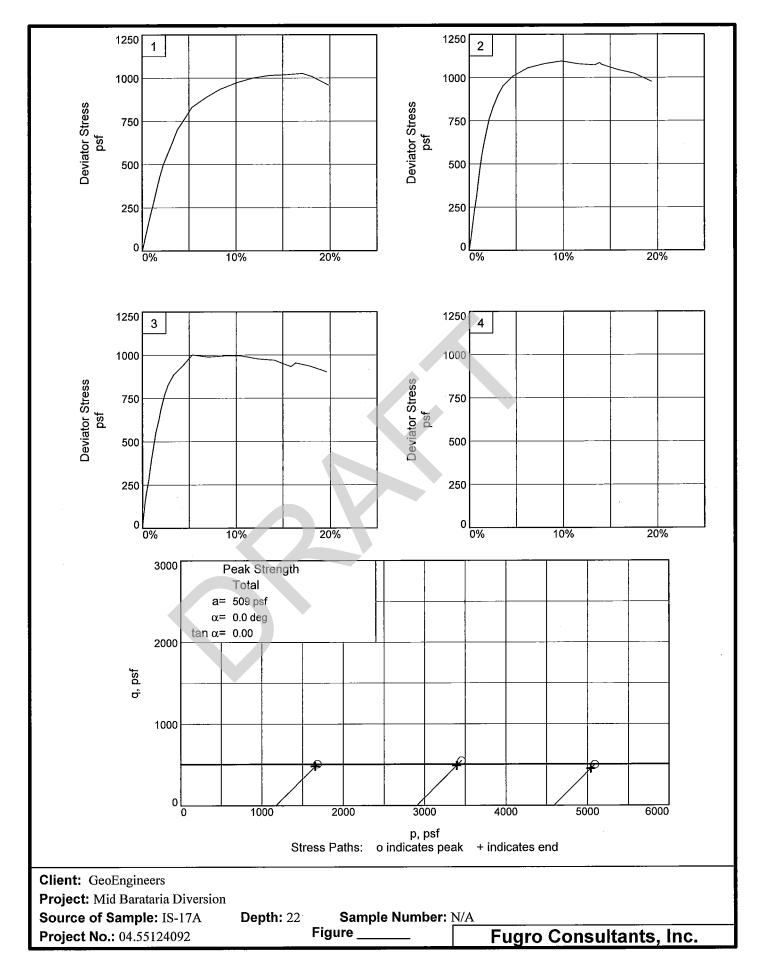
Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

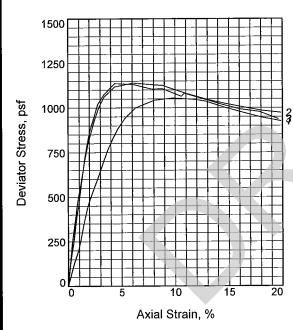
Confidential Work Product"

	Sai	mple No.	1	2	3	
		Water Content, %	35.3	36.5	38.9	
		Dry Density, pcf	85.2	86.1	84.0	
	ia	Saturation, %	98.3	103.7	105.2	
1	Initia	Void Ratio	0.9630	0.9439	0.9920	
		Diameter, in.	1.40	1.40	1.40	
}		Height, in.	2.97	3.00.	2.99	
		Water Content, %	35.3	36.5	38.9	
	#	Dry Density, pcf	85.2	86.1	84.0	
	Test	Saturation, %	98.3	103.7	105.2	
4	At	Void Ratio	0.9630	0.9439	0.9920	
	⋖	Diameter, in.	1.40	1.40	1.40	
		Height, in.	2.97	3.00	2.99	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	8.16	20.18	31.88	
	Fai	I. Stress, psf	1016	1096	1002	
	5	Strain, %	13.6	9.8	5.3	
	Ult	. Stress, psf	1016	1076	971	
		Strain, %	13.6	14.1	14.1	
	σ1	Failure, psf	2191	4002	5593	
	σ_3	Failure, psf	1175	2906	4591	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: IS-17A Depth: 22


Sample Number: N/A

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

	Sar	mple No.	1	2	3	
		Water Content, %	40.8	41.2	41.7	
		Dry Density, pcf	81.3	80.9	78.5	
	nitial	Saturation, %	103.4	103.4	98.8	
V	Ξ'	Void Ratio	1.0568	1.0677	1.1316	
,		Diameter, in.	1.40	1.40	1.42	
3		Height, in.	 3.00	3.00	3.03	
		Water Content, %	40.8	41.2	41.7	
	ي.	Dry Density, pcf	81.3	80.9	78.5	
	est	Saturation, %	103.4	103.4	98.8	
	At	Void Ratio	1.0568	1.0677	1.1316	
	۹.	Diameter, in.	1.40	1.40	1.42	
		Height, in.	3.00	3.00	3,03	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ва	ck Pressure, psi	0.00	0.00	0.00	
	Се	II Pressure, psi	8.57	20.58	32.62	
	Fai	l. Stress, psf	1055	1140	1137	
	5	Strain, %	9.8	6.1	4.4	
	Ult	. Stress, psf	1003	1025	1020	
		Strain, %	14.6	14.6	14.3	
	σ_1	Failure, psf	2289	4103	5834	
	σ_3	Failure, psf	 1234	2964	4697	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M DGR CL6

LL= 47

PL= 19

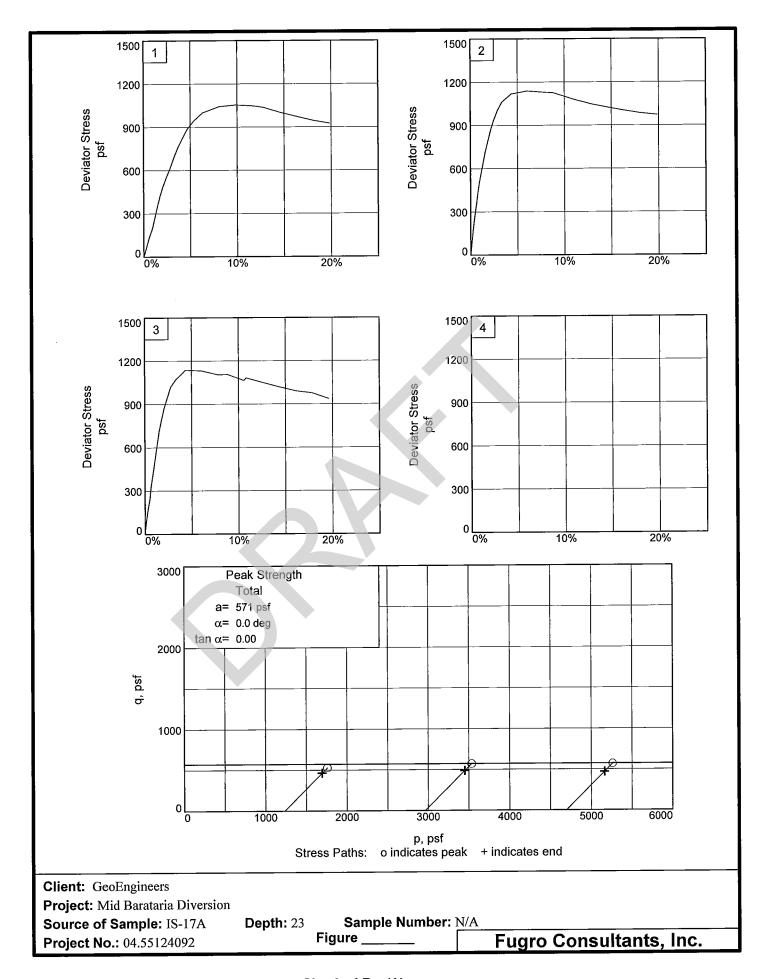
PI= 28

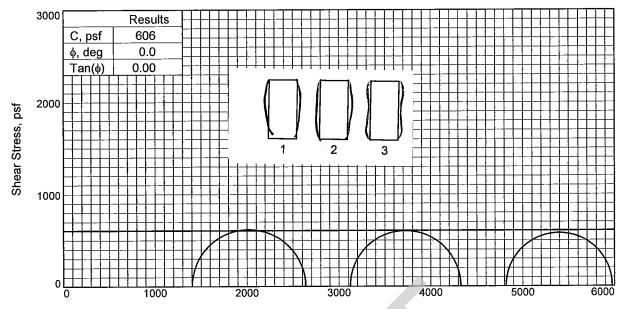
Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers

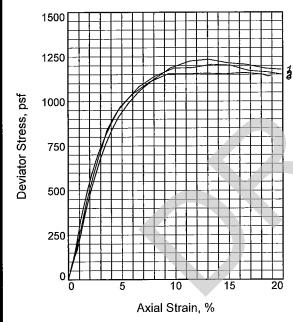

Project: Mid Barataria Diversion


Source of Sample: IS-17A Depth: 23

Sample Number: N/A

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _



Normal Stress, psf

Water Content. %

Sample No.

		Water Comment, 70	21.2	5 1.5	55.0	
		Dry Density, pcf	86.4	85.5	86.9	
5	Initial	Saturation, %	98.0	96.6	101.4	
1	三	Void Ratio	0.9362	0.9571	0.9245	
		Diameter, in.	1.41	1.41	1.41	
		Height, in.	3.03	3.02	3.01	
		Water Content, %	34.2	34.5	35.0	
	ید ا	Dry Density, pcf	86.4	85.5	86.9	
	est	Saturation, %	98.0	96.6	101.4	
	1 4	Void Ratio	0.9362	0.9571	0.9245	
	٩	Diameter, in.	1.41	1.41	1.41	
		Height, in.	3.03	3.02	3.01	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ва	ck Pressure, psi	0.00	0.00	0.00	
	Се	II Pressure, psi	9.73	21.67	33.45	
	Fai	I. Stress, psf	1236	1207	1158	
	1	Strain, %	13.1	13.4	12.9	
	Ult	. Stress, psf	1216	1207	1154	
	{	Strain, %	14.8	13.4	14.6	
	σ_1	Failure, psf	2637	4327	5975	
	σ_3	Failure, psf	1401	3120	4817	

34.2

34.5

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Page visition: M. D.C.R. C.L.C.

Description: M DGR CL6

Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

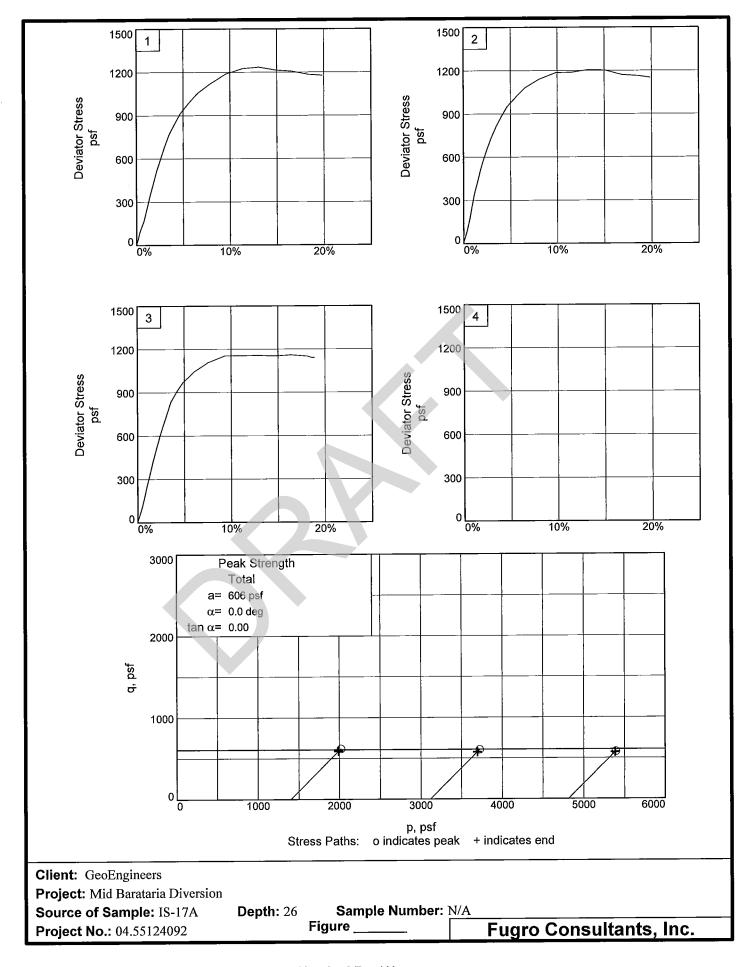
Client: GeoEngineers

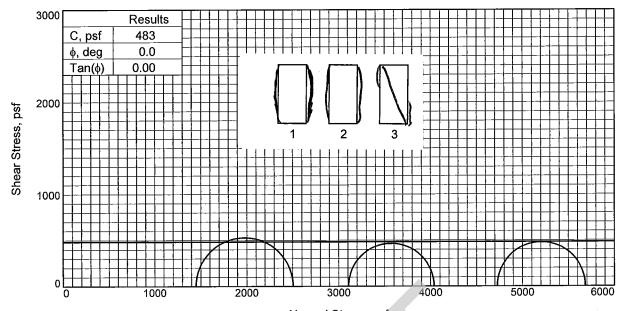
Project: Mid Barataria Diversion

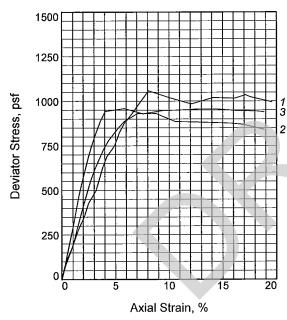
Source of Sample: IS-17A Depth: 26

Sample Number: N/A

Proj. No.: 04.55124092


Date Sampled: 8/5/13


3


35.0

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

	Saı	mple No.	1	2	3	
		Water Content, %	37.2 84.9	40.6 81.6	39.1 83.3	
	<u></u>	Dry Density, pcf Saturation, %	102.6	103.7	103.9	
1	Initial	Void Ratio	0.9702	1.0494	1.0093	
1	Ī	Diameter, in.	1.43	1.43	1.43	
3		Height, in.	2.76	2.89	2.87	
2		Water Content, %	37.2	40.6	39.1	
	ĭ	Dry Density, pcf	84.9	81.6	83.3	
	Test	Saturation, %	102.6	103.7	103.9	
	At-	Void Ratio	0.9702	1.0494	1.0093	
	1	Diameter, in.	1.43	1.43	1.43	
		Height, in.	 2.76	2.89	2.87	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	ll Pressure, psi	10.05	21.57	32.82	
	Fai	I. Stress, psf	1058	931	959	
	5	Strain, %	8.1	7.1	5.8	
	Ult	. Stress, psf	1020	880	955	
	5	Strain, %	14.1	14.1	14.6	
	σ_1	Failure, psf	2506	4037	5685	
	σ_3	Failure, psf	 1447	3106	4726	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: SO GR CL6**

LL= 42

PL= 19

PI= 23

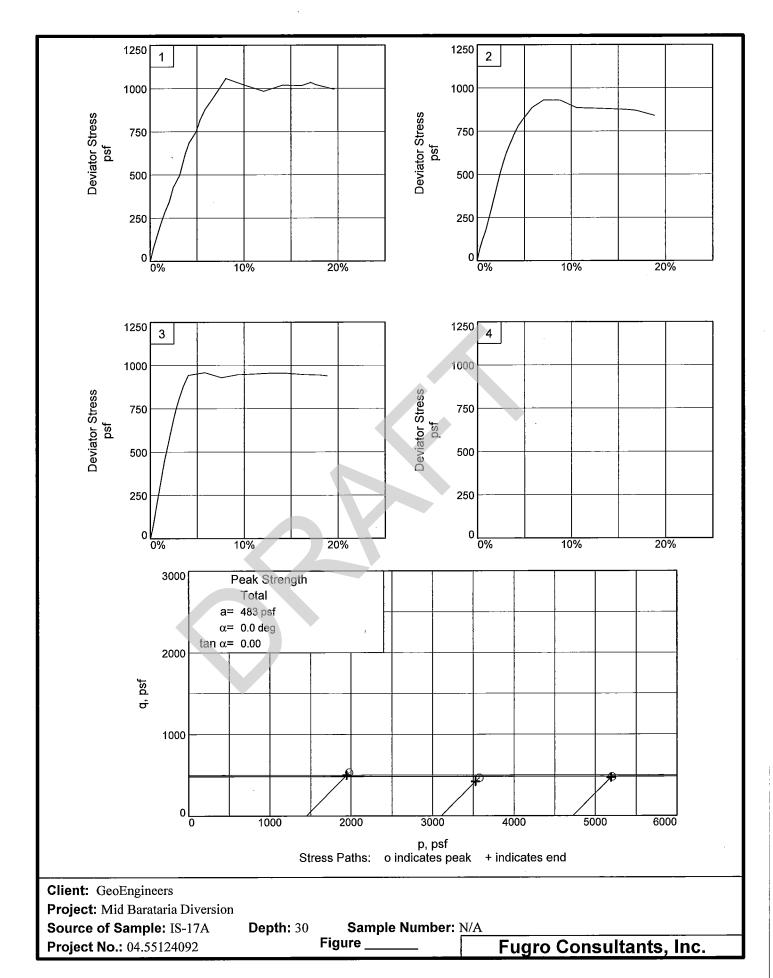
Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

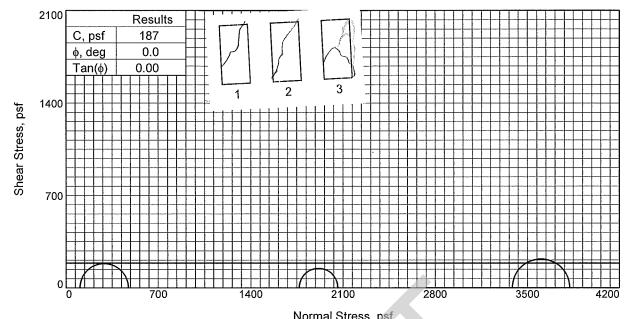
Client: GeoEngineers

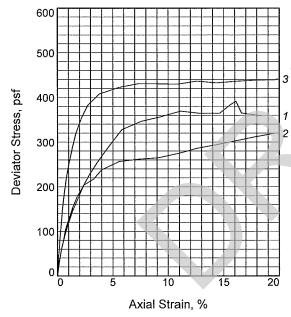
Project: Mid Barataria Diversion


Source of Sample: IS-17A Depth: 30

Sample Number: N/A

Proj. No.: 04.55124092


Date Sampled: 8/8/13


TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Tested By: JSA

:	Particle Size Distribution Report																																											
				6 in.		ვ ⊒.	. <u>:</u>	1½ in.	. <u>c</u>	. i	<u>.</u>	% in.	% in.		#4			#10			#20	130	4	5	C S	09#	4	3	#140	#200														
	100				\prod	Ť	Ï	Ì	Ì	1		Ť 			T			1			Ī	Ť	T						<u> </u>	Ï														
	90			1	+		+	+		1		<u> </u> 	11		+	-		+					+				 	<u> </u> 	1											+				
	80											1															 	 	1															_
	70							+							-												 	 								·								
INER	60			 				1				 															 	 																-
PERCENT FINER	50			 								 																 																
PER	40 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																											
	30											<u> </u> 						1																						+				-
	20			<u> </u> 				-	li li			<u>i</u> 											-					<u> </u> 																
	10											-																 																
	01			1	00					-	8	1	0			_				1				<u> </u>		<u> </u>]	(0.1	.111		1. 1				0.	01	i	1 1	!_			0.0	01
l۲		% -	+3"							Gr	ave	$\overline{}$			Ţ				RA		%	Sa			<u>ım</u>											%	F	ine	es					
0							C	oar	se		-	Fi	ine	à		Coa	ars	е	N	lec	liu	m				F	ine	=		+		-		S	ilt		28	3.1				Cla	ay	
																		-									********										98	3.9	Т					
X	Coll	oids		LL		!	PL	_			D ₈	5			Ď	60				D ₅	0				D;	30				D	15)		ı	D ₁ ()			C	; _c			C	ı
																												+																
											Ma	tei	ria	I C	es	cr	ipt	ioi	n																ι	JSC		;			AΑ	Sŀ	ITO)
	GR SC GR CH			LS 																																SC CH								
н	Project No. 04.55124092 Client: GeoEngineers Remarks: Project: Mid Barrataria Diversion □ "Confidential Information:																																											
li .	Sourc									D	ер	th	: 1	14	.0			Sa	ımı	ole	N	ur	nb	er	: 1	٧A							11										ı. I W	ork
	Sourc	e of	Sam	ple	: N	L-3	3A			D	ер	th	: 1	16	.0			Sa	ımı	ole	N	ur	nb	er	: I	NΑ								Pro	odu	ct"								
Da	te: c)						<u> </u>				_						_																										
								F	·uç	gre	o (J0	ns	su	Ita	ıni	ts,	ir	ıc.																									
		Baton Rouge, LA]					Fig	gu	re																												

	Sai	mple No.	1	2	3	
3	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in.	100.3 44.0 97.2 2.6609 1.43	99.4 44.5 97.9 2.6202 1.45	97.7 2.7670	
1		Height, in.	2.92	3.02	3.02	
2	Test	Water Content, % Dry Density, pcf Saturation, %	100.3 44.0 97.2	99.4 44.5 97.9	42.8 97.7	
	At	Void Ratio Diameter, in. Height, in.	2.6609 1.43 2.92	2.6202 1.45 3.02	2.7670 1.43 3.02	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	Il Pressure, psi	0.72	12.27	23.50	
	Fai	I. Stress, psf	369	294	437	
	5	Strain, %	11.1	14.3	12.6	
	Ult.	. Stress, psf	364	294	433	
	S	Strain, %	14.6	14.3	14.3	
	σ_1	Failure, psf	473	2061	3821	
	σ_3	Failure, psf	104	1767	3384	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description:** VSO DGR CHOA

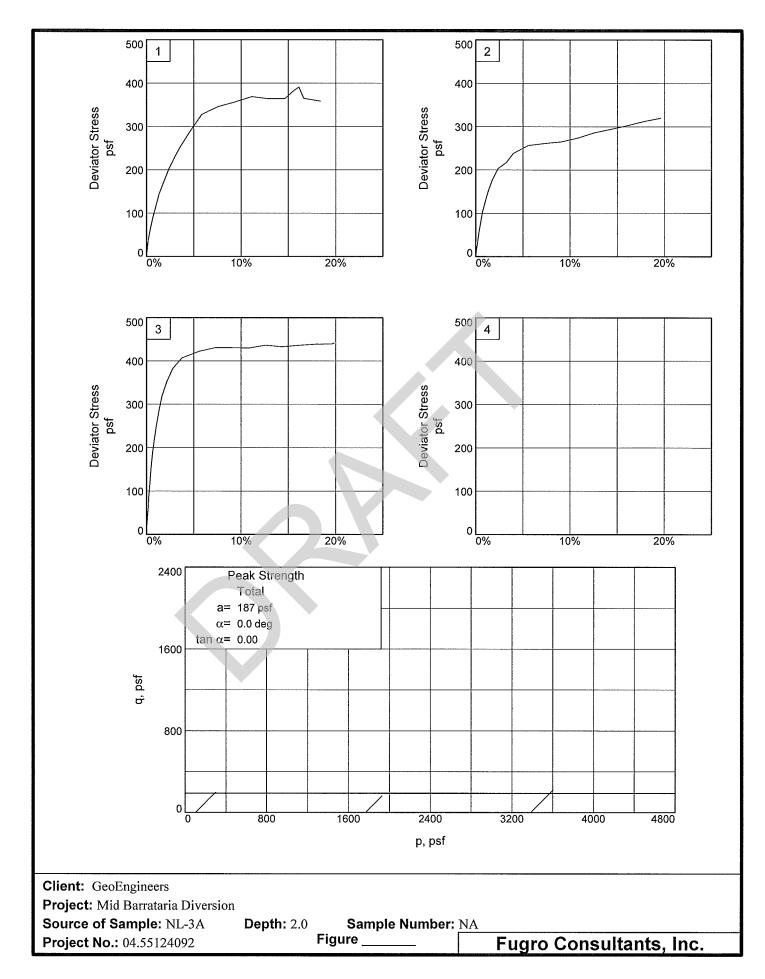
LL= 141 **PL=** 40 **PI=** 101

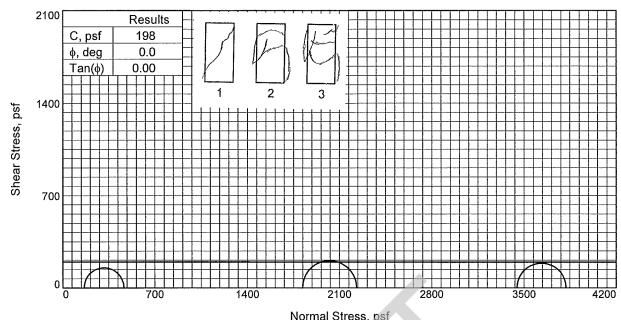
Assumed Specific Gravity= 2.58

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers

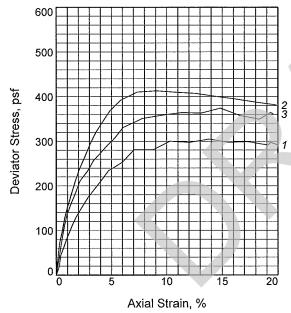

Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 2.0

Sample Number: NA

Date Sampled: 6/10/13 **Proj. No.:** 04.55124092

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA



Sample No.

Normal Stress, psf

Water Content, %

		vvator Contont, 70	133.0	147.7	1201.7	
		Dry Density, pcf	36.0	36.2	37.9	
1	nitial	Saturation, %	101.7	98.5	103.1	
	, E	Void Ratio	3.2660	3.2439	3.0513	
		Diameter, in.	1.42	1.44	1.43	
2		Height, in.	3.00	3.02	2.90	
		Water Content, %	135.0	129.9	127.9	
1	,;	Dry Density, pcf	36.0	36.2	37.9	
	Test	Saturation, %	101.7	98.5	103.1	
	At	Void Ratio	3.2660	3.2439	3.0513	
	⋖.	Diameter, in.	1.42	1.44	1.43	
		Height, in.	3.00	3.02	2.90	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	1.12	12.62	23.93	
	Fail. Stress, psf Strain, %		305	413	374	
			13.8	9.1	14.8	
	Ult	. Stress, psf	305	401	374	
	5	Strain, %	13.8	14.3	14.8	
_	σ_1	Failure, psf	466	2230	3820	
	σ_3	Failure, psf	161	1817	3446	

2

129.9

3

127.9

1

135.0

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description:** VSO DGR CHOB

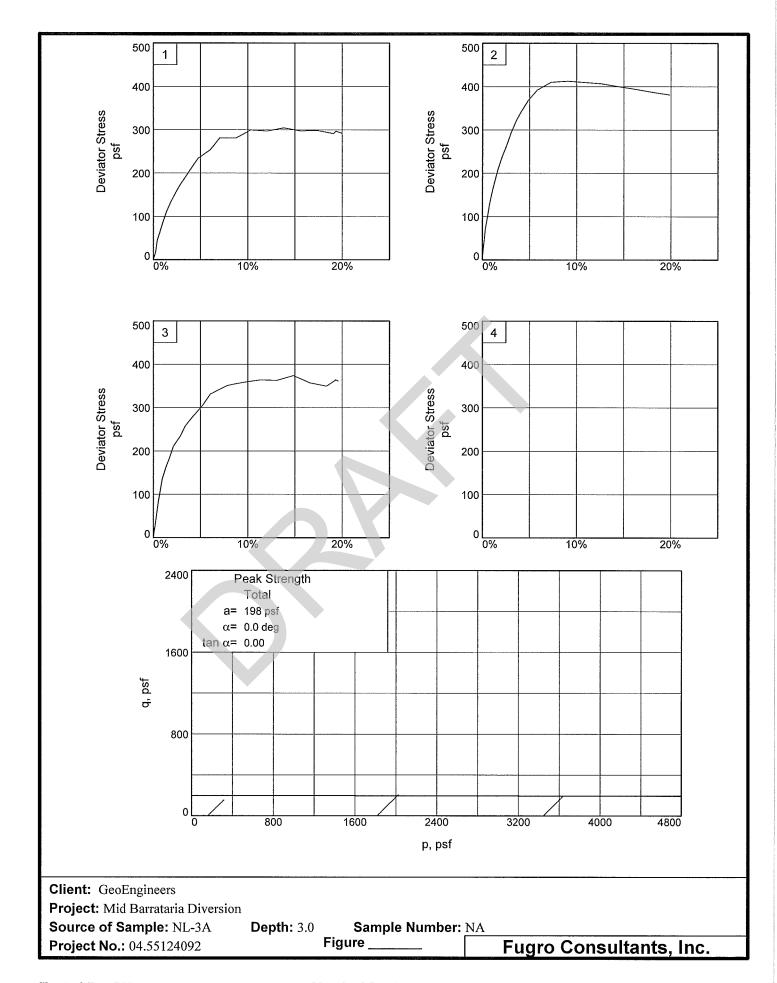
LL= 160 **PL=** 45 **PI=** 115

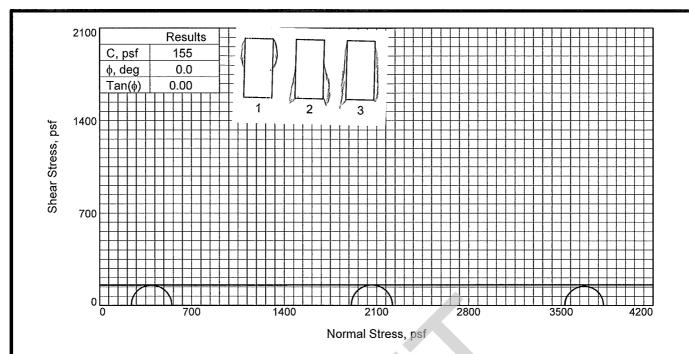
Assumed Specific Gravity= 2.46

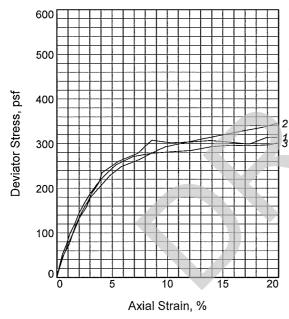
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Project: Mid Barrataria Diversion


Source of Sample: NL-3A **Depth: 3.0**


Sample Number: NA


Client: GeoEngineers

Proj. No.: 04.55124092 **Date Sampled:** 6/10/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

	Sai	mple No.	1	2	3	
		Water Content, %	64.2	48.5	54.4	
	ल	Dry Density, pcf Saturation, %	59.3 94.1	72.5 98.8	68.0 99.2	
	Initia	Void Ratio	1.8422	1.3252	1.4792	
		Diameter, in.	1.42	1.41	1.42	
		Height, in.	2.87	3.00	3.02	
2		Water Content, %	64.2	48.5	54.4	
3	汝	Dry Density, pcf	59.3	72.5	68.0	
	Test	Saturation, %	94.1	98.8	99.2	
	¥	Void Ratio	1.8422	1.3252	1.4792	
	Ĺ	Diameter, in.	1.42	1.41	1.42	
		Height, in.	2.87	3.00	3.02	
	Strain rate, in./min.		1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Cell Pressure, psi		1.67	13.25	24.50	
	Fai	l. Stress, psf	308	312	293	
	Strain, %		8.6	13.3	13.9	
	Ult.	. Stress, psf	307	312	293	
	5	Strain, %	13.9	13.3	13.9	
	σ_1	Failure, psf	548	2220	3821	
	σ_3	Failure, psf	240	1908	3528	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

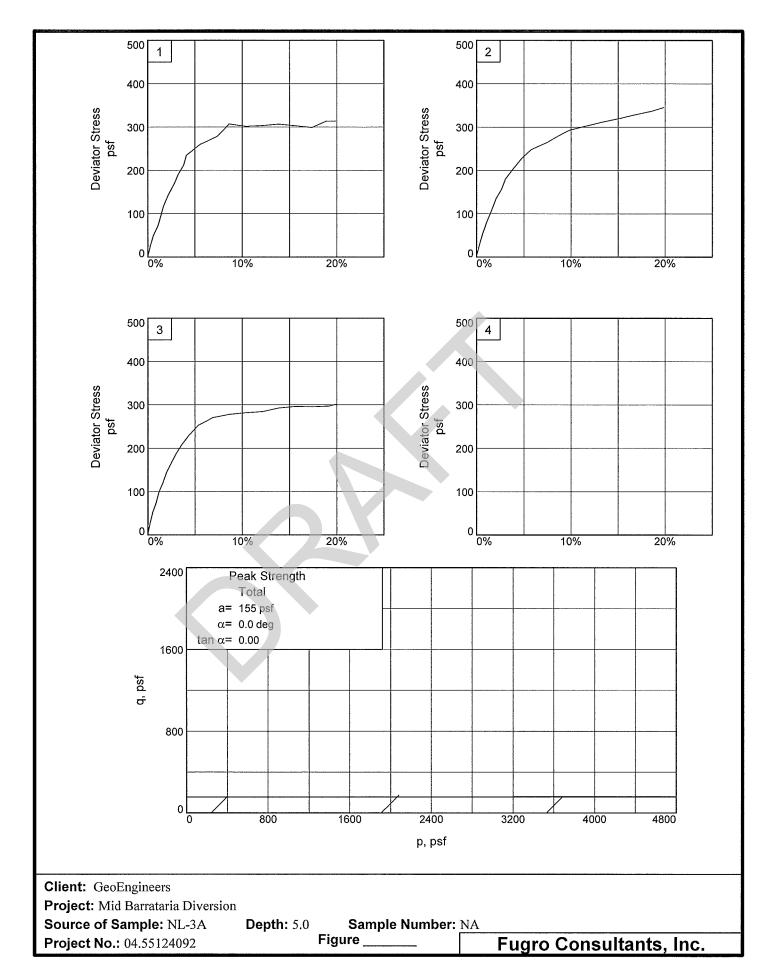
Description: VSO GR CH3

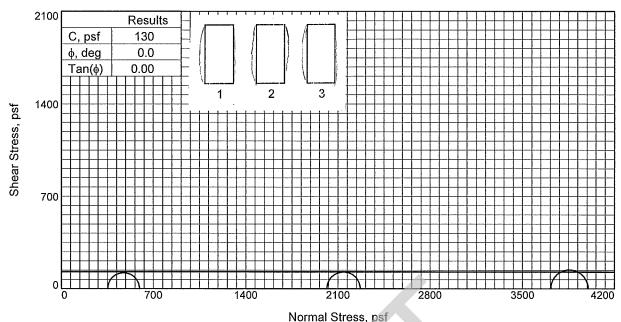
LL= 61 **PL=** 22 **PI=** 39

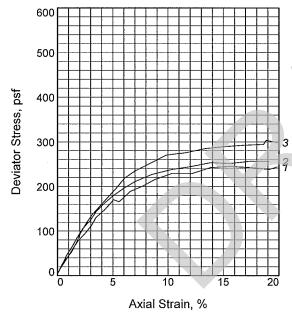
Assumed Specific Gravity= 2.70

Remarks: "Confidential Information: Privileged &

Confidential Work Product"


Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 5.0

Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

	Sai	mple No.	1	2	3	
		Water Content, %	52.9	53.1	52.8	
	व	Dry Density, pcf Saturation, %	70.2 102.4	70.1 102.7	67.6 95.8	
	nitial	Void Ratio	1.3839	1.3860	1.4767	
		Diameter, in.	1.44	1.44	1.45	
		Height, in.	2.93	2.97	2.98	
	1	Water Content, %	52.9	53.1	52.8	
3	st	Dry Density, pcf	70.2	70.1	67.6	
2	Test	Saturation, %	102.4	102.7	95.8	
'	At	Void Ratio	1.3839	1.3860	1.4767	
	_	Diameter, in.	1.44	1.44	1.45	
		Height, in.	2.93	2.97	2.98	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	2.44	14.00	25.79	
	Fail. Stress, psf		243	253	285	
	5	Strain, %	13.9	13.8	13.3	
	Ult.	Stress, psf	243	253	285	
	5	Strain, %	13.9	13.8	13.3	
-	σ_1	Failure, psf	594	2269	3999	
	σ_3	Failure, psf	351	2016	3714	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: VSO GR CH2 W/LNS ML

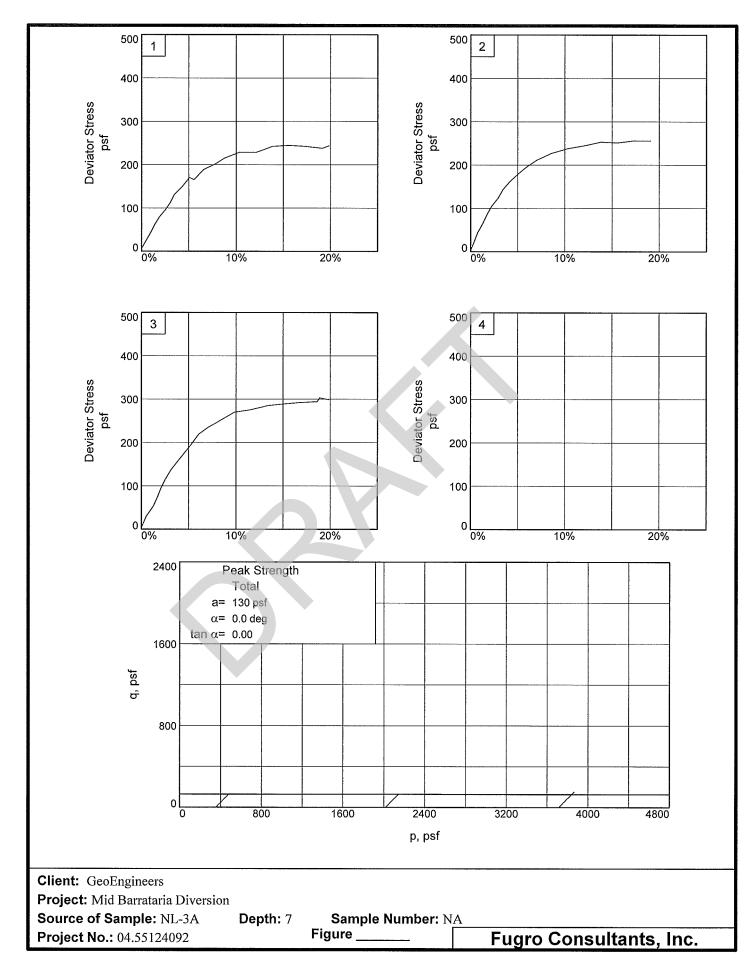
LL= 51 **PL=** 22 PI= 29

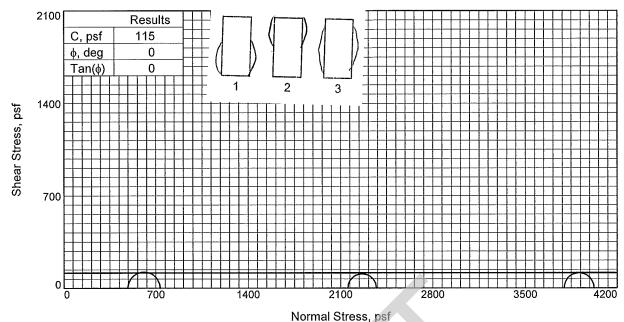
Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

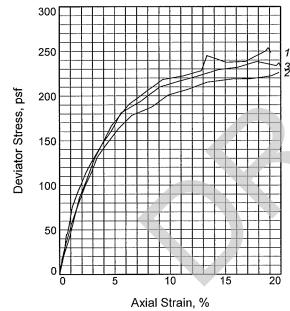
Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 7

Sample Number: NA


Proj. No.: 04.55124092 **Date Sampled:** 6/10/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Sample No.

		•				
		Water Content, %	67.3	68.7	64.8	
1		Dry Density, pcf	60.8	58.6	62.9	
3	nitia	Saturation, %	102.7	98.9	104.2	
_	in.	Void Ratio	1.7704	1.8765	1.6785	
		Diameter, in.	1.39	1.40	1.39	
		Height, in.	3.02	3.01	3.08	
		Water Content, %	67.3	68.7	64.8	
	*	Dry Density, pcf	60.8	58.6	62.9	
	Test	Saturation, %	102.7	98.9	104.2	
	At	Void Ratio	1.7704	1.8765	1.6785	
	1	Diameter, in.	1.39	1.40	1.39	
		Height, in.	3.02	3.01	3.08	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ва	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	3.38	14.96	26.35	
	Fail. Stress, psf Strain, % Ult. Stress, psf		245	215	229	
			13.3	13.3	14.3	
			245	215	229	
	5	Strain, %	13.3	13.3	14.3	
	σ ₁	Failure, psf	732	2370	4024	
	σ_3	Failure, psf	487	2154	3794	

2

1

3

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: VSO GR CH3**

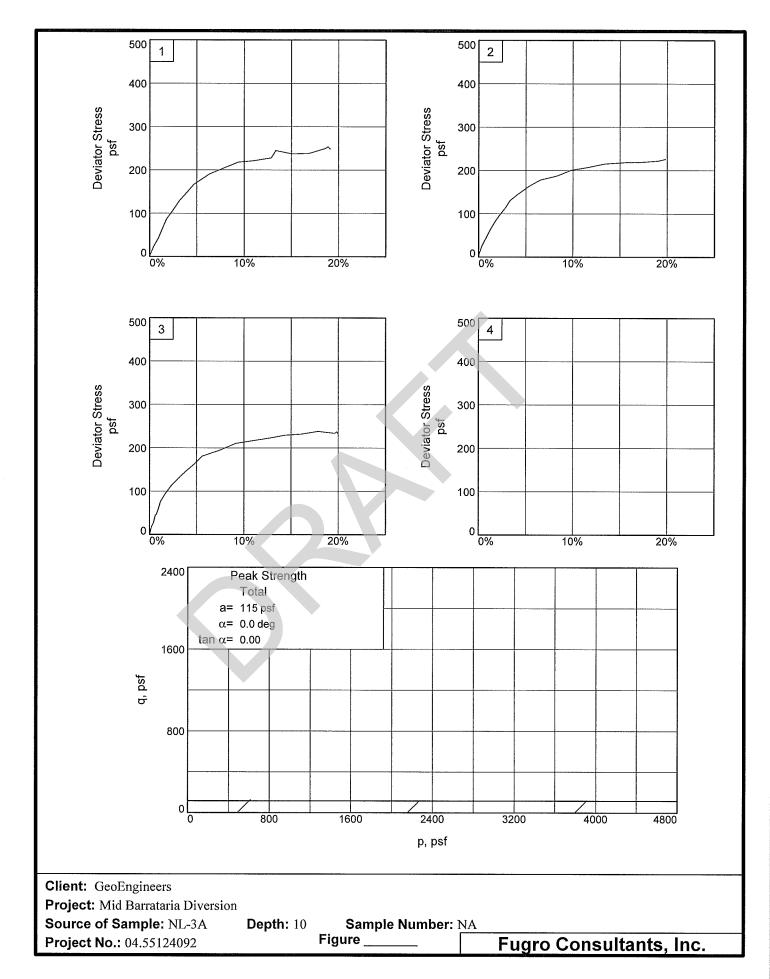
LL= 60 **PL=** 21 **PI=** 39

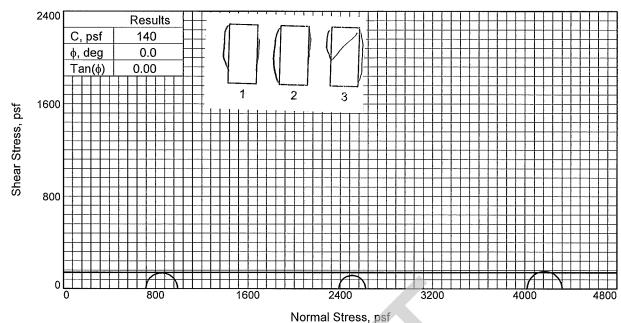
Assumed Specific Gravity= 2.70

Remarks: "Confidential Information: Privileged &

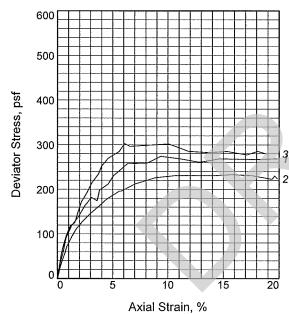
Confidential Work Product"

Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 10


Sample Number: NA

Client: GeoEngineers


Proj. No.: 04.55124092 **Date Sampled:** 6/10/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psi

,

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: VSO GR CH4

LL= 94 **PL=** 28 **PI=** 66

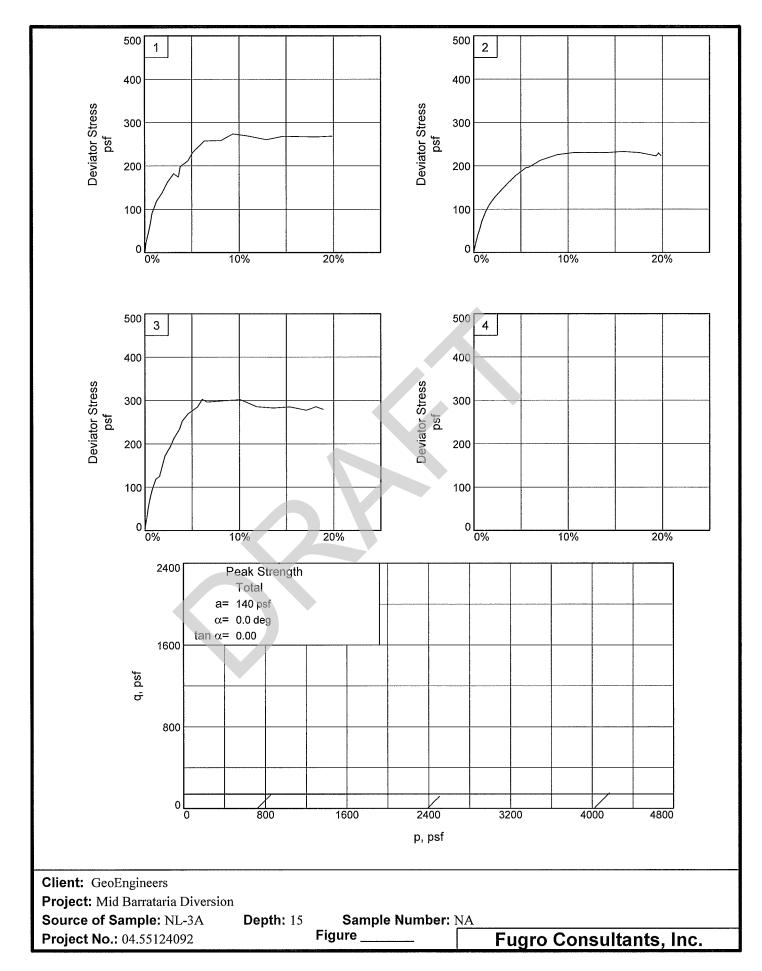
Assumed Specific Gravity= 2.71

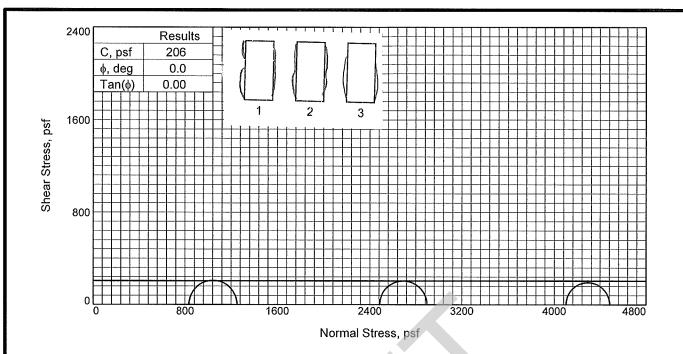
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

	Sai	mple No.	1	2	3	
		Water Content, %	94.6	95.4	95.7	
		Dry Density, pcf	47.0	47.3	47.0	
1	nitia	Saturation, %	98.8	100.5	99.9	
	In:	Void Ratio	2.5960	2.5739	2.5970	
		Diameter, in.	1.42	1.44	1.41	
		Height, in.	3.02	2.98	3.03	
		Water Content, %	94.6	95.4	95.7	
,	est	Dry Density, pcf	47.0	47.3	47.0	
	a a	Saturation, %	98.8	100.5	99.9	
	Αţ	Void Ratio	2.5960	2.5739	2.5970	
	_	Diameter, in.	1.42			
		Height, in.	3.02	2.98	3.03	
	Str	Strain rate, in./min.		1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	4.98	16.58	27.91	
	Fai	l. Stress, psf	274	231	303	
	5	Strain, %	9.3	10.6	6.1	
	Ult.	Stress, psf	269	231	283	
	Strain, %		14.6	14.1	13.6	
σ₁ Failure, psf		Failure, psf	991	2618	4322	
	σ_3	Failure, psf	717	2388	4019	

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 15

Sample Number: NA

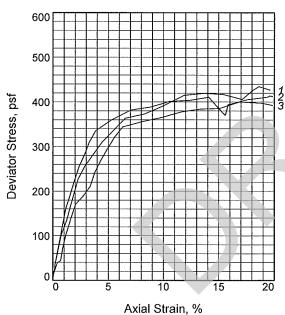

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Sample No

	Sai	mple No.	1	2	3	
		Water Content, %	50.9	51.0	45.2	
	-	Dry Density, pcf	70.9	71.6	73.6	
	Initial	Saturation, %	100.3	102.2	95.1	
1	Ini	Void Ratio	1.3598	1.3369	1.2741	
ś		Diameter, in.	1.40	1.40	1.43	
		Height, in.	3.02	3.06	3.02	
	\	Water Content, %	50.9	51.0	45.2	
	St.	Dry Density, pcf	70.9	71.6	73.6	
	Test	Saturation, %	100.3	102.2	95.1	
	At	Void Ratio	1.3598	1.3369	1.2741	
	`	Diameter, in.	1.40	1.40	1.43	
ĺ		Height, in.	3.02	3.06	3.02	
	Strain rate, in./min.		1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cell Pressure, psi		5.78	17.26	28.47	
	Fai	I. Stress, psf	420	411	384	
	Strain, % Ult. Stress, psf		13.6	14.1	13.3	
			420	411	384	
	S	Strain, %	13.6	14.1	13.3	
	σ_1	Failure, psf	1252	2896	4484	
	σ_3	Failure, psf	832	2485	4100	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: VSO GR CH2 W/LNS ML

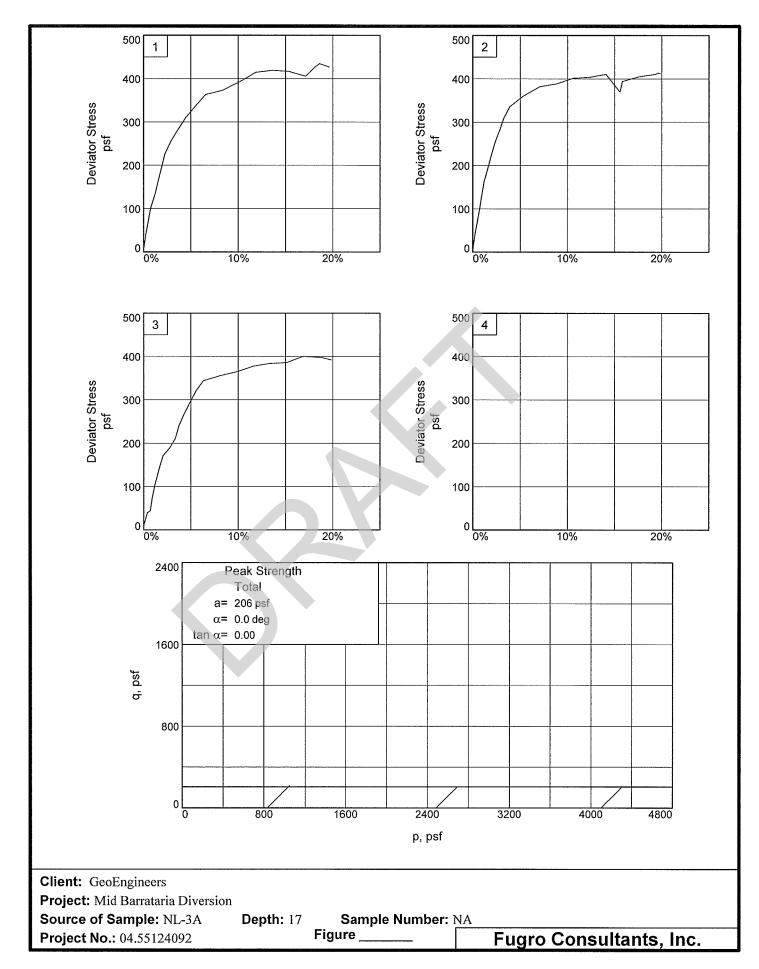
LL= 54 **PL=** 19 **PI=** 35

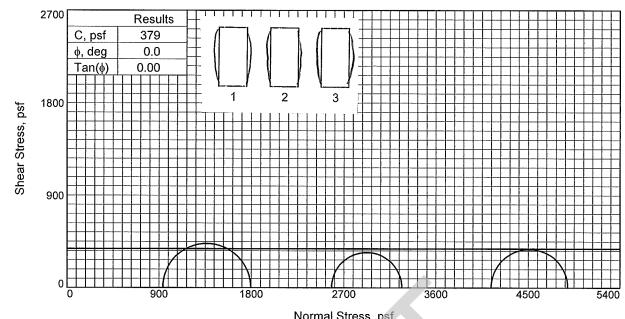
Assumed Specific Gravity= 2.68

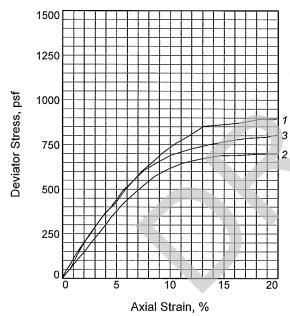
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 17


Sample Number: NA

Proj. No.: 04.55124092 Date Sampled: 6/11/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

	Sai	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	38.8 81.4	39.8 82.5	39.2 82.3	
1	Initial	Saturation, %	98.6	103.7	101.7	
	-	Void Ratio	1.0552	1.0281	1.0323	
1 3		Diameter, in.	1.42	1.39	1.40	
		Height, in.	3.04	2.98	2.95	
	1	Water Content, %	38.8	39.8	39.2	
2	est	Dry Density, pcf	81.4	82.5	82.3	
_	9	Saturation, %	98.6	103.7	101.7	
	Αţ	Void Ratio	1.0552	1.0281	1.0323	
	_	Diameter, in.	1.42	1.39	1.40	
		Height, in.	3.04	2.98	2.95	
	Strain rate, in./min.		1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	6.49	17.91	28.72	
	Fai	I. Stress, psf	862	688	750	
	8	Strain, %	14.8	14.6	13.6	
	Ult.	Stress, psf	862	688	750	
	Strain, %		14.8	14.6	13.6	
_	σ₁ Failure, psf		1796	3267	4886	
	σ_3	Failure, psf	935	2579	4136	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description:** SO GR CL4

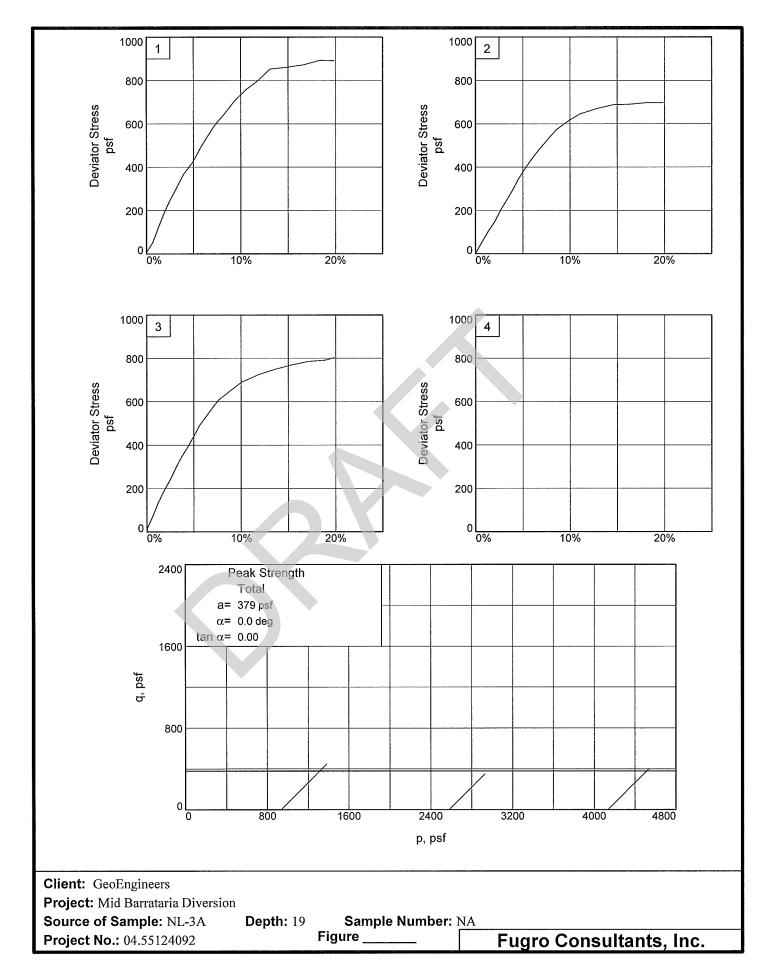
LL= 41 **PL=** 23 **PI=** 18

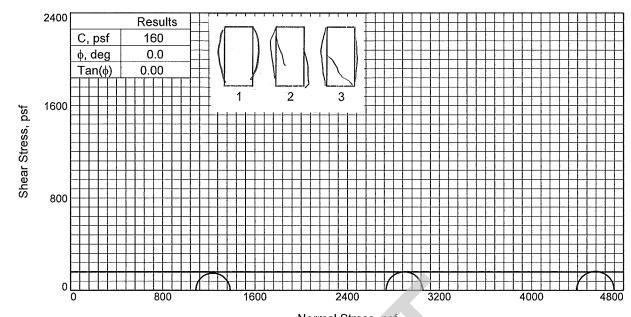
Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

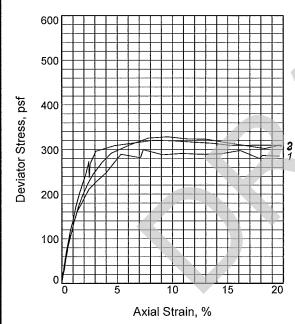
Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 19

Sample Number: NA

Proj. No.: 04.55124092 **Date Sampled:** 6/12/13


> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psf

Sample No.

		•				
j		Water Content, %	80.5	86.7	81.9	
		Dry Density, pcf	52.7	50.9	52.5	
1	nitia	Saturation, %	98.6	101.2	99.9	
1	<u>'</u> E	Void Ratio	2.2117	2.3219	2.2220	
		Diameter, in.	1.40	1.40	1.41	
		Height, in.	3.07	3.10	2.99	
		Water Content, %	80.5	86.7	81.9	
	#	Dry Density, pcf	52.7	50.9	52.5	
	Test	Saturation, %	98.6	101.2	99.9	
	At.	Void Ratio	2.2117	2.3219	2.2220	
	1	Diameter, in.	1.40	1.40	1.41	
		Height, in.	3.07	3.10	2.99	
	Strain rate, in./min.		1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	7.54	18.99	30.49	
	Fai	l. Stress, psf	300	321	329	
	8	Strain, %	7.3	8.3	9.6	
	Ult.	Stress, psf	288	314	316	
	8	Strain, %	9.1	13.6	14.8	
	σ_1	Failure, psf	1386	3055	4719	
	σ_3	Failure, psf	1086	2735	4391	

2

3

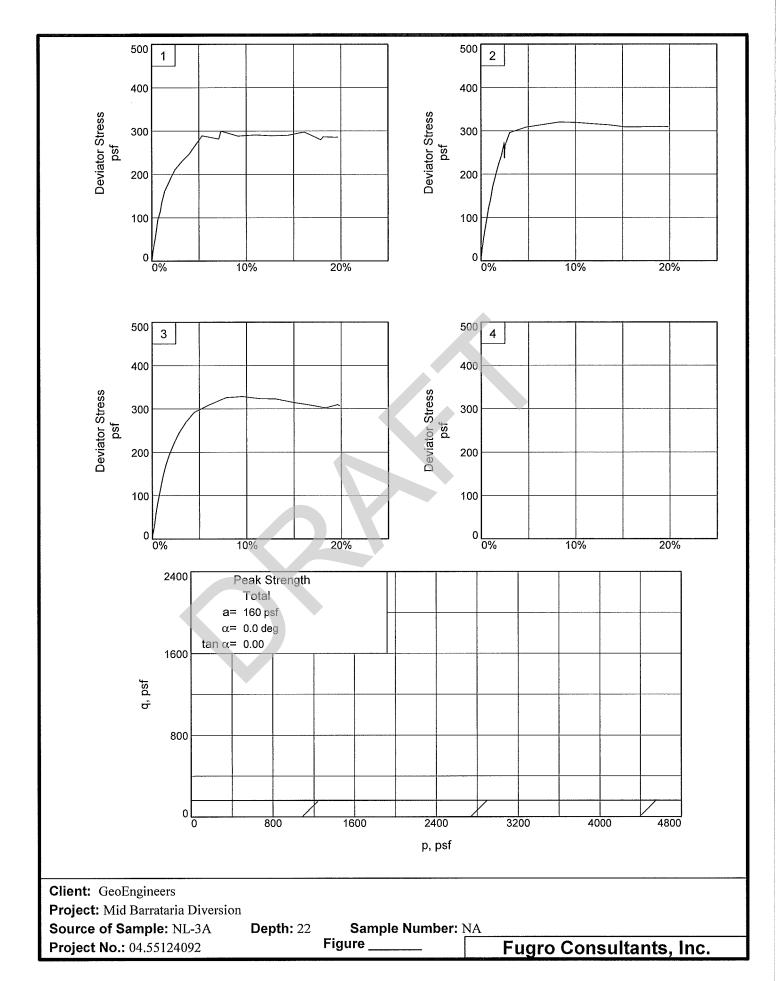
Type of Test:

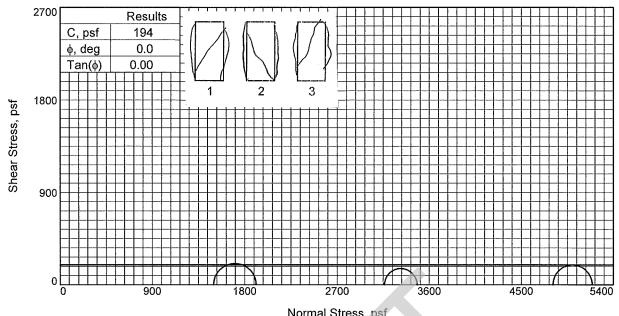
Unconsolidated Undrained Sample Type: UNDISTURBED Description: VSO GR CH4

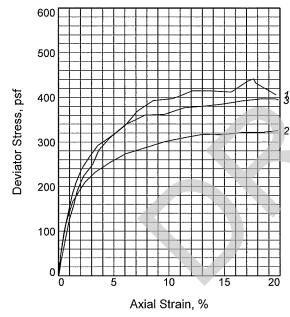
Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

Confidential Work Product"


Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 22

Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

	Sai	mple No.	1	2	3	
		Water Content, %	76.3	79.8	75.2	
ı		Dry Density, pcf	55.3	52.3	55.3	
1	Initial	Saturation, %	100.6	96.7	99.1	
	Ē	Void Ratio	2.0566	2.2364	2.0567	
8		Diameter, in.	1.40	1.41	1.40	
		Height, in.	3.00	3.01	3.01	
2		Water Content, %	76.3	79.8	75.2	
	#	Dry Density, pcf	55.3	52.3	55.3	
	Fest	Saturation, %	100.6	96.7	99.1	
	¥.	Void Ratio	2.0566	2.2364	2.0567	
	_	Diameter, in.	1.40	1.41		
		Height, in.	3.00	3.01	3.01	
	Str	ain rate, in./min.	1.00	1.00	1.00	
1	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	l Pressure, psi	10.40	21.96	33.39	
	Fai	I. Stress, psf	415	317	385	
	5	Strain, %	13.9	13.1	14.8	
	Ult. Stress, psf		415	316	385	
	5	Strain, %	13.9	14.8	14.8	
_	σ_1	Failure, psf	1912	3480	5193	
	σ_3	Failure, psf	1498	3162	4808	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED Description: VSO GR CH4 W/O

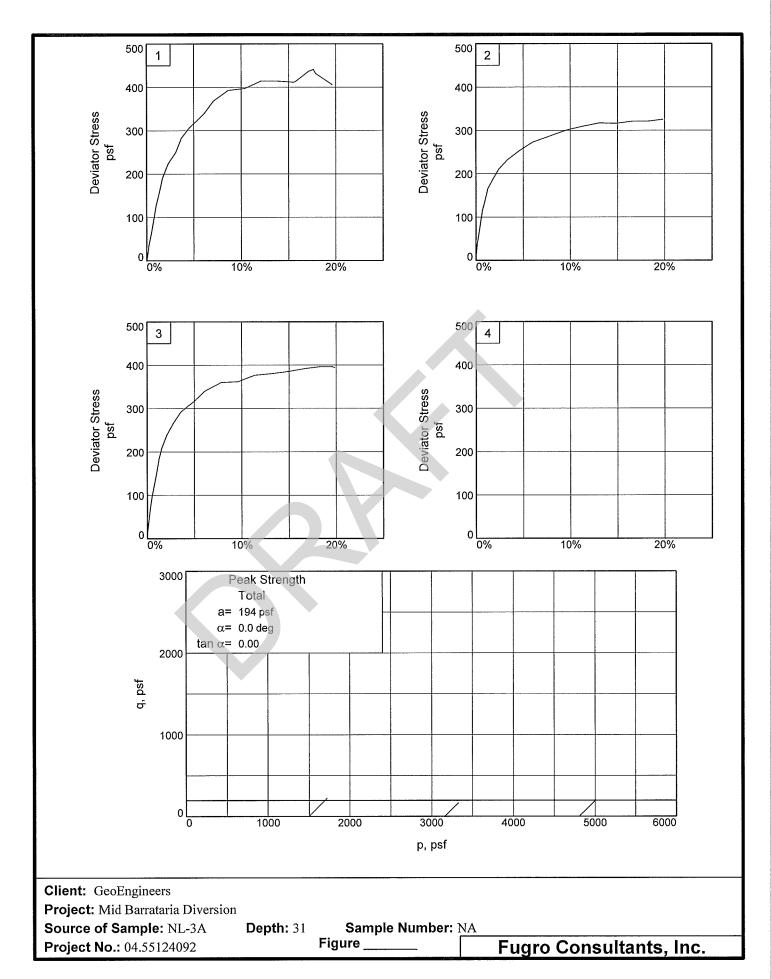
LL= 88 **PL=** 27 **PI=** 61

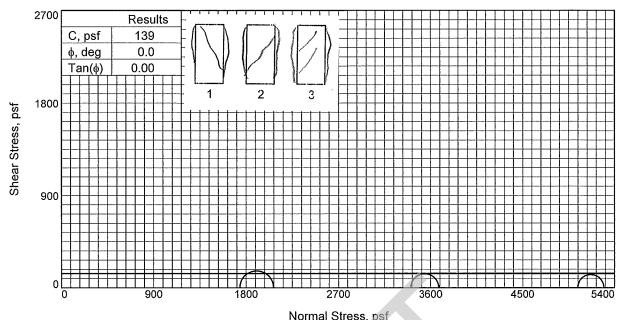
Assumed Specific Gravity= 2.71

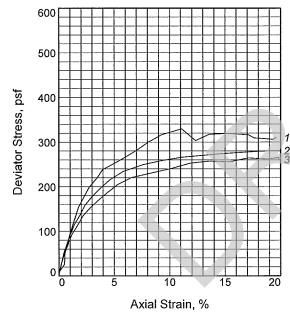
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 31


Sample Number: NA

Proj. No.: 04.55124092 Date Sampled: 6/12/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

	Saı	mple No.	1	2	3	
	ĮI.	Water Content, % Dry Density, pcf	76.9 54.8	77.8 54.2	79.3 54.0	
1	nitial	Saturation, %	100.0 2.0852	99.5		
	7	Void Ratio Diameter, in.	1.40	2.1191 1.41	2.1320 1.39	
1 2 3		Height, in.	2.98	3.04	3.05	
		Water Content, %	76.9	77.8	79.3	
	st	Dry Density, pcf	54.8	54.2		
	<u></u>	Saturation, %	100.0	99.5		
	At	Void Ratio	2.0852			
	`	Diameter, in.	1.40	1.41	1.39	
		Height, in.	2.98	3.04	3.05	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	12.07	23.65	34.98	
	Fai	I. Stress, psf	330	274	257	
	Strain, % Ult. Stress, psf		11.1	14.6	13.6	
			303	274	257	
	5	Strain, %	12.3	14.6	13.6	
	σ_1	Failure, psf	2068	3680	5295	
	σ_3	Failure, psf	1738	3406	5037	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: VSO GR CH4**

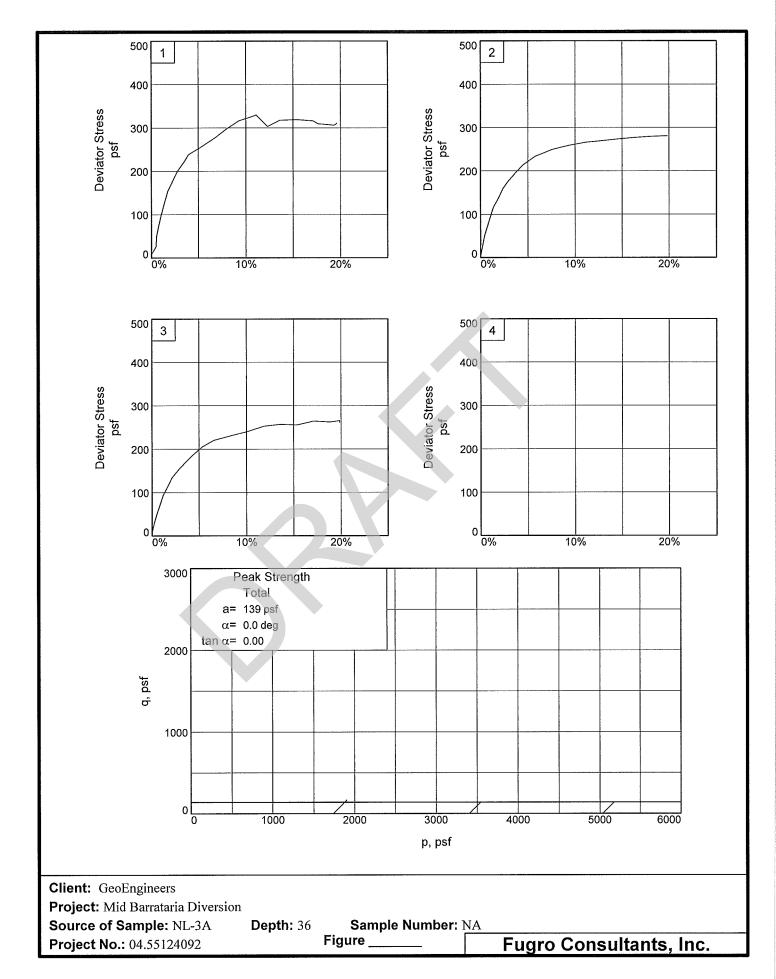
Assumed Specific Gravity= 2.71

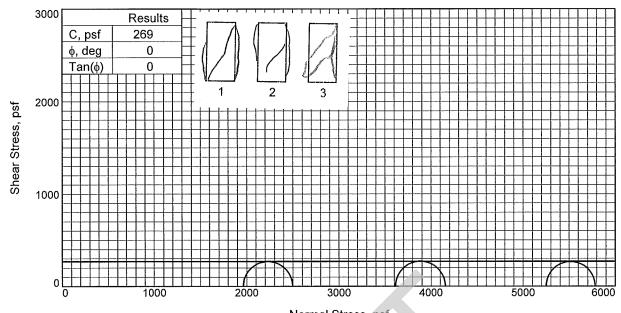
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers

Project: Mid Barrataria Diversion

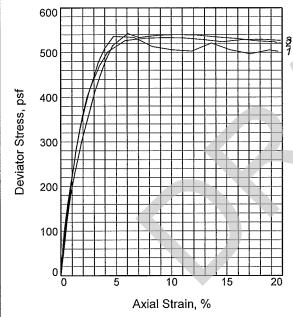

Source of Sample: NL-3A Depth: 36


Sample Number: NA

Date Sampled: 6/12/13 **Proj. No.:** 04.55124092

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure



Normal Stress, psf

Water Content, %

Dry Density, pcf

Sample No.

Initial	Saturation, % Void Ratio	101.2 1.6123	101.7 1.4929	101.2 1.5287	
$\overline{}$	Diameter, in.	1.42	1.40	1.41	
	Height, in.	3.01	3.10	3.09	
	Water Content, %	60.2	56.0	57.1	
#	Dry Density, pcf	64.8	67.9	66.9	
(a)	Saturation, %	101.2	101.7	101.2	
At Test	Void Ratio	1.6123	1.4929	1.5287	
4	Diameter, in.	1.42	1.40	1.41	
	Height, in.	3.01	3.10	3.09	
Str	ain rate, in./min.	1.00	1.00	1.00	
Ba	ck Pressure, psi	0.00	0.00	0.00	
Се	ll Pressure, psi	13.62	25.08	36.45	
Fai	I. Stress, psf	536	543	533	
5	Strain, %	4.8	6.1	9.3	
Ult.	. Stress, psf	503	534	524	
5	Strain, %	11.8	7.1	14.6	
σ_1	Failure, psf	2498	4154	5782	
σ ₂	Failure, psf	1961	3612	5249	

1

60.2

64.8

2

56.0

67.9

3

57.1

66.9

Type of Test:

Unconsolidated Undrained
Sample Type: UNDISTURBED
Description: SO GR CH4

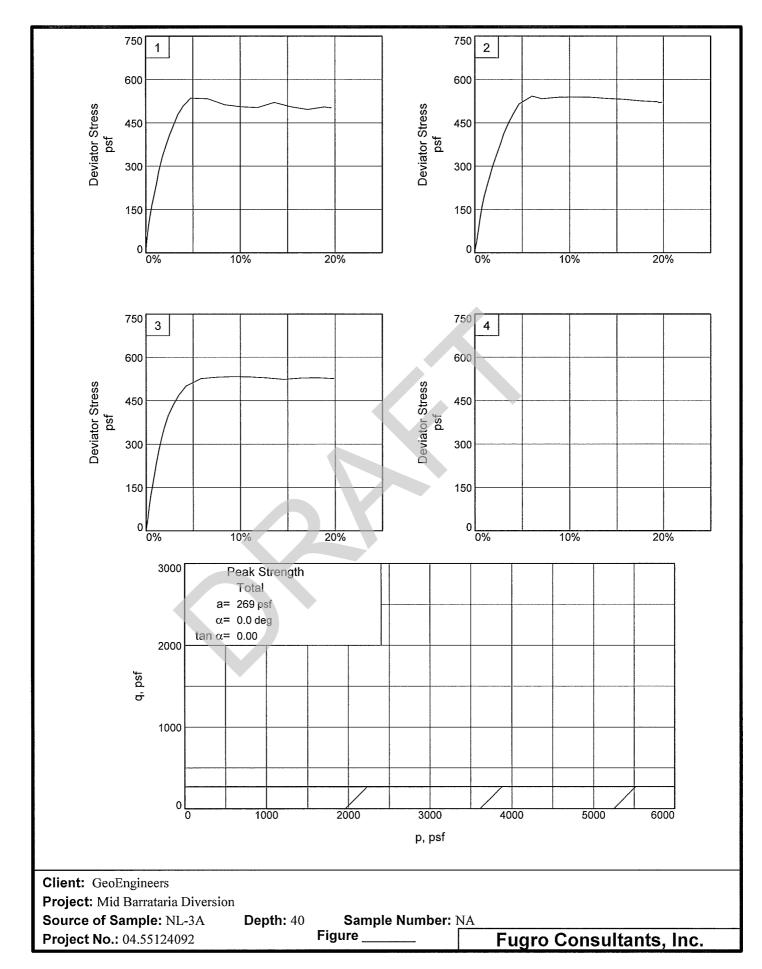
LL= 72 PL= 22 PI= 50

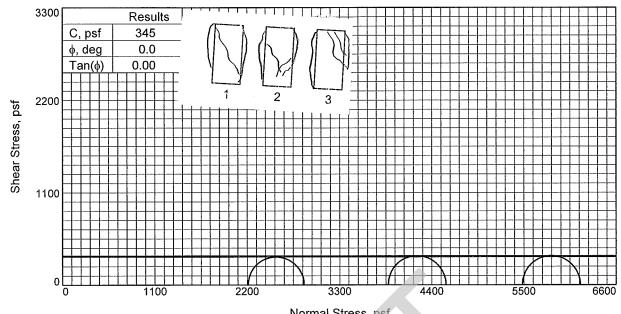
Assumed Specific Gravity= 2.71

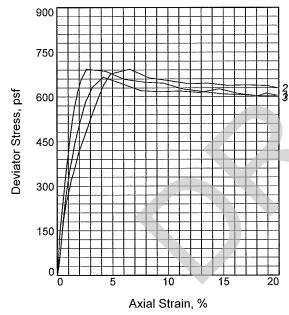
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 40


Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

	Sai	Sample No.		2	3	
		Water Content, %	70.8	65.0	69.1	
2		Dry Density, pcf	57.5	60.7	58.4	
	nitial	Saturation, %	98.7	98.7	98.7	
	드	Void Ratio	1.9435	1.7850	1.8986	
		Diameter, in.	1.41	1.41	1.41	
		Height, in.	3.03	3.04	3.08	
		Water Content, %	70.8	65.0	69.3	
	#	Dry Density, pcf	57.5	60.7	58.4	
	Test	Saturation, %	98.7	98.7	98.9	
	At 7	Void Ratio	1.9435	1.7850	1.8986	
	1	Diameter, in.	1.41	1.41	1.41	
		Height, in.	3.03	3.04	3.08	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	Il Pressure, psi	15.35	26.92	38.06	
	Fai	I. Stress, psf	667	693	693	
	Strain, %		4.2	6.6	2.7	
	Ult	. Stress, psf	615	644	610	
	5	Strain, %	12.9	11.8	14.9	
	σ ₁	Failure, psf	2877	4569	6173	
	σ_3	Failure, psf	2210	3876	5481	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: SO GR CH4**

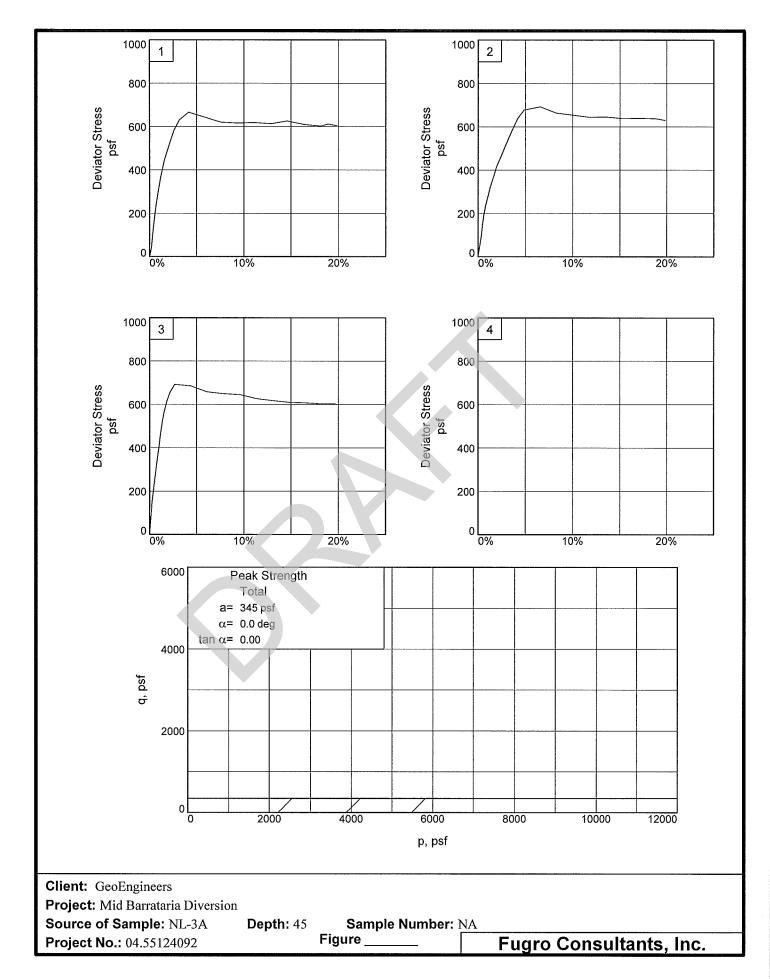
PL= 23 **PI=** 51 **LL=** 74

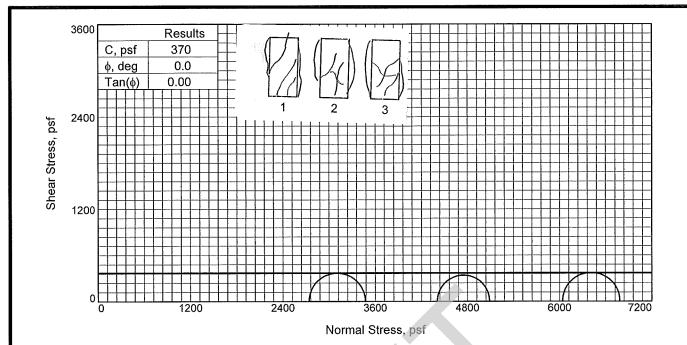
Assumed Specific Gravity= 2.71

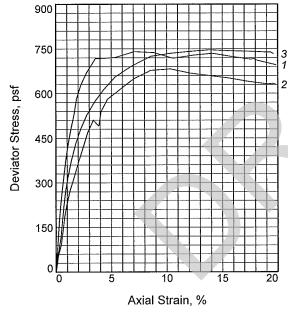
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 45


Sample Number: NA

Proj. No.: 04.55124092 **Date Sampled:** 6/12/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Sample No. 1 2 3 61.2 61.9 61.6 Water Content, % Dry Density, pcf 63.3 62.3 63.4 96.7 100.0 Saturation, % 100.4 Void Ratio 1.6718 1.7152 1.6677 1.42 1.41 Diameter, in. 1.41 Height, in. 3.10 3.08 3.05 61.9 61.2 61.6 Water Content, % Dry Density, pcf 63.3 62.3 63.4 Saturation, % 100.4 100.0 96.7 Void Ratio 1.6718 1.7152 1.6677 ¥ Diameter, in. 1.41 1.42 1.41 3.10 3.08 3.05 Height, in. 1.00 1.00 1.00 Strain rate, in./min. Back Pressure, psi 0.00 0.00 0.00 19.01 30.60 41.93 Cell Pressure, psi 735 683 747 Fail. Stress, psf 14.1 10.3 13.9 Strain, % 735 660 747 Ult. Stress, psf Strain, % 14.1 13.8 13.9 5089 6785 σ₁ Failure, psf 3472 6038 2737 4406 σ₃ Failure, psf

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: SO GR CH4

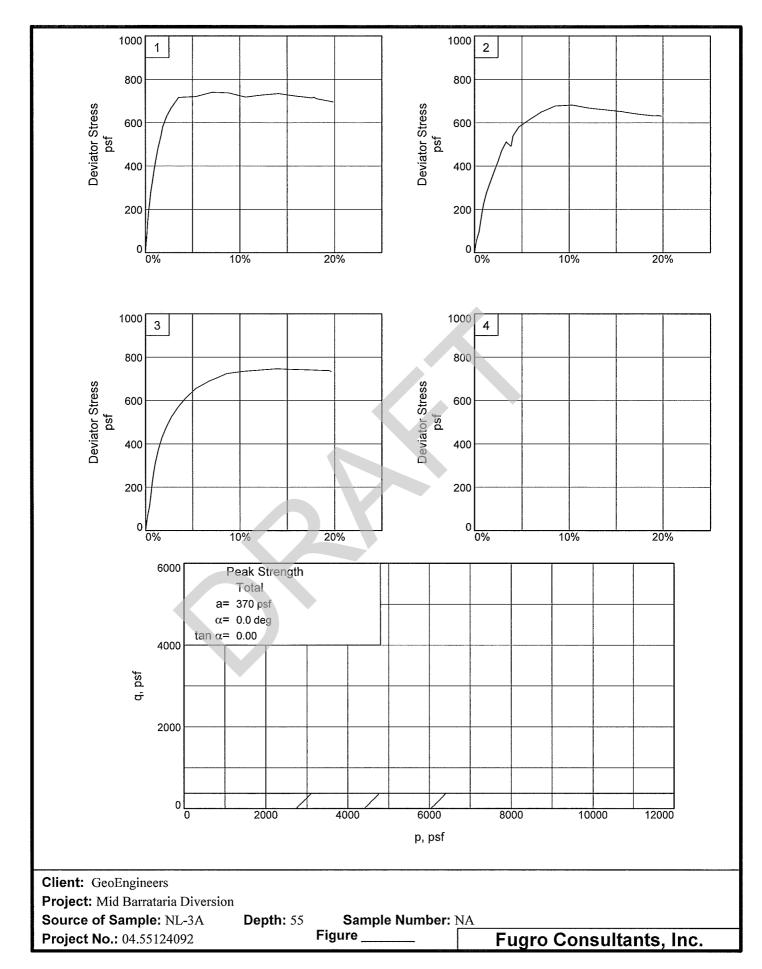
LL= 79 **PL=** 24 **PI=** 55

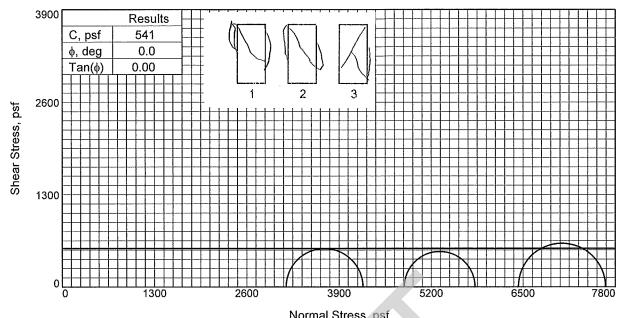
Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 55


Sample Number: NA

Client: GeoEngineers

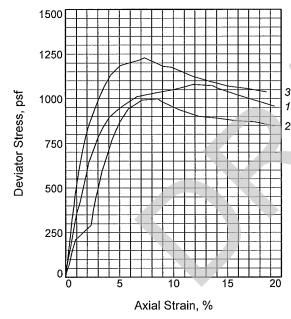

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Normal Stress, psf

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: M GR CH4**

PL= 28 PI= 49 LL= 77

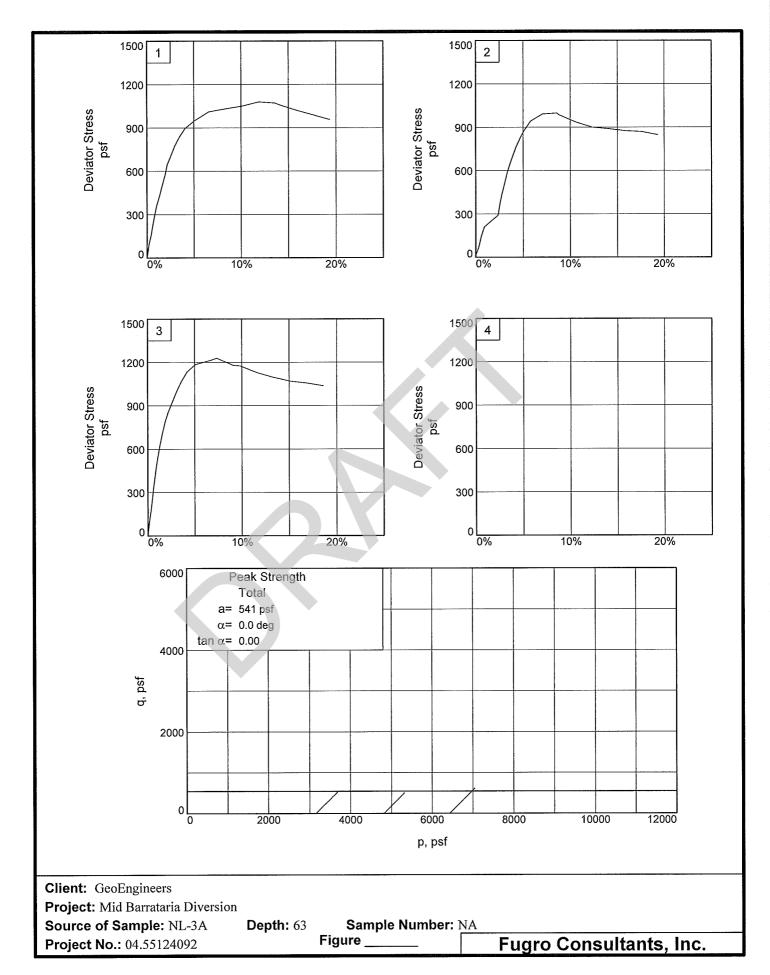
Assumed Specific Gravity= 2.71

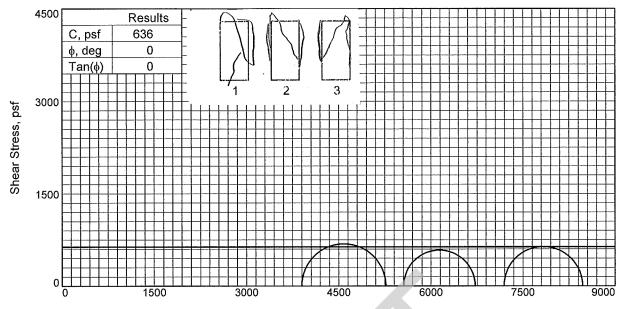
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

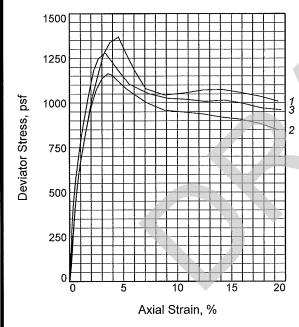
	Saı	mple No.	1	2	3	
3	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	56.8 66.3 99.2 1.5524 1.44 3.06	56.6 65.1 96.1 1.5973 1.42 2.96	54.1 68.2 99.0 1.4822 1.42 3.05	
2	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	56.8 66.3 99.2 1.5524 1.44 3.06	56.6 65.1 96.1 1.5973 1.42 2.96	54.1 68.2 99.0 1.4822 1.42 3.05	
		ain rate, in./min.	1.00	1.00	1.00	
		ck Pressure, psi	0.00	0.00	0.00	
		ll Pressure, psi	21.91	33.47	44.66	
		I. Stress, psf Strain, %	1081 11.8	999 8.6	1230 7.3	
	Ult.	Stress, psf	1059	891	1097	
	5	Strain, %	14.1	14.1	13.3	
	σ_1	Failure, psf	4236	5819	7661	
	σ_3	Failure, psf	3155	4820	6431	

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 63

Sample Number: NA


Proj. No.: 04.55124092 Date Sampled: 6/11/13

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Normal Stress, psf

Type	ot	l est:
------	----	--------

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CH4

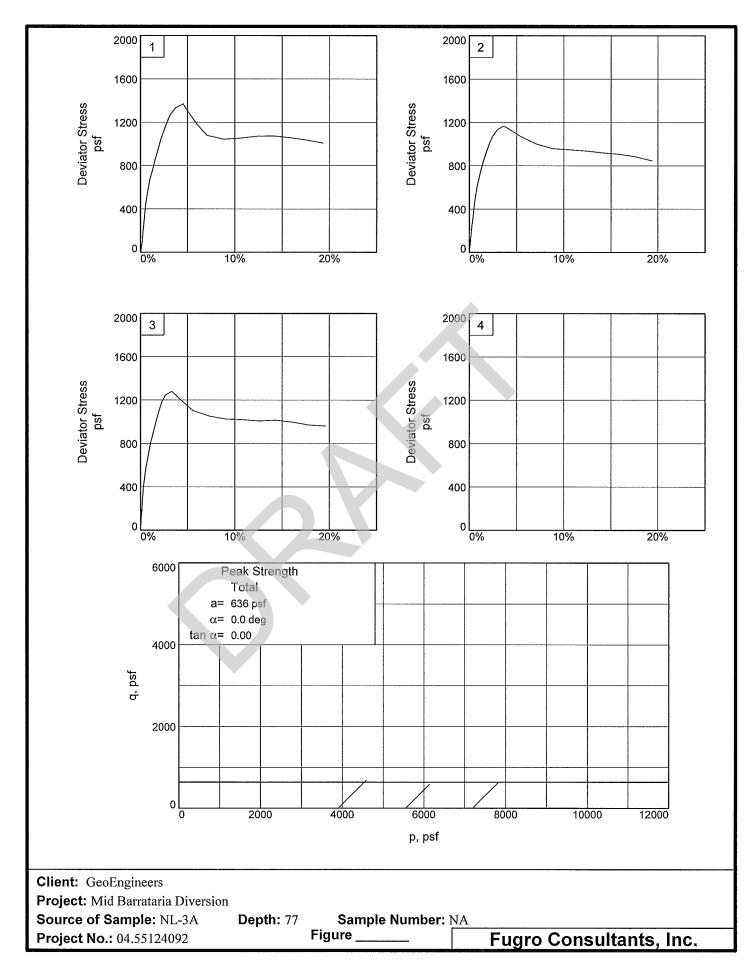
Assumed Specific Gravity= 2.71

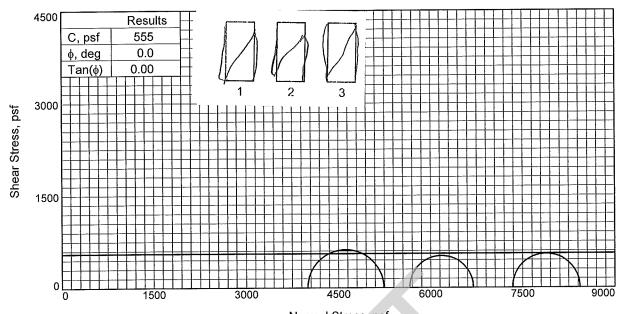
Remarks: "Confidential Information: Privileged &

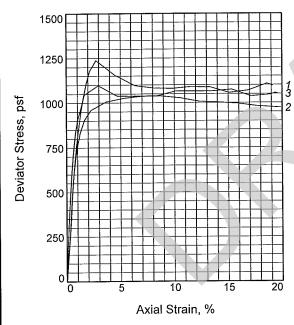
Confidential Work Product"

	Sar	mple No.	1	2	3	
ľ		Water Content, %	59.7	59.8	59.6	
l		Dry Density, pcf	65.0	64.7	64.7	
1	Initial	Saturation, %	100.9	100.4	99.9	
	7	Void Ratio	1.6027	1.6140	1.6169	
		Diameter, in.	1.40	1.41	1.42	
L		Height, in.	3.06	3.06	3.04	
		Water Content, %	59.7	59.8	59.6	
	#	Dry Density, pcf	65.0	64.7	64.7	
	Test	Saturation, %	100.9	100.4	99.9	
	¥.	Void Ratio	1.6027	1.6140	1.6169	
١	1	Diameter, in.	1.40	1.41	1.42	
		Height, in.	3.06	3.06	3.04	
ı	Str	ain rate, in./min.	1.00	1.00	1.00	
ı	Back Pressure, psi		0.00	0.00	0.00	
ı	Cell Pressure, psi		27.06	38.57	49.93	
	Fai	I. Stress, psf	1370	1164	1280	
	8	Strain, %	4.6	3.6	3.3	
	Ult.	Stress, psf	1076	920	1008	
	5	Strain, %	14.1	14.1	12.6	
\forall	σ_1	Failure, psf	5267	6719	8470	
	σ_3	Failure, psf	3897	5554	7190	

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 77


Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

	Sar	mple No.	1	2	3	
		Water Content, %	63.6	64.1	63.5	
		Dry Density, pcf	61.9	61.5	61.3	
1	<u>.</u>	Saturation, %	99.4	99.2	97.8	
	Initial	Void Ratio	1.7341	1.7503	1.7604	
		Diameter, in.	1.42	1.42	1.42	
		Height, in.	3.05	3.09	3.01	
		Water Content, %	63.6	64.1	63.5	
	يب	Dry Density, pcf	61.9	61.5	61.3	
	00	Saturation, %	99.4	99.2	97.8	
	At Test	Void Ratio	1.7341	1.7503	1.7604	
	٩	Diameter, in.	1.42	1.42	1.42	
		Height, in.	3.05	3.09	3.01	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	ll Pressure, psi	27.77	39.28	50.93	
	Fai	il. Stress, psf	1238	1038	1098	
	5	Strain, %	2.7	7.1	3.0	
	Ult	. Stress, psf	1081	1003	1037	
	5	Strain, %	9.8	14.1	6.6	
	σ_1	Failure, psf	5237	6694	8432	
	σ_3	Failure, psf	3999	5656	7334	

Type of Test:

Unconsolidated Undrained
Sample Type: UNDISTURBED

Description: M GR CH4

LL= 94 **PL=** 29

PI= 65

Assumed Specific Gravity= 2.71

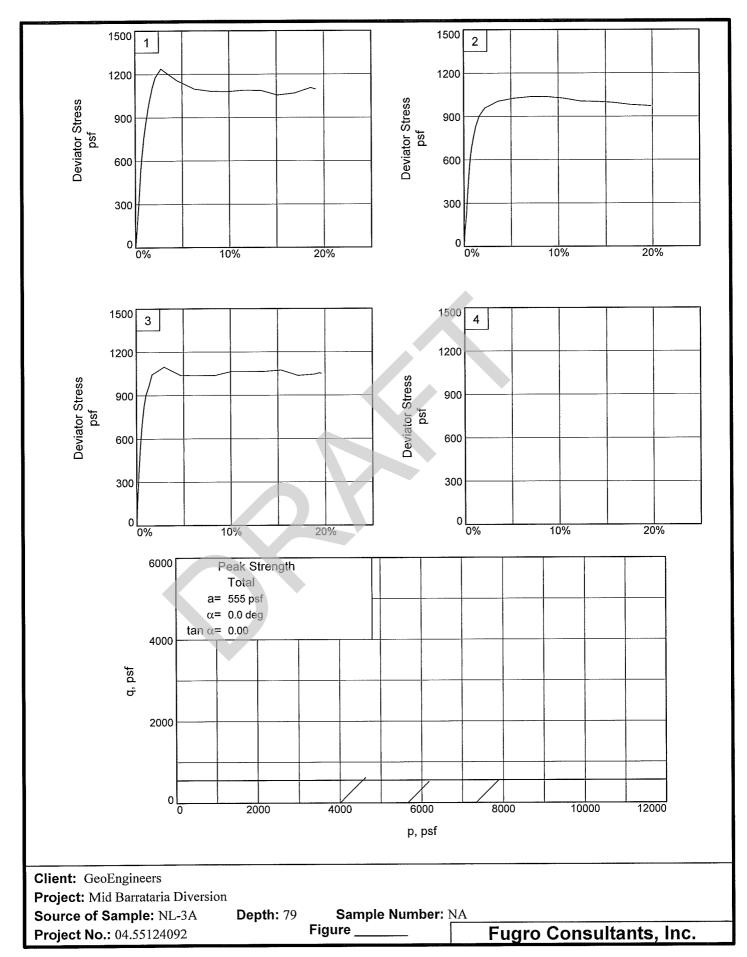
Remarks: "Confidential Information: Privileged &

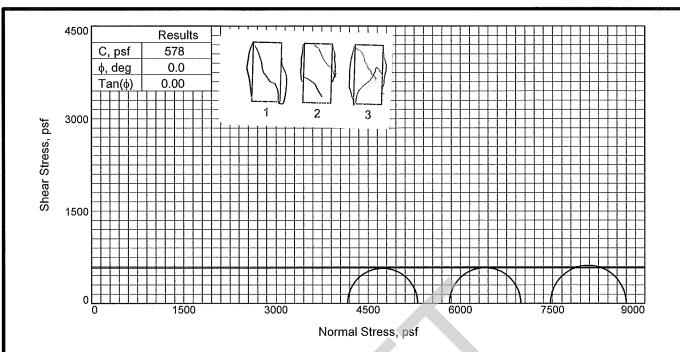
Confidential Work Product"

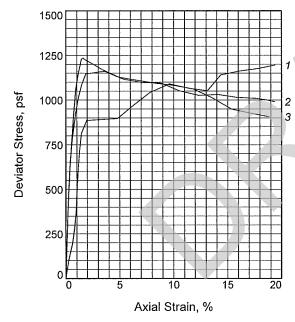
Project: Mid Barrataria Diversion

Source of Sample: NL-3A

Depth: 79


Sample Number: NA


Client: GeoEngineers


Proj. No.: 04.55124092

Date Sampled: 6/13/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Sample No. 1 2 3 65.4 65.7 Water Content, % 66.0 Dry Density, pcf 61.5 61.0 60.8 100.0 Saturation, % 101.2 101.0 Void Ratio 1.7527 1.7808 1.7715 Diameter, in. 1.41 1.40 1.41 Height, in. 3.10 3.05 3.13 65.4 66.0 65.7 Water Content, % Dry Density, pcf 61.5 61.0 60.8 Saturation, % 101.2 101.0 100.0 Void Ratio 1.7527 1.7715 1.7808 Diameter, in. 1.41 1.40 1.41 Height, in. 3.10 3.05 3.13 1.00 1.00 1.00 Strain rate, in./min. 0.00 Back Pressure, psi 0.00 0.00 Cell Pressure, psi 28.92 40.41 51.83 1141 1162 1236 Fail. Stress, psf 14.4 3.6 Strain, % 1.6 Ult. Stress, psf 1141 1027 1012 14.4 12.3 13.6 Strain, % 6981 8699 σ₁ Failure, psf 5306 4164 5819 7464 σ₃ Failure, psf

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: M GR CH4

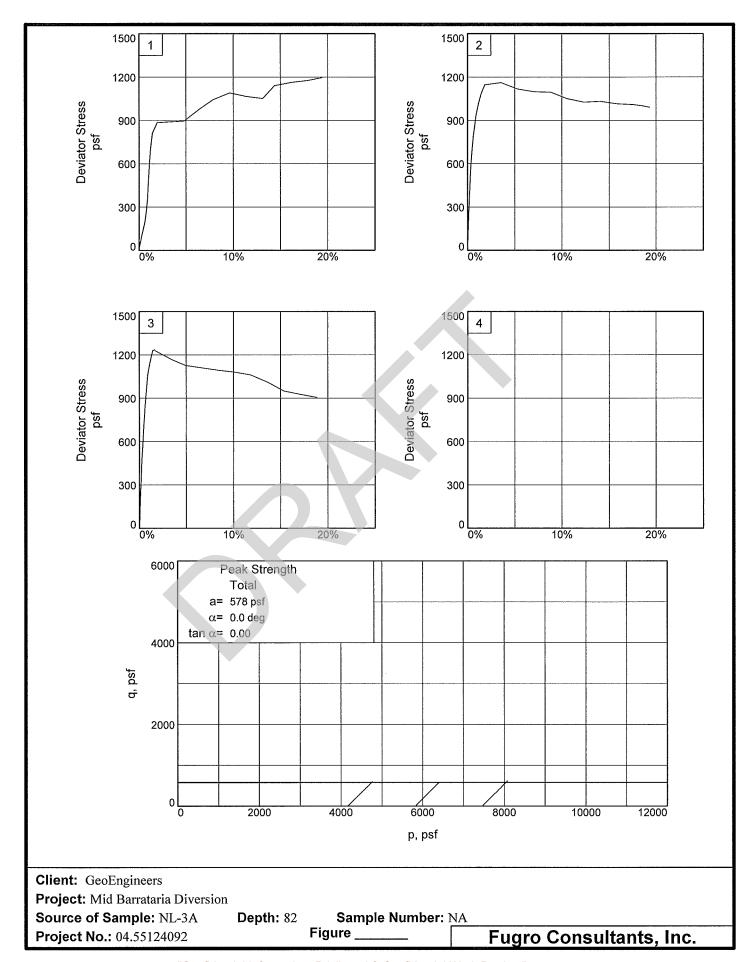
LL= 95 **PL=** 31 **PI=** 64

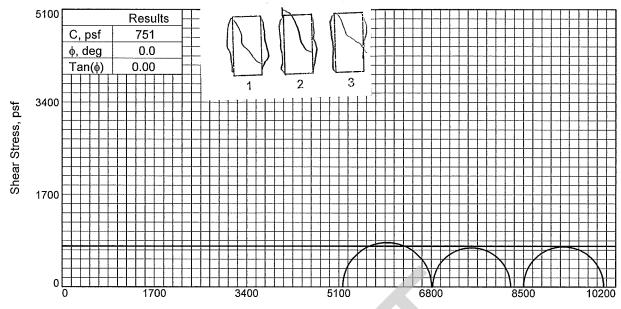
Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 82


Sample Number: NA

Client: GeoEngineers

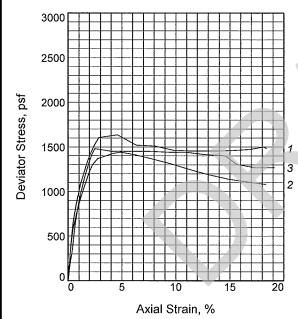

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CH4

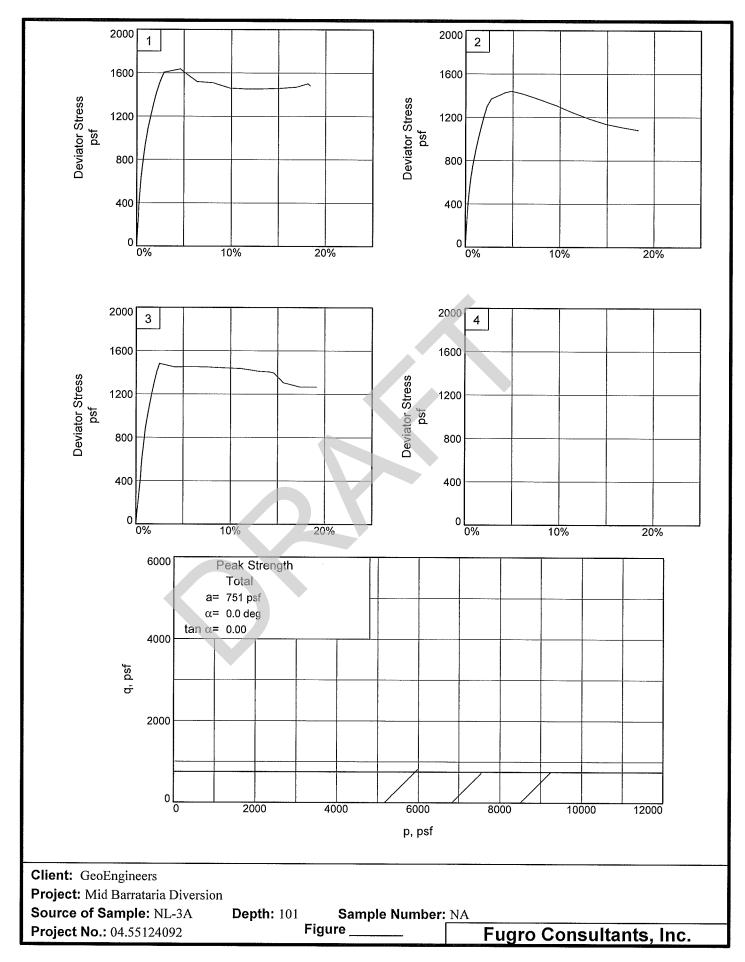
Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

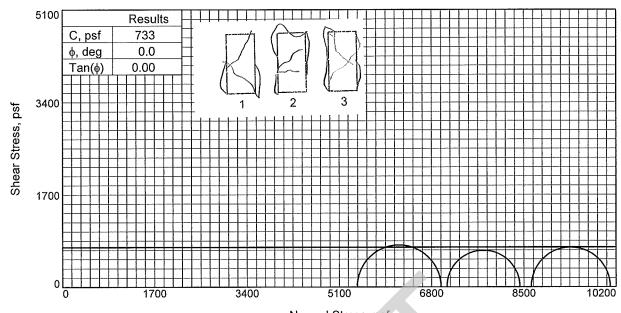
Confidential Work Product"

Figure	
--------	--

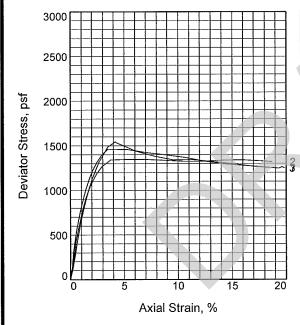
Sample No.		1	2	3	
	Water Content, %	56.3	58.5	55.2	
	Dry Density, pcf	65.4	65.2	67.0	
Initial	Saturation, %	96.0	99.4	98.1	
=	Void Ratio	1.5880	1.5936	1.5249	
	Diameter, in.	1.45	1.42	1.42	
	Height, in.	3.05	3.12	3.09	
	Water Content, %	56.3	58.5	55.2	
10	Dry Density, pcf	65.4	65.2	67.0	
At Test	Saturation, %	96.0	99.4	98.1	
₩	Void Ratio	1.5880	1.5936		
`	Diameter, in.	1.45	1.42		
	Height, in.	3.05	3.12	3.09	
Str	ain rate, in./min.	1.00	1.00	1.00	
Ba	ck Pressure, psi	0.00	0.00	0.00	
Ce	ll Pressure, psi	35.90	47.38	59.02	
Fai	I. Stress, psf	1637	1442	1482	
8	Strain, %	4.6	4.9	2.5	
Ult	Stress, psf	1454	1140	1397	
8	Strain, %	11.6	14.8	14.6	
σ_1	Failure, psf	6806	8264	9981	
σ_3	Failure, psf	5170	6823	8499	


Client: GeoEngineers

Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 101

Sample Number: NA


> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Tested By: PN/IK

Normal Stress, psf

Sa	ample No.	1	2	3	
	Water Content, %	48.5	46.1	49.9	
	Dry Density, pcf	72.5	73.9	70.9	
Initial	Saturation, %	98.8	97.0	97.8	
7.	Void Ratio	1.3259	1.2820	1.3768	
L	Diameter, in.	1.40	1.41	1.42	
	Height, in.	3.06	3.05	3.08	
	Water Content, %	48.5	46.1	49.9	
+,	Dry Density, pcf	72.5	73.9	70.9	
At Test	Saturation, %	98.8	97.0	97.9	
1 7	Void Ratio	1.3259	1.2820	1.3768	
`	Diameter, in.	1.40	1.41	1.42	
	Height, in.	3.06	3.05	3.08	
St	rain rate, in./min.	1.00	1.00	1.00	
В	ack Pressure, psi	0.00	0.00	0.00	
C	ell Pressure, psi	37.69	49.15	59.95	
Fa	ail. Stress, psf	1545	1348	1461	
	Strain, %	4.2	5.4	3.5	
Įυ	t. Stress, psf	1303	1326	1299	
	Strain, %	14.9	10.7	14.1	
$\neg \sigma_1$	Failure, psf	6972	8426	10094	
σ	, Failure, psf	5427	7078	8633	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CH3 W/ LYS ML

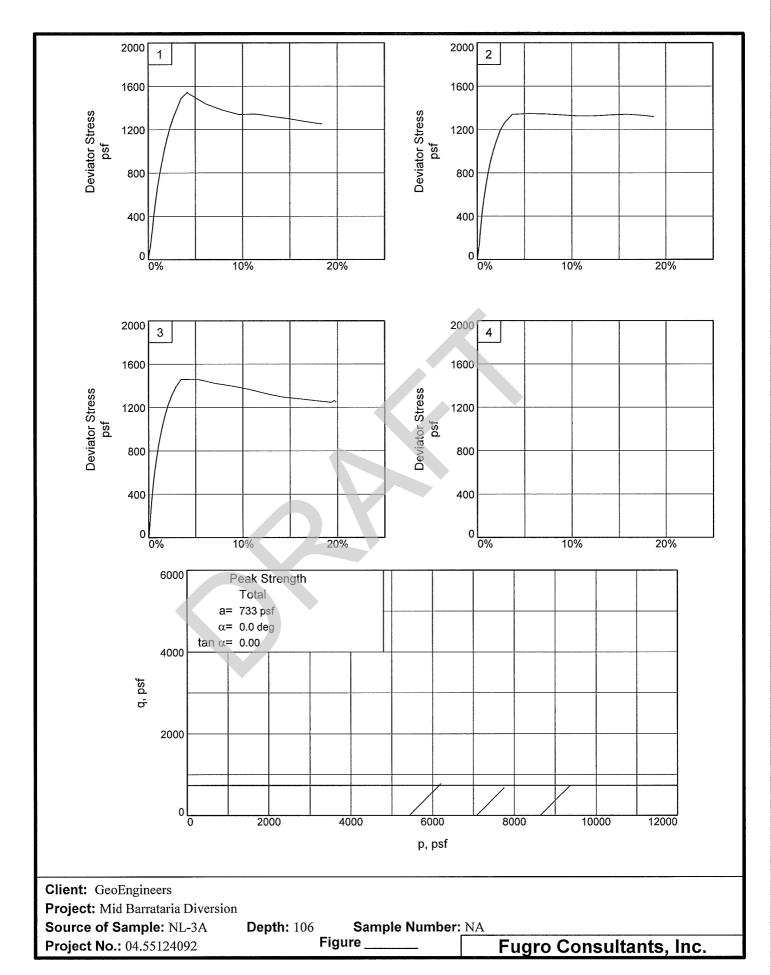
LL= 72 **PL=** 25 **PI=** 47

Assumed Specific Gravity= 2.70

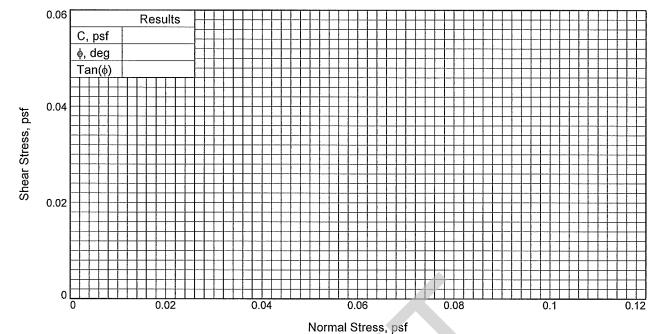
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion

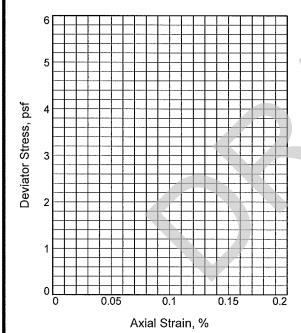
Source of Sample: NL-3A Depth: 106


Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

Tested By: PN/IK



Water Content, % Dry Density, pcf Saturation, % Void Ratio

Water Content, %

Sample No.

Dry Density, pcf Saturation, %

Diameter, in. Height, in.

Void Ratio Diameter, in.

Height, in.

Strain rate, in./min.

Back Pressure, psi

Cell Pressure, psi

Fail. Stress, psf

Strain, %

Ult. Stress, psf

Strain, %

σ₁ Failure, psf

σ₃ Failure, psf

Type of Test:

Unconsolidated Undrained

Sample Type:

Description: GR CH3 W/ SHELLS

Specific Gravity=

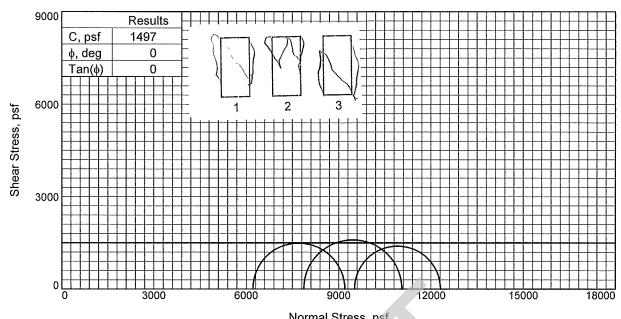
Remarks: Could not test due to shells; "Confidential Information: Privileged &

Confidential Work Product"

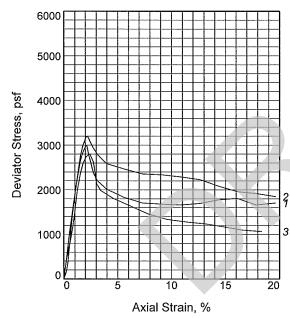
Client: GeoEngineers

Project: Mid Barrataria Diversion

Source of Sample: NL-3A **Depth:** 112.0


Sample Number: NA

Proj. No.: 04.55124092 **Date Sampled:**


> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

"Confidential Information: Privileged & Confidential

Normal Stress, psf

	Sai	mple No.	1	2	3	
		Water Content, %	68.2	64.8	65.3	
		Dry Density, pcf	59.4	61.4	61.1	
	Initial	Saturation, %	99.9	99.9	100.1	
	n.	Void Ratio	1.8496	1.7576	1.7677	
		Diameter, in.	1.41	1.43	1.41	
		Height, in.	2.95	3.18	3.10	
	\	Water Content, %	68.2	64.8	65.3	
	7	Dry Density, pcf	59.4	61.4	61.1	
	Fest	Saturation, %	99.9	99.9	100.1	
	Αŧ	Void Ratio	1.8496	1.7576	1.7677	
2	1	Diameter, in.	1.41	1.43	1.41	
3		Height, in.	2.95	3.18	3.10	
3	Str	ain rate, in./min.	1.00	1.00	1.00	
3	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	l Pressure, psi	43.13	54.60	66.08	
	Fai	I. Stress, psf	2988	3199	2797	
	5	Strain, %	2.0	2.1	2.4	
	Ult.	Stress, psf	1664	2081	1172	
	5	Strain, %	10.8	14.4	14.9	
	σ_1	Failure, psf	9199	11061	12313	
	σ_3	Failure, psf	6211	7862	9516	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED **Description: ST GR CH4**

PI= 74 **LL=** 105 **PL=** 31

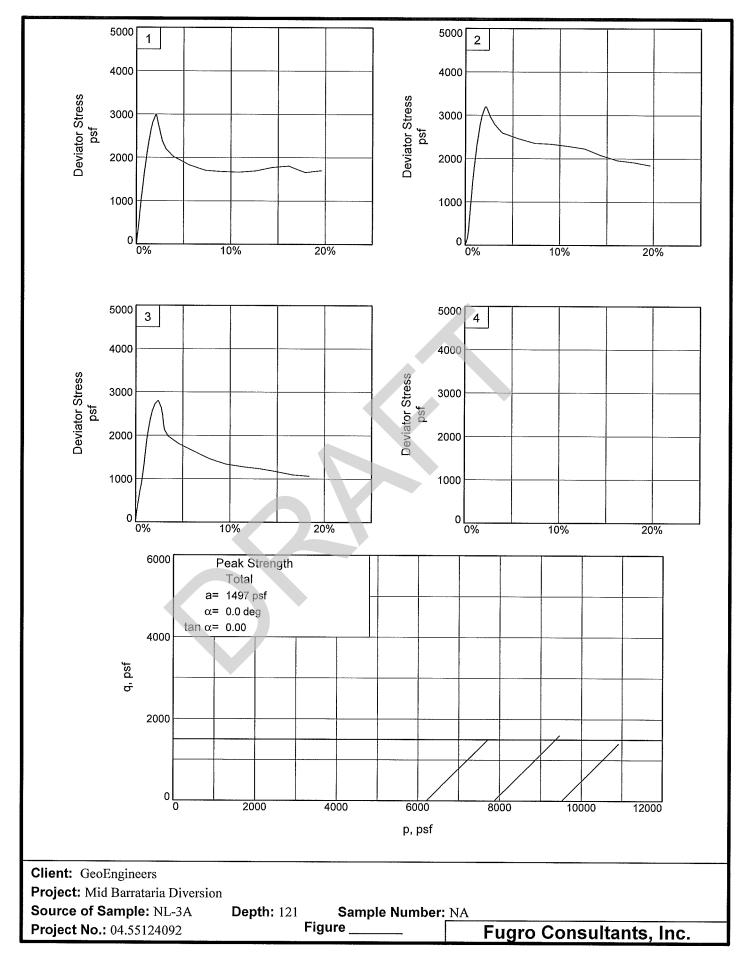
Assumed Specific Gravity= 2.71

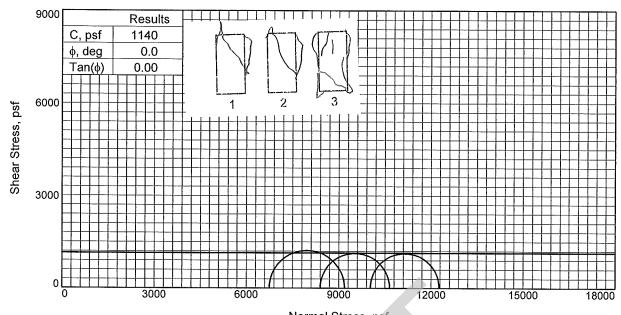
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

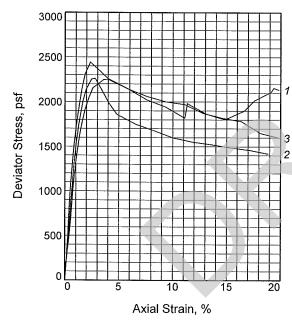
Client: GeoEngineers

Project: Mid Barrataria Diversion


Source of Sample: NL-3A **Depth:** 121


Sample Number: NA

Proj. No.: 04.55124092 Date Sampled: 6/11/13


> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

Normal Stress, psf

	Sa	mple No.	1	2	3	
		Water Content, %	61.5	63.6	60.3	
		Dry Density, pcf	59.5	61.0	63.6	
1	nitia	Saturation, %	90.5	97.1	98.4	
1	l L	Void Ratio	1.8412	1.7741	1.6600	
		Diameter, in.	1.42	1.41	1.43	
		Height, in.	3.00	3.12	3.00	
3	\	Water Content, %	61.5	63.6	60.3	
2	St	Dry Density, pcf	59.5	61.0	63.6	
	Test	Saturation, %	90.5	97.1	98.4	
	¥	Void Ratio	1.8412	1.7741	1.6600	
		Diameter, in.	1.42	1.41	1.43	
		Height, in.	3.00	3.12	3.00	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	46.83	58.28	69.57	
	Fai	I. Stress, psf	2443	2261	2252	
	5	Strain, %	2.3	2.8	4.0	
	Ult.	. Stress, psf	1804	1523	1819	
	S	Strain, %	14.8	13.6	14.6	
	σ_1	Failure, psf	9186	10654	12270	
	σ_3	Failure, psf	6744	8392	10018	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: ST GR CH W/ SIF

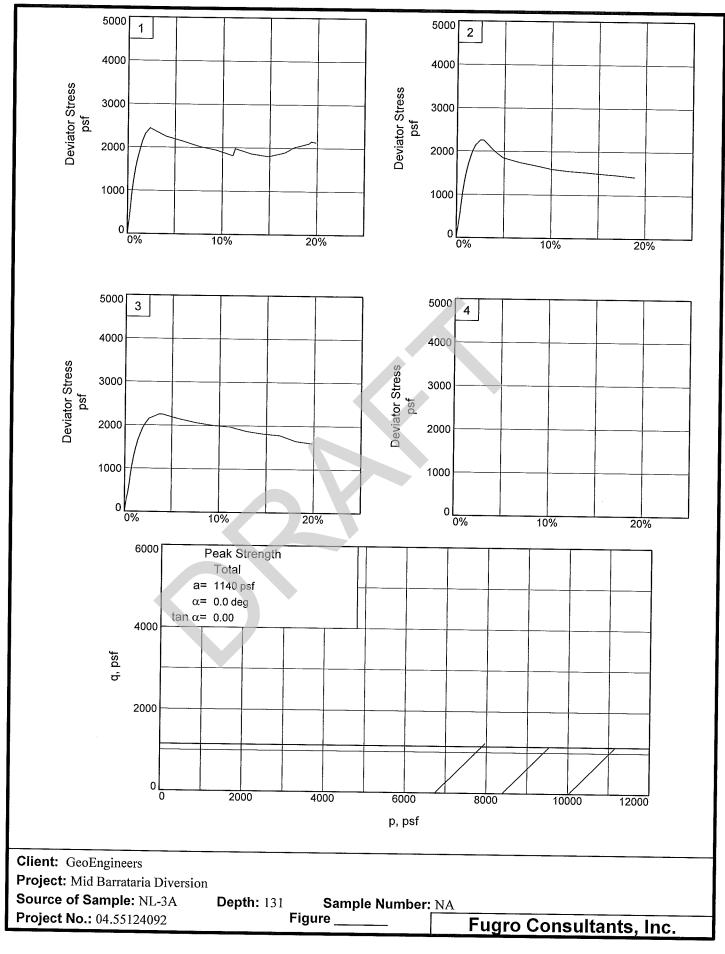
LL= 104 **PL=** 28 **PI=** 76

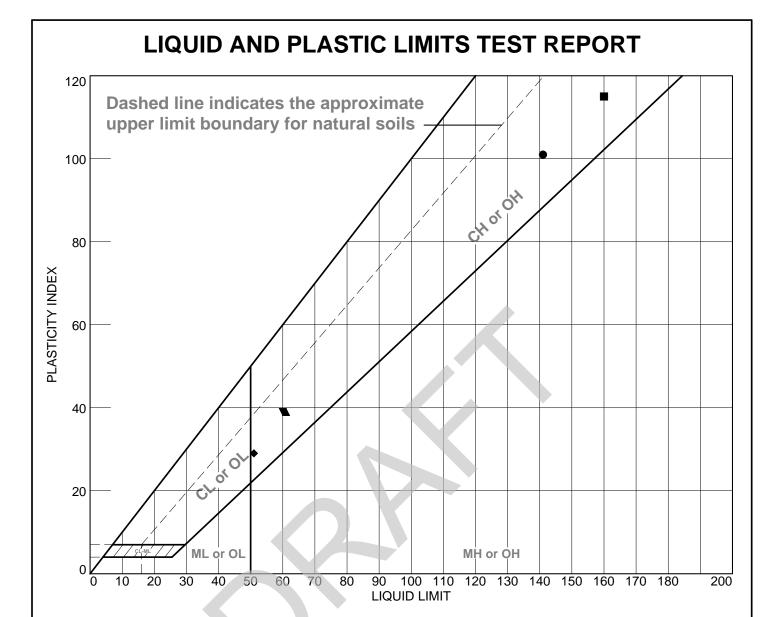
Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Client: GeoEngineers


Project: Mid Barrataria Diversion


Source of Sample: NL-3A Depth: 131

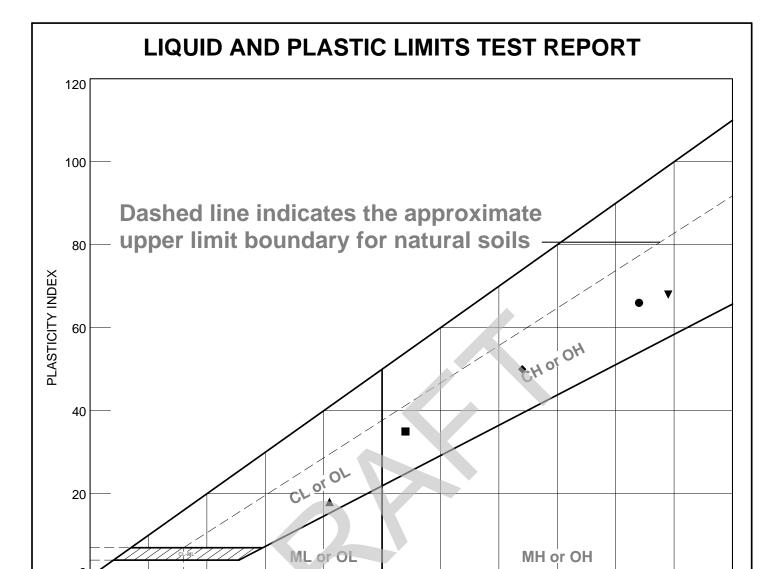
Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

				SOIL DATA	\			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	NL-3A	NA	2.0		40	141	101	СНОА
•	NL-3A	NA	3.0		45	160	115	СН0В
•	NL-3A	NA	5.0		22	61	39	СН3
•	NL-3A	NA	7		22	51	29	CH2
▼	NL-3A	NA	10		21	60	39	СН3

Fugro Consultants, Inc.


Client: GeoEngineers

Project: Mid Barataria Diversion

Figure

Baton Rouge, LA

Project No.: 04.55124092

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	NL-3A	NA	15		28	94	66	CH4					
	NL-3A	NA	17		19	54	35	CH2					
A	NL-3A	NA	19		23	41	18	CL4					
•	NL-3A	NA	21		24	74	50	CH4					
•	NL-3A	NA	25		31	99	68	CH4					

LIQUID LIMIT

60

70

80

90

Figure

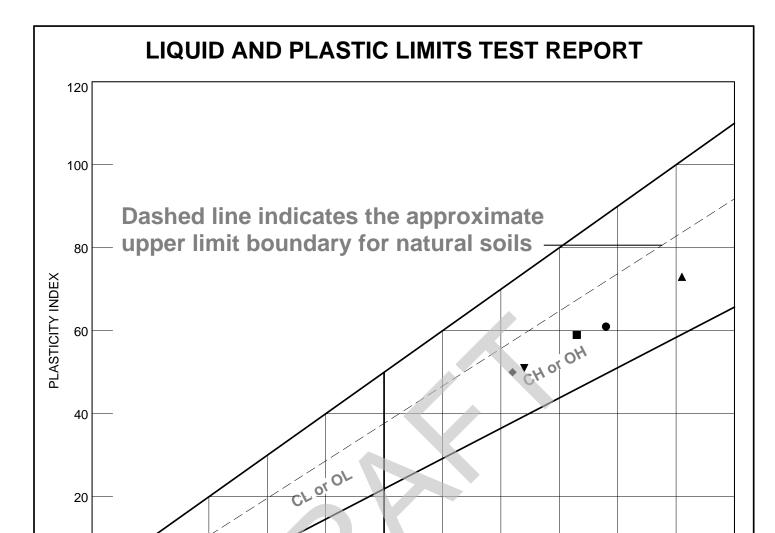
100

110

Fugro Consultants, Inc.

20

30


40

Client: GeoEngineers

Project: Mid Barataria Diversion

Baton Rouge, LA

Project No.: 04.55124092

	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS				
•	NL-3A	NA	31		27	88	61	CH4				
	NL-3A	NA	34		24	83	59	CH4				
A	NL-3A	NA	39		28	101	73	CH4				
•	NL-3A	NA	40		22	72	50	CH3				
▼	NL-3A	NA	45		23	74	51	CH4				

LIQUID LIMIT

60

70

Fugro Consultants, Inc.

20

30

Client: GeoEngineers

Project: Mid Barataria Diversion

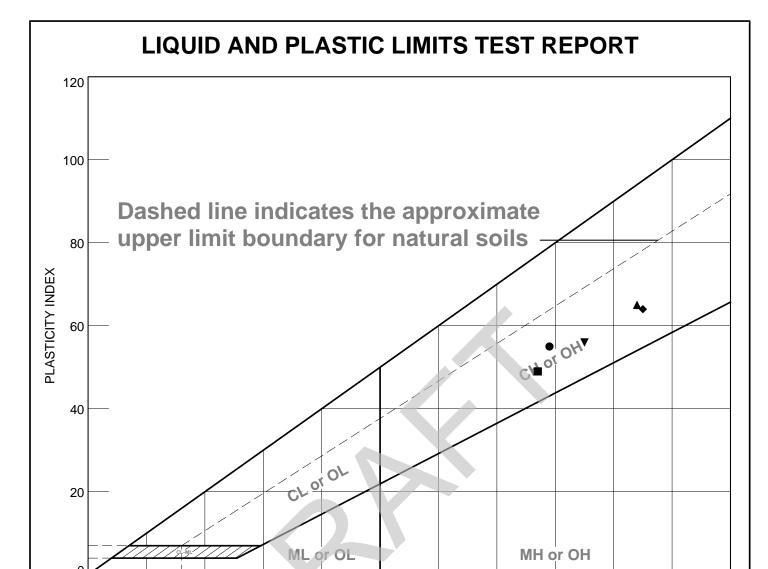
Baton Rouge, LA

Project No.: 04.55124092

Figure

MH or OH

80


90

100

110

ML or OL

40

	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	NL-3A	NA	55		24	79	55	CH4					
	NL-3A	NA	63		28	77	49	CH4					
A	NL-3A	NA	79		29	94	65	CH4					
•	NL-3A	NA	82		31	95	64	CH4					
▼	NL-3A	NA	86		29	85	56	CH4					

LIQUID LIMIT

60

70

80

Fugro Consultants, Inc.

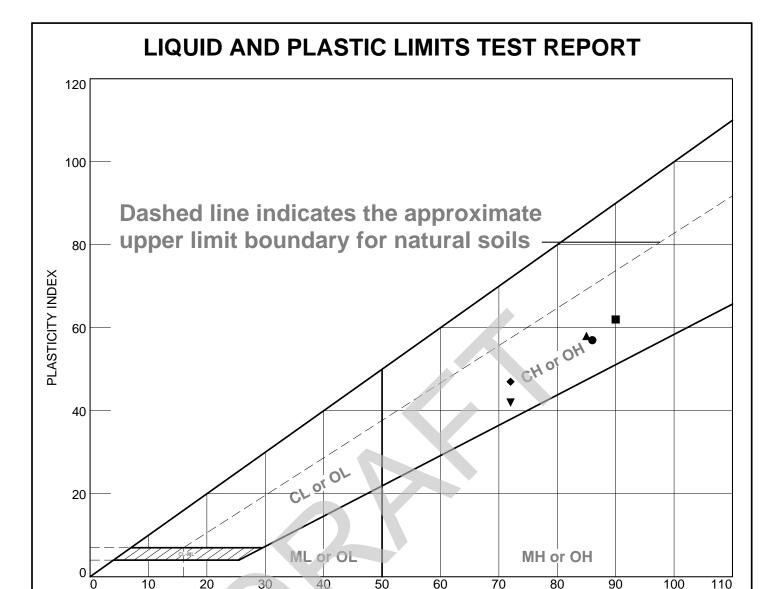
20

30

40

Client: GeoEngineers

Project: Mid Barataria Diversion


Baton Rouge, LA

Project No.: 04.55124092

90

100

110

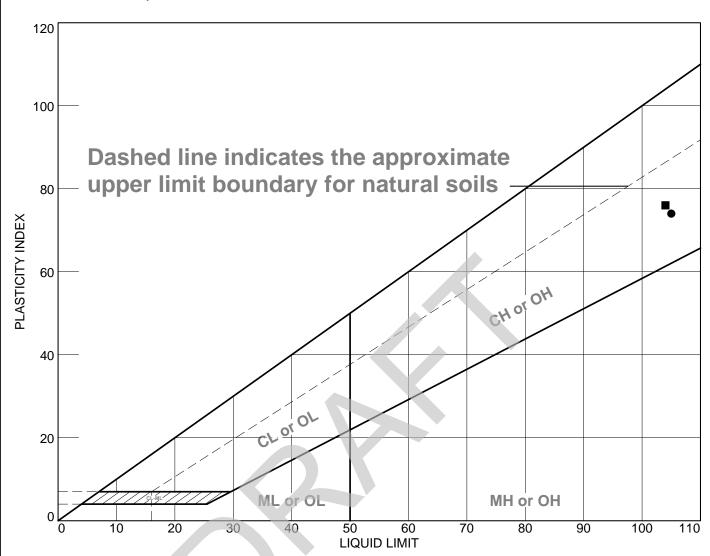
	SOIL DATA												
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS					
•	NL-3A	NA	93.8		29	86	57	CH4					
•	NL-3A	NA	97		28	90	62	CH4					
A	NL-3A	NA	103		27	85	58	CH4					
•	NL-3A	NA	106		25	72	47	СН3					
▼	NL-3A	NA	109		30	72	42	СНЗ					

LIQUID LIMIT

Fugro Consultants, Inc.

Client: GeoEngineers

Project: Mid Barataria Diversion


Figure

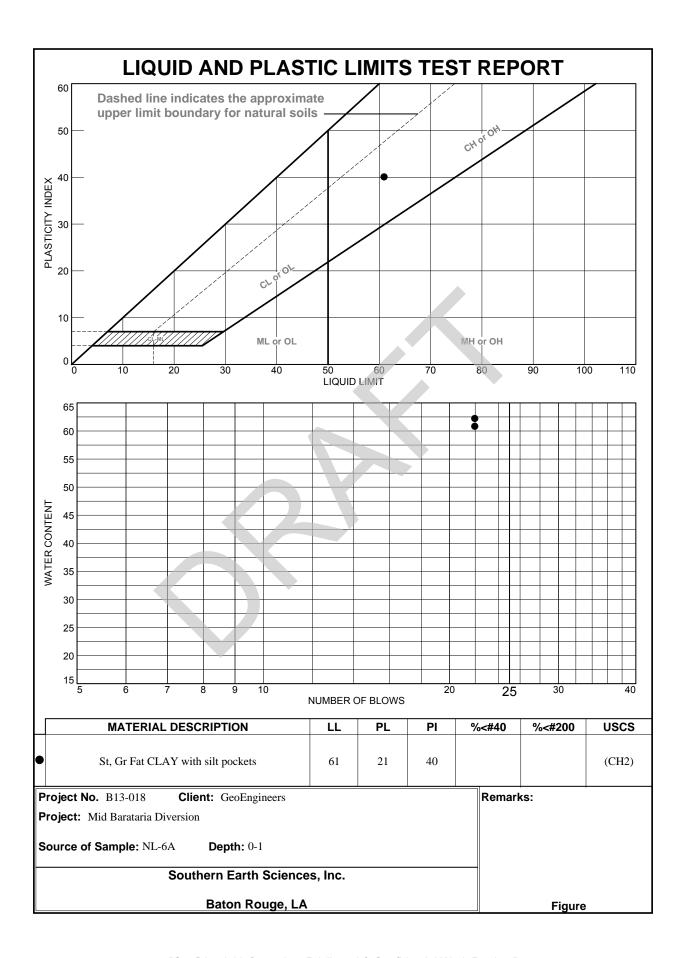
Baton Rouge, LA

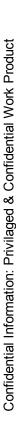
Tested By: SS

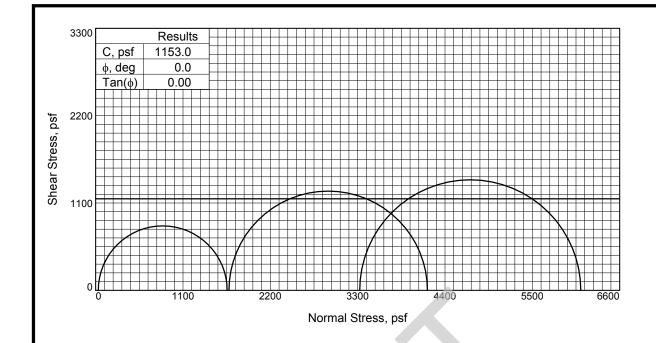
Project No.: 04.55124092

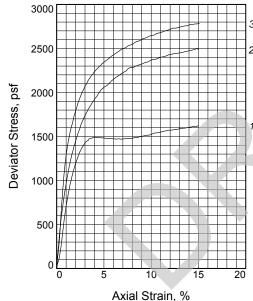
	SOIL DATA											
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs				
•	NL-3A	NA	121		31	105	74	CH4				
•	NL-3A	NA	131		28	104	76	СН				

Fugro Consultants, Inc.


Client: GeoEngineers


Project: Mid Barataria Diversion


Baton Rouge, LA


Project No.: 04.55124092

Figure

	2500		1	1	t		Ļ		_	_											2
	2000	Н	+	+	+		K					-	F	F	L						_
		H	\top	Ť	\forall	\vdash	t,							Н	Н					П	
•			_	\downarrow	1		K														
S	2000	Н	+	A	+	1	\vdash	H	_		_			H	H	H	H			Н	
~		H	7	Ή,	1		H								Н					П	
SS			1	1																	
Ę		Н	11.	4	+	_								L	-	И					1
Ś	1500	Н	H	+	+	┝	-	-	_	_					Н			\vdash	\vdash		
Deviator Stress, psf			1	1	I																
at		Ш	11	+	\perp		L											L			
`≅		Н	Н	+	+	\vdash	\vdash	H									H				
صّ	1000	Ш	/1	Ť	$^{+}$	T	T	Т						Н						П	
		Ш	Д	T	\perp			L									V				
		Ш	+	+	+	\vdash			-									_			
	500	Ш	+	†	+											h			À,		
	500	Ш		T																	
		₩	+	+	+	H								L			H			Н	
		₩	+	+	+	\vdash	\vdash						\vdash		Н			\vdash		Н	
	0			t	t																
		0				5				1	0				1	5			2	20	
							A	xia	al	Si	tra	air	١,	%)						

Tvpe	of	Test:
	v	1036

Unconsolidated Undrained Sample Type: Undistrubed

Description: St, Gr Fat CLAY with silt

pockets (CH2)

LL= 61 **PL=** 21 **PI=** 40 **Assumed Specific Gravity=** 2.75

Remarks: Failure Type:

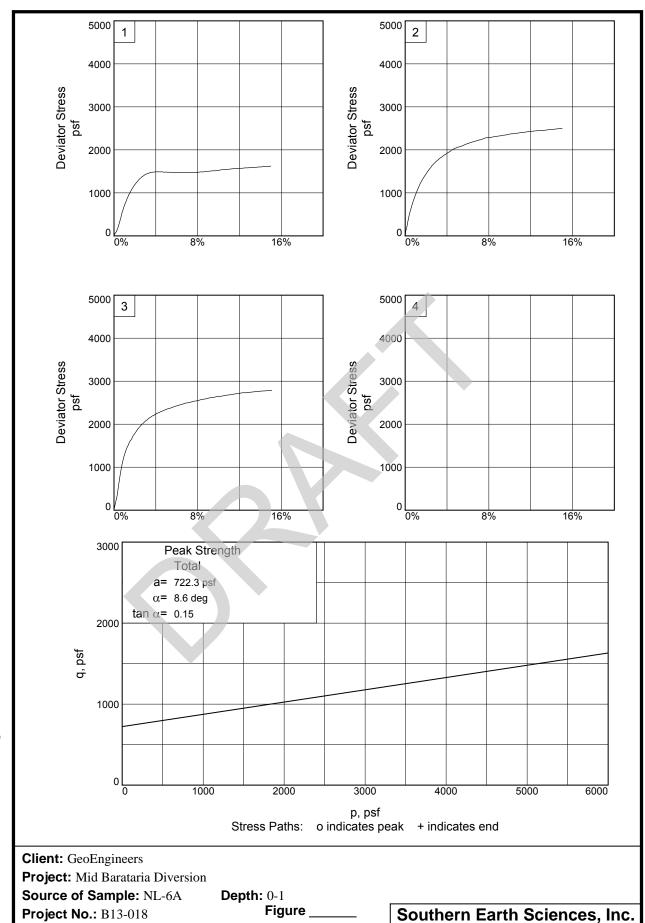
1 45 Degree Shear

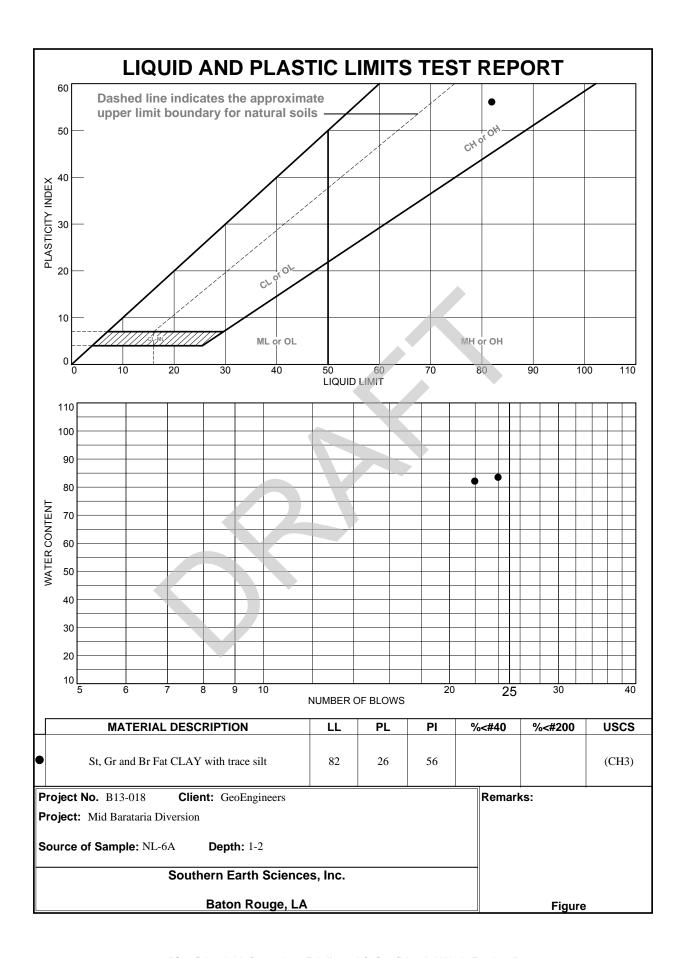
2 Bulge 3 Bulge

Figure

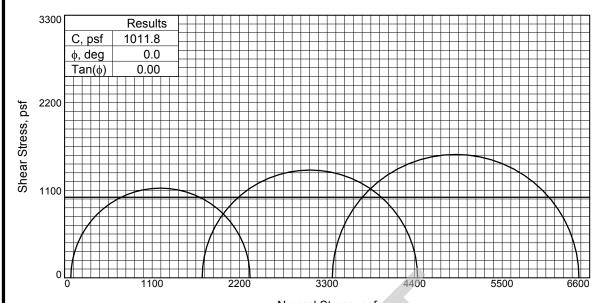
3	Sa	mple No.	1	2	3	
J		Water Content, %	27.9	27.7	30.3	
2		Dry Density, pcf	88.0	92.1	90.3	
	Initia	Saturation, %	80.8			
	Ī	Void Ratio	0.9502			
		Diameter, in.	1.387			
		Height, in.	2.803	2.803	2.803	
1		Water Content, %	34.6	31.4	32.8	
	;;	Dry Density, pcf	88.0	92.1	90.3	
	Fest	Saturation, %	100.0	100.0	100.0	
	Ąţ	Void Ratio	0.9502	0.8638	0.9009	
	_	Diameter, in.	1.387			
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	15.017	15.033	15.017	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	0.230	11.660	23.100	
	Fa	il. Stress, psf	1623.1	2499.8	2784.2	
	5	Strain, %	15.0	14.8	15.1	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	1656.2	4178.9	6110.6	
	σ_3	Failure, psf	33.1	1679.0	3326.4	
	_					

Client: GeoEngineers

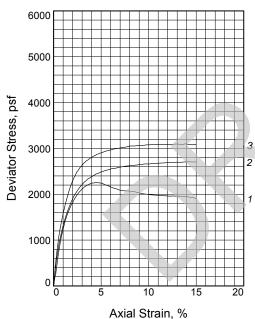

Project: Mid Barataria Diversion


Source of Sample: NL-6A **Depth:** 0-1

Proj. No.: B13-018 Date Sampled: 6/4/13


> TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

Tested By: MP



Normal Stress, psf

Type of Test:	
Unconsolidated Undrained	
Sample Type: Undistrubed	

Description: St, Gr and Br Fat CLAY with

trace silt (CH3)

LL= 82 PL= 26 Pl= 56 Assumed Specific Gravity= 2.75

Remarks: Failure Type:

1 SLS 2 Bulge 3 Bulge

Figure ____

Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Saturation, % Void Ratio Diameter, in. Height, in. Strain rate, in./min. Back Pressure, psi Cell Pressure, psi Cell Pressure, psi Strain, % Ult. Stress, psf Strain, % Strain, % Strain rate Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Strain, % Str		Sa	mple No.	1	2	3	
Saturation, % 97.5 92.2 88.8 1.0298 1.0680 1.0009 Diameter, in. 1.381 1.403 1.405 Height, in. 2.803 2.			Water Content, %	36.5	35.8	32.3	
Diameter, in. Height, in. 2.803 2.803 2.803 Water Content, % 37.4 38.8 36.4 Dry Density, pcf 84.6 83.0 85.8 Saturation, % 100.0 100.0 100.0 Void Ratio 1.0298 1.0680 1.0009 Diameter, in. Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % G1 Failure, psf 2331.2 4437.4 6465.5			Dry Density, pcf	84.6	83.0	85.8	
Diameter, in. Height, in. 2.803 2.803 2.803 Water Content, % 37.4 38.8 36.4 Dry Density, pcf 84.6 83.0 85.8 Saturation, % 100.0 100.0 100.0 Void Ratio 1.0298 1.0680 1.0009 Diameter, in. Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % G1 Failure, psf 2331.2 4437.4 6465.5		lial	Saturation, %	97.5	92.2	88.8	
Height, in. 2.803 2.803 2.803 Water Content, % 37.4 38.8 36.4 Dry Density, pcf 84.6 83.0 85.8 Saturation, % 100.0 100.0 100.0 Void Ratio 1.0298 1.0680 1.0009 Diameter, in. 1.381 1.403 1.405 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % G1 Failure, psf 2331.2 4437.4 6465.5		<u>-</u>	Void Ratio	1.0298	1.0680	1.0009	
Water Content, % 37.4 38.8 36.4 Dry Density, pcf 84.6 83.0 85.8 Saturation, % 100.0 100.0 100.0 Void Ratio 1.0298 1.0680 1.0009 Diameter, in. 1.381 1.403 1.405 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % G1 Failure, psf 2331.2 4437.4 6465.5			Diameter, in.	1.381	1.403	1.405	
Dry Density, pcf Saturation, % 100.0 100			Height, in.	2.803	2.803	2.803	
2 Saturation, % 100.0 10			Water Content, %	37.4	38.8	36.4	
Diameter, in. 1.381 1.403 1.405);	Dry Density, pcf	84.6	83.0	85.8	
Diameter, in. 1.381 1.403 1.405	2	<u>e</u>	Saturation, %	100.0	100.0	100.0	
Diameter, in. 1.381 1.403 1.405		- -	Void Ratio	1.0298	1.0680	1.0009	
Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % Tailure, psf 2331.2 4437.4 6465.5	1	`	•			1.405	
Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % σ₁ Failure, psf 2331.2 4437.4 6465.5	,		Height, in.	2.803	2.803	2.803	
Cell Pressure, psi 0.540 12.010 23.370 Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % σ₁ Failure, psf 2331.2 4437.4 6465.5		Str	ain rate, in./min.	1.000	1.000	1.000	
Fail. Stress, psf 2253.4 2707.9 3100.2 Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % 51 Failure, psf 2331.2 4437.4 6465.5		Ва	ck Pressure, psi	0.000	0.000	0.000	
Strain, % 4.6 14.3 13.8 Ult. Stress, psf Strain, % σ₁ Failure, psf 2331.2 4437.4 6465.5		Се	II Pressure, psi	0.540	12.010	23.370	
Ult. Stress, psf Strain, % σ ₁ Failure, psf 2331.2 4437.4 6465.5		Fai	I. Stress, psf	2253.4	2707.9	3100.2	
Strain, % σ ₁ Failure, psf 2331.2 4437.4 6465.5		5	Strain, %	4.6	14.3	13.8	
σ ₁ Failure, psf 2331.2 4437.4 6465.5		Ult	. Stress, psf				
		5	Strain, %				
Tollura not 77.9 1720 4 2265 2		σ_1	Failure, psf	2331.2	4437.4	6465.5	
σ_3 Failure, psf 77.8 1729.4 3365.3		σ_{3}	Failure, psf	77.8	1729.4	3365.3	

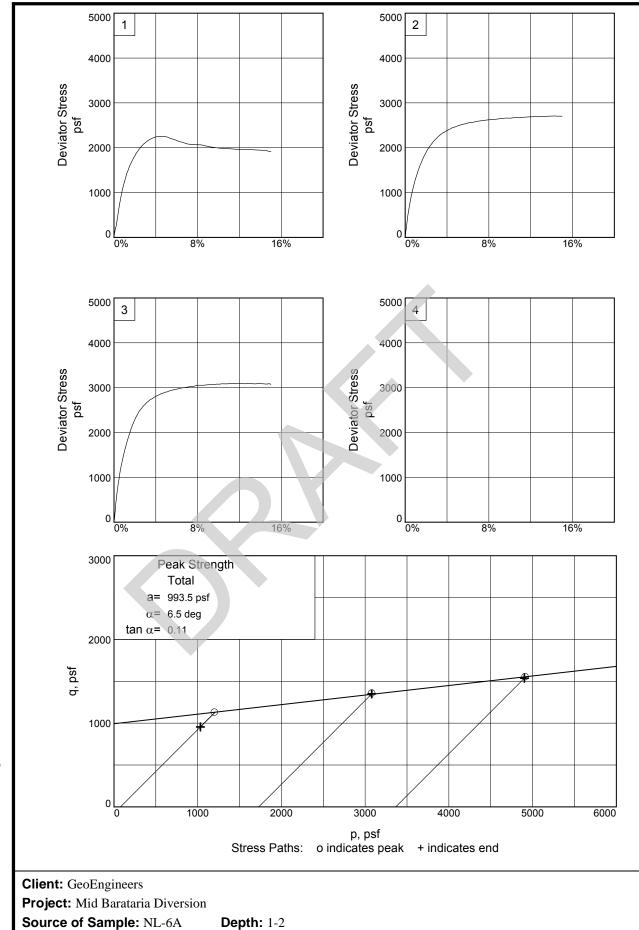
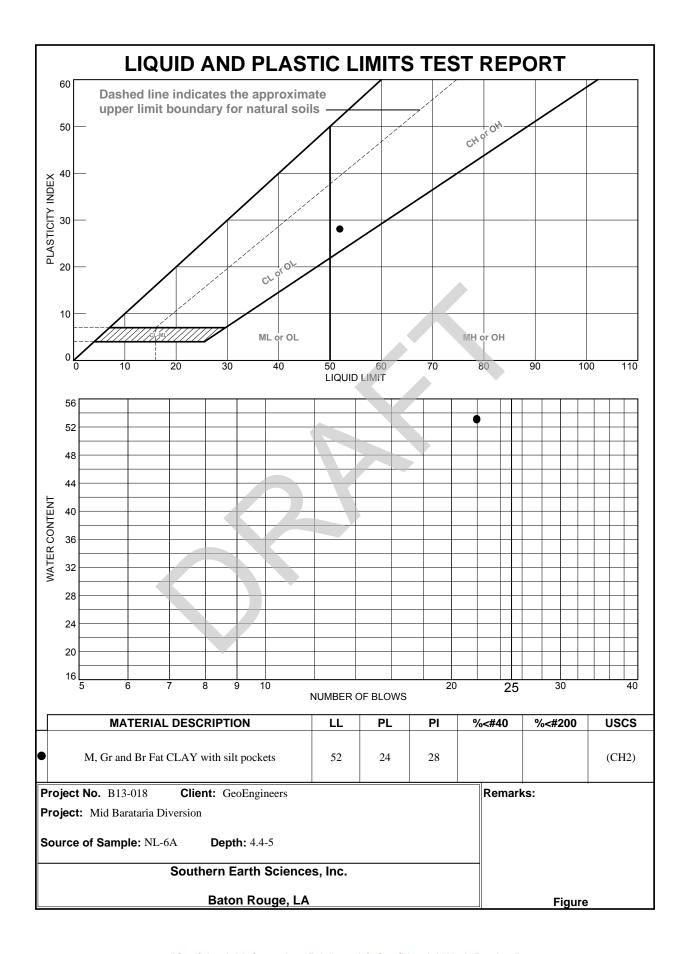
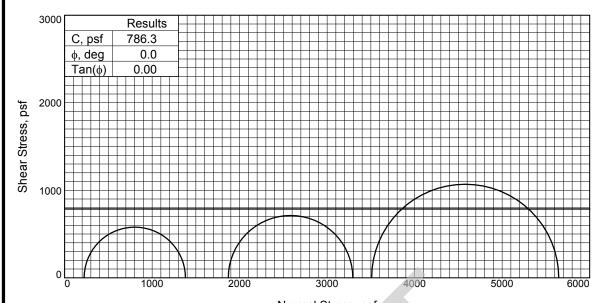
Client: GeoEngineers

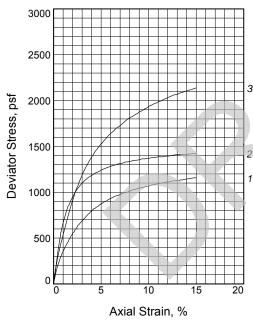
Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 1-2

TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

Project No.: B13-018


Figure _

Normal Stress, psf

	Sa	mple No.	1	2	3	
		Water Content, %	39.7	41.6	33.1	
		Dry Density, pcf	81.7	78.5	88.5	
	nitial	Saturation, %	99.2	96.6	96.8	
3	2	Void Ratio	1.1005	1.1856	0.9397	
		Diameter, in.	1.402	1.399	1.397	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	40.0	43.1	34.2	
)	ot	Dry Density, pcf	81.7	78.5	88.5	
	At Test	Saturation, %	100.0	100.0	100.0	
1	- ₽	Void Ratio	1.1005	1.1856	0.9397	
	`	Diameter, in.	1.402			
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	15.033	15.000	15.017	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	1.550	12.990	24.370	
	Fa	il. Stress, psf	1157.5	1423.0	2137.1	
	5	Strain, %	14.8	15.0	15.0	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	1380.7	3293.6	5646.4	
	σ_{3}	Failure, psf	223.2	1870.6	3509.3	

Type of Test:

Unconsolidated Undrained

Sample Type: Undistrubed

Description: M, Gr and Br Fat CLAY with

silt pockets (CH2)

LL= 52 PL= 24 PI= 28 Assumed Specific Gravity= 2.75

Remarks: Failure Type:

1 60 Degree Shear

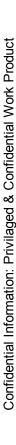
2 Bulge

3 Bulge

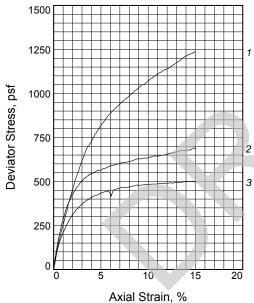
Figure

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 4.4-5


TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA


Figure

Sample No.

1			Water Content, %	30.9	37.9	44.0	
ł	1		Dry Density, pcf	88.1	80.5	73.2	
1		Initia	Saturation, %	89.6	92.1	89.9	
1		Ini	Void Ratio	0.9481	1.1316	1.3469	
ł			Diameter, in.	1.407	1.397	1.396	
1			Height, in.	2.803	2.803	2.803	
١			Water Content, %	34.5	41.2	49.0	
1		ìt	Dry Density, pcf	88.1	80.5	73.2	
ł	2	est	Saturation, %	100.0	100.0	100.0	
ı		ĄĖ	Void Ratio	0.9481	1.1316	1.3469	
ł	3	1	Diameter, in.	1.407	1.397	1.396	
1			Height, in.	2.803	2.803	2.803	
١	,	Str	ain rate, in./min.	15.017	15.017	15.017	
1		Ва	ck Pressure, psi	0.000	0.000	0.000	
1		Се	II Pressure, psi	2.190	13.680	25.050	
1		Fa	il. Stress, psf	1235.7	691.5	500.0	
)		5	Strain, %	14.9	14.8	14.6	
		Ult	. Stress, psf				
		5	Strain, %				
		σ1	Failure, psf	1551.1	2661.4	4107.2	
		σ_3	Failure, psf	315.4	1969.9	3607.2	

2

3

Type of Test:

Unconsolidated Undrained Sample Type: Undistrubed

Description: So, Gr Lean CLAY with clay

pockets (CL)

LL= 47 **PL=** 21 **PI=** 26 **Assumed Specific Gravity=** 2.75

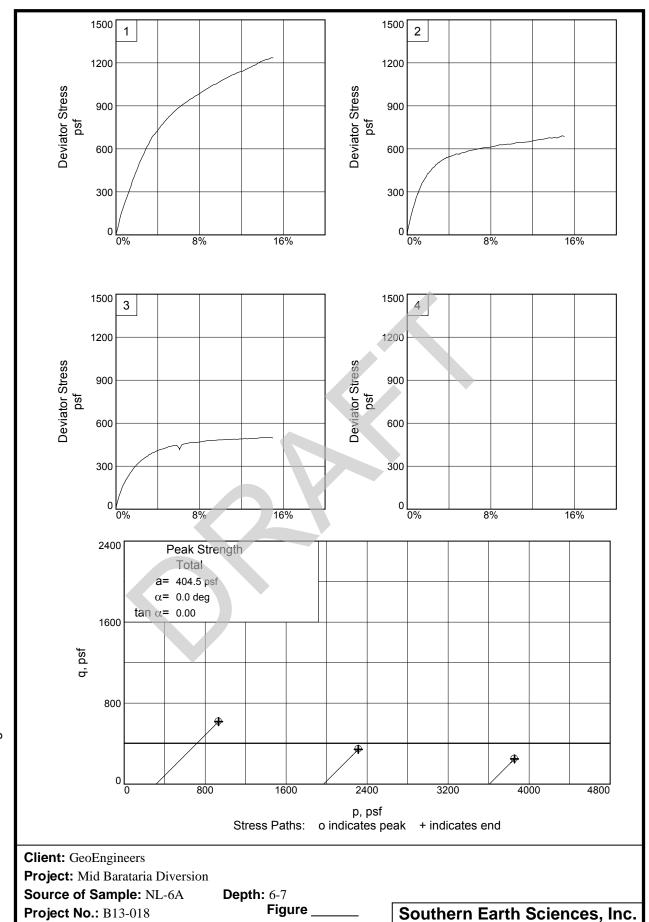
Remarks: Failure Type:

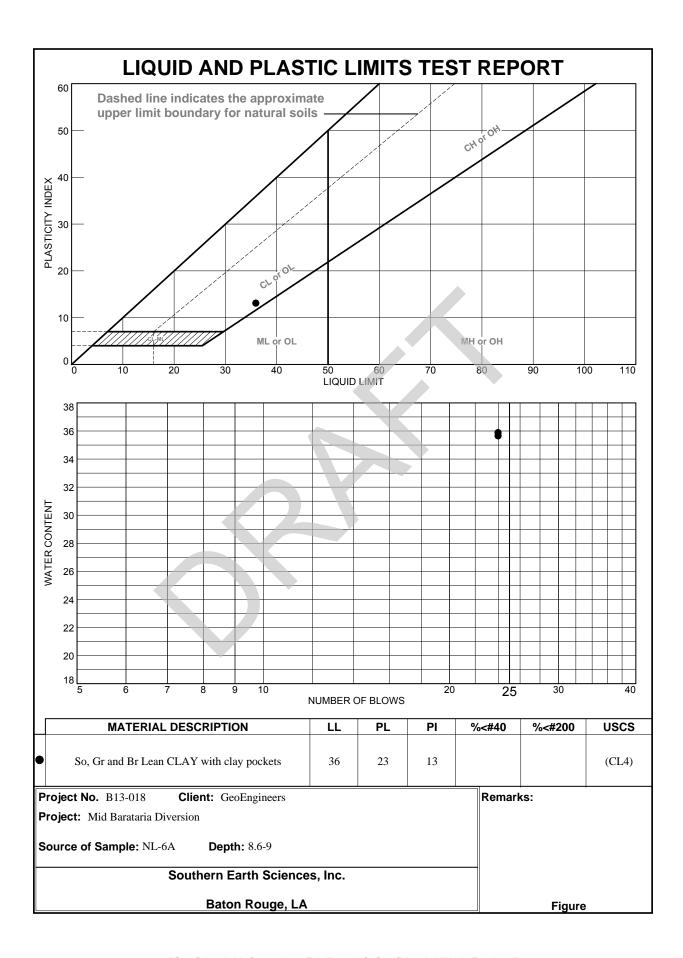
Bulge

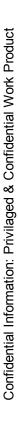
UU ran on Lean CLAY portion of sample

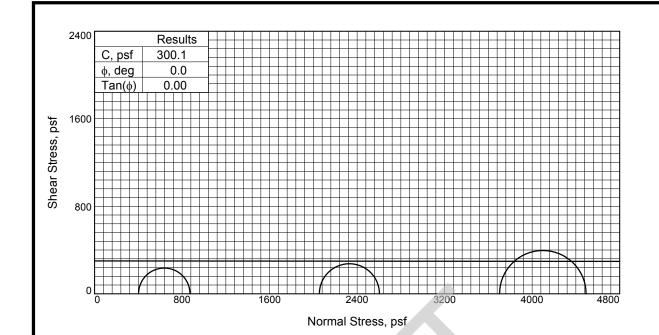
Figure

Client: GeoEngineers

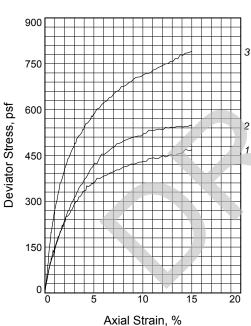

Project: Mid Barataria Diversion


Source of Sample: NL-6A **Depth:** 6-7


Proj. No.: B13-018 Date Sampled: 6/4/13


> TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

Tested By: MP



Sample No.

3		Water Content, %	47.9	46.2	41.8	
		Dry Density, pcf	72.1	72.8	77.5	
	Initial	Saturation, %	95.4	93.6	94.7	
	lni	Void Ratio	1.3795	1.3569	1.2145	
		Diameter, in.	1.409	1.354	1.401	
2		Height, in.	2.803	2.803	2.803	
1		Water Content, %	50.2	49.3	44.2	
	ب	Dry Density, pcf	72.1	72.8	77.5	
	At Test	Saturation, %	100.0	100.0	100.0	
	\t 1	Void Ratio	1.3795	1.3569	1.2145	
	1	Diameter, in.	1.409	1.354	1.401	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	ll Pressure, psi	2.790	14.270	25.710	
	Fai	I. Stress, psf	470.1	549.0	790.8	
	5	Strain, %	14.4	14.9	15.0	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	871.9	2603.9	4493.0	
	σ_3	Failure, psf	401.8	2054.9	3702.2	

Type of Test:

Unconsolidated Undrained

Sample Type: Undistrubed

Description: So, Gr and Br Lean CLAY with

clay pockets

PL= 23 **PI=** 13 **LL=** 36

Assumed Specific Gravity= 2.75

Remarks: Failure Type:

1 Bulge

2 Bulge

3 Bulge

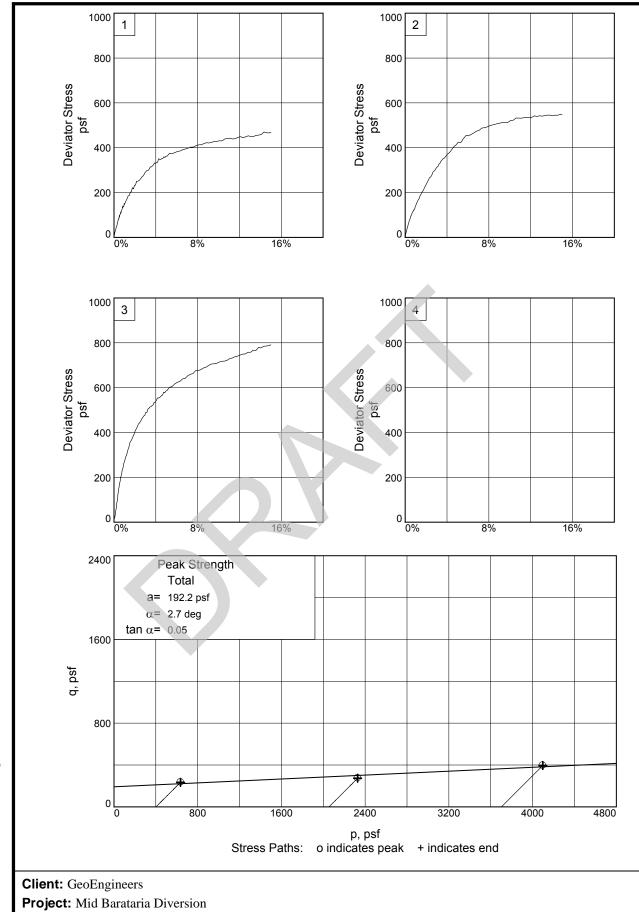
Figure

Client: GeoEngineers

Project: Mid Barataria Diversion

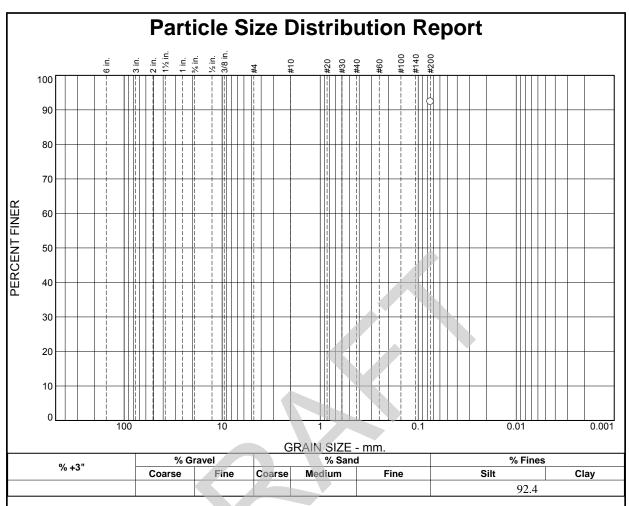
Source of Sample: NL-6A

Depth: 8.6-9


2

3

Proj. No.: B13-018 **Date Sampled:** 6/4/13 TRIAXIAL SHEAR TEST REPORT


Southern Earth Sciences, Inc. Baton Rouge, LA

"Confidential Information; Privileged & Confidential Work Product"

Source of Sample: NL-6A Depth: 8.6-9

Project No.: B13-018 Figure Southern Earth Sciences, Inc.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	92.4		
*			
* SESI			

Material Description

Alternating layers of Gr CLAY, SILT and SILTY SAND

PI=

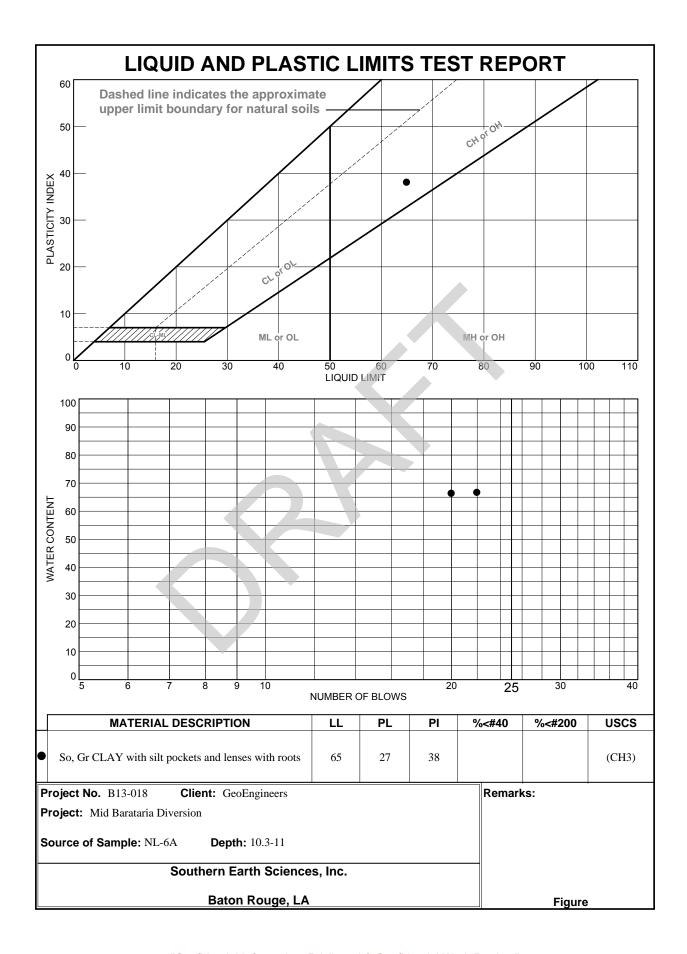
Date:

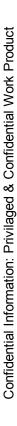
Atterberg Limits
PL= LL=

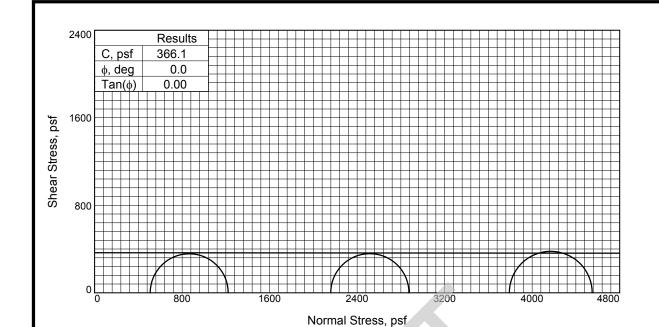
 $\begin{array}{ccc} \text{USCS=} & \text{(ML)} & \begin{array}{c} \text{Classification} \\ \text{AASHTO=} \end{array} \end{array}$

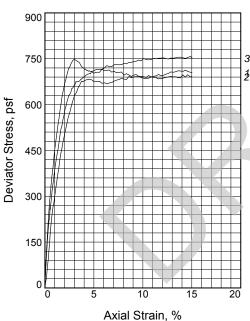
Remarks

Moisture Content: 29.3%


Source of Sample: NL-6A Depth: 9.6-10.3


Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers


Project: Mid Barataria Diversion

Project No: B13-018 Figure

Type o	of T	est:
--------	------	------

Unconsolidated Undrained

Sample Type: Undistrubed

Description: So, Gr CLAY with silt pockets

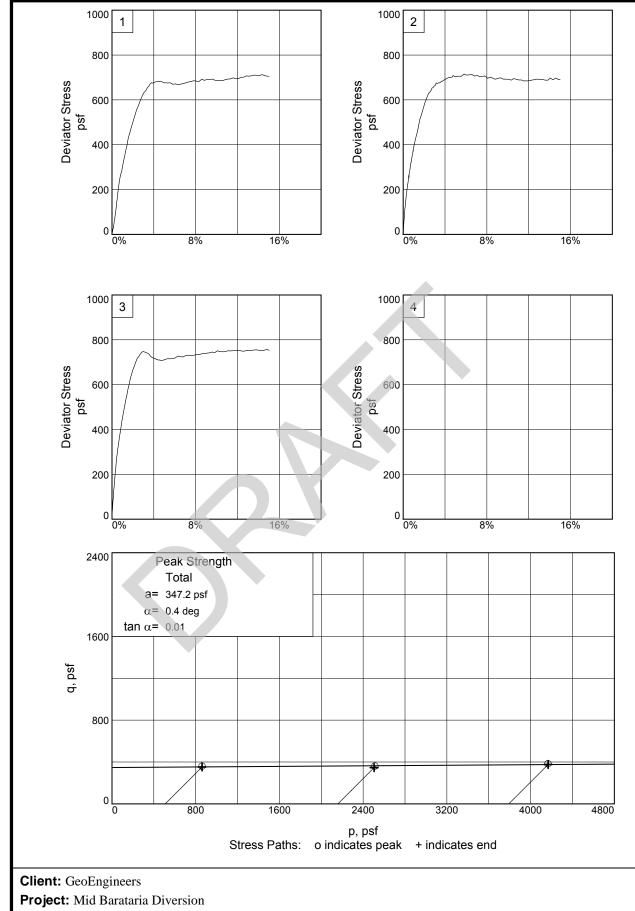
and lenses with roots (CH3)

LL= 65 PL= 27 Pl= 38 Assumed Specific Gravity= 2.75

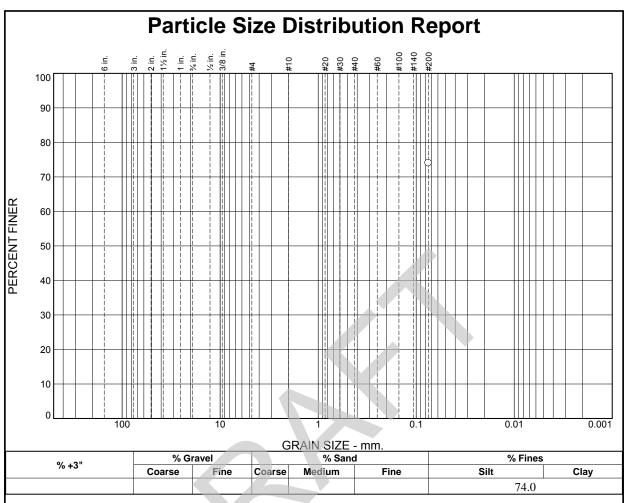
Remarks: Failure Type:

Bulge

Figure			


Dry Density, pcf	.393 .803 57.8 66.3
Saturation, % 98.9 98.3 98.3 98.3 98.3 98.3 98.3 98.3	99.3 5890 .393 .803 57.8 66.3
Diameter, in. Height, in. 2.803 2.803 2 Water Content, % 59.3 58.5 Dry Density, pcf 65.3 65.8 Saturation, % 100.0 100.0 100.0 1000 1000 1000 1000	5890 .393 .803 57.8 66.3
Diameter, in. Height, in. 2.803 2.803 2 Water Content, % 59.3 58.5 Dry Density, pcf 65.3 65.8 Saturation, % 100.0 100.0 100.0 1000 1000 1000 1000	.393 .803 57.8 66.3
Height, in. 2.803 2.803 2 Water Content, % 59.3 58.5 Dry Density, pcf 65.3 65.8 Saturation, % 100.0	.803 57.8 66.3
Water Content, % 59.3 58.5 Dry Density, pcf 65.3 65.8 Saturation, % 100.0 100.0 16 Void Ratio 1.6302 1.6079 1.5 Diameter, in. 1.381 1.391 1 Height, in. 2.803 2.803 2 Strain rate, in./min. 1.000 1.000 1 Back Pressure, psi 0.000 0.000 0 Cell Pressure, psi 3.530 14.990 26 Fail. Stress, psf 712.7 715.3 75	57.8 66.3
Dry Density, pcf 65.3 65.8 Saturation, % 100.0 100.0 100.0 Void Ratio 1.6302 1.6079 1.5 Diameter, in. 1.381 1.391 1 Height, in. 2.803 2.803 2 Strain rate, in./min. 1.000 1.000 1 Back Pressure, psi 0.000 0.000 0 Cell Pressure, psi 3.530 14.990 26 Fail. Stress, psf 712.7 715.3 7	66.3
Saturation, % 100.0 100.	
Diameter, in. 1.381 1.391 1	
Diameter, in. 1.381 1.391 1	0.00
Diameter, in. 1.381 1.391 1	890
Strain rate, in./min. 1.000 1.000 1 Back Pressure, psi 0.000 0.000 0 Cell Pressure, psi 3.530 14.990 26 Fail. Stress, psf 712.7 715.3 7	.393
Back Pressure, psi 0.000 0.000 0 Cell Pressure, psi 3.530 14.990 26 Fail. Stress, psf 712.7 715.3 7	.803
Cell Pressure, psi 3.530 14.990 26 Fail. Stress, psf 712.7 715.3 7	.000
Fail. Stress, psf 712.7 715.3 7.	.000
	.330
Strain % 1/1/1 5.8	57.4
Juani, 70 14.4 3.6	14.8
Ult. Stress, psf	
Strain, %	
σ_1 Failure, psf 1221.1 2873.8 45	
σ_3 Failure, psf 508.3 2158.6 37	48.9

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 10.3-11

> TRIAXIAL SHEAR TEST REPORT Southern Earth Sciences, Inc. Baton Rouge, LA

Southern Earth Sciences, Inc.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	74.0		
		,	

Material Description

Gr SILT with sand and roots

Atterberg Limits LL= PI=

USCS= (ML) Classification AASHTO=

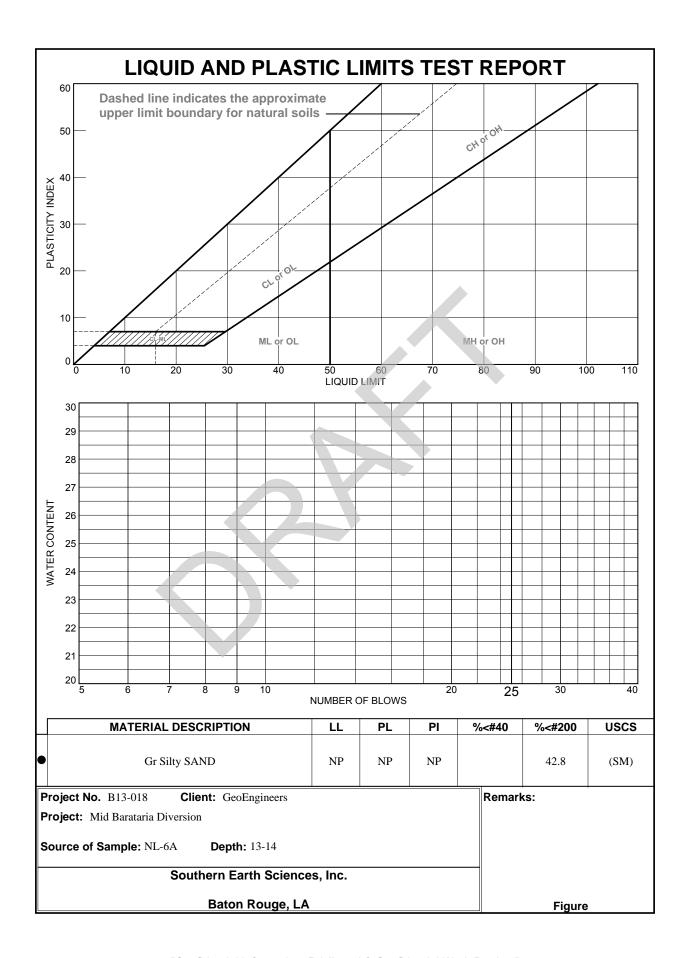
Remarks

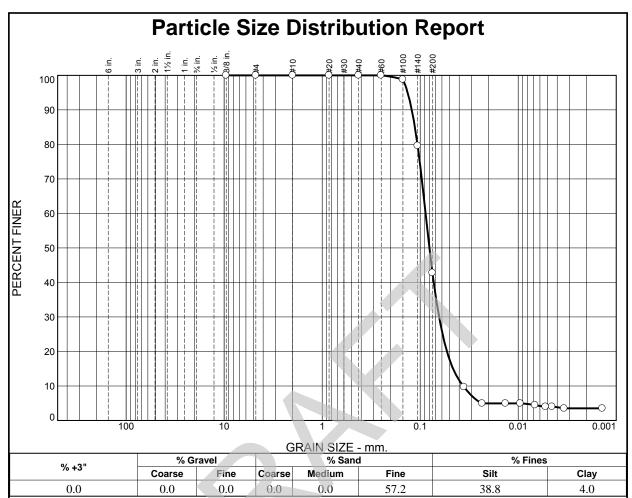
Moisture Content: 28.1%

PL=

* (no specification provided)

Source of Sample: NL-6A Depth: 12.4-13


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

Project No: B13-018 Figure

OLE)/E	DEDOENT	0050 *	D4000
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	100.0		
#100	98.8		
#140	79.6		
#200	42.8		

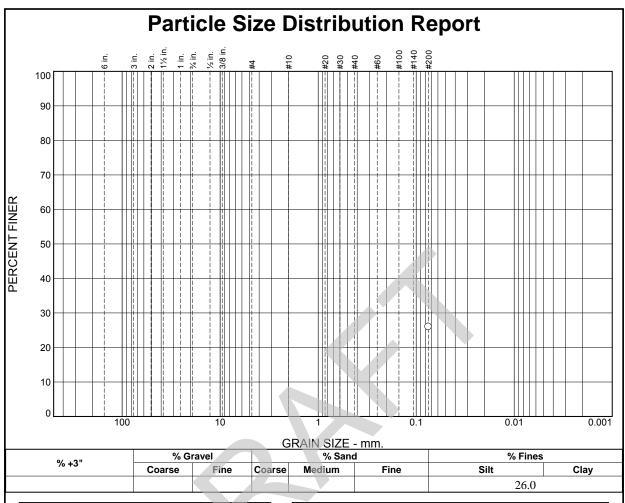
	Material Description	
Gr Silty SAND		
PL= NP	Atterberg Limits LL= NP	PI= NP
USCS= (SM)	Classification AASHTO=	
F.M.=0.01	<u>Remarks</u>	

Source of Sample: NL-6A

SESI

Depth: 13-14

Date:


Figure

Southern Earth Sciences, Inc. Baton Rouge, LA

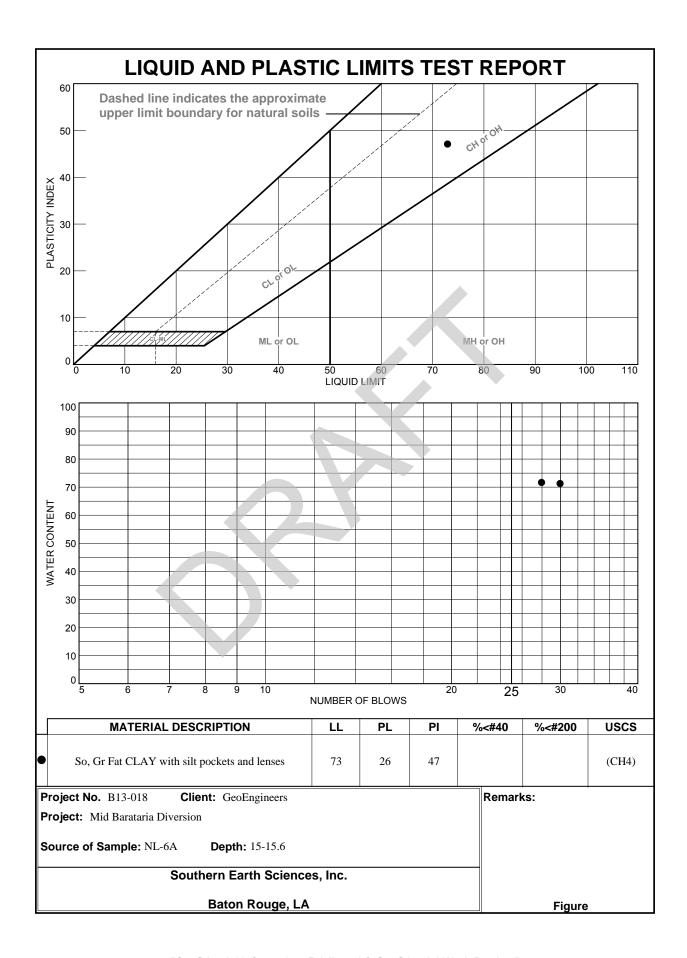
Client: GeoEngineers

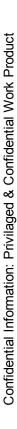
Project: Mid Barataria Diversion

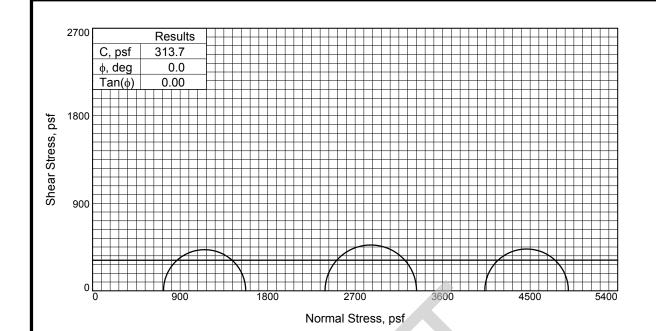
Project No: B13-018

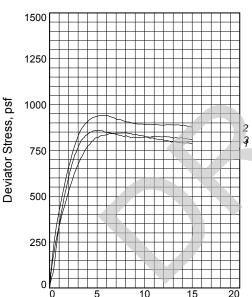
SIEVE	PERCENT	SPEC.*	PASS?		
SIZE	FINER	PERCENT	(X=NO)		
#200	26.0				
* (no specification provided)					

Material Description Gr Silty SAND Atterberg Limits PL= LL= PI= Classification USCS= (SM) AASHTO= Remarks Moisture Content: 25.5%


Source of Sample: NL-6A Depth: 14-15


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

Axial Strain, %

	Sa	mple No.	1	2	3	
		Water Content, %	55.2	56.4	55.5	
		Dry Density, pcf	68.3	67.0	68.3	
	Initial	Saturation, %	99.1	98.2	99.6	
	lni	Void Ratio	1.5581	1.6091	1.5585	
		Diameter, in.	1.396	1.411	1.392	
2		Height, in.	2.803	2.803	2.803	
2		Water Content, %	55.6	57.5	55.7	
	st	Dry Density, pcf	68.3	67.0	68.3	
	At Test	Saturation, %	100.0	100.0	100.0	
	٩ŧ -	Void Ratio		1.6091	1.5585	
	`	Diameter, in.		1.411		
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	5.060	16.600	28.010	
	Fai	il. Stress, psf	845.9	941.5	859.9	
	5	Strain, %	8.1	5.3	4.9	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	1574.6	3331.9	4893.4	
	σ_3	Failure, psf	728.6	2390.4	4033.4	

Type of Test:

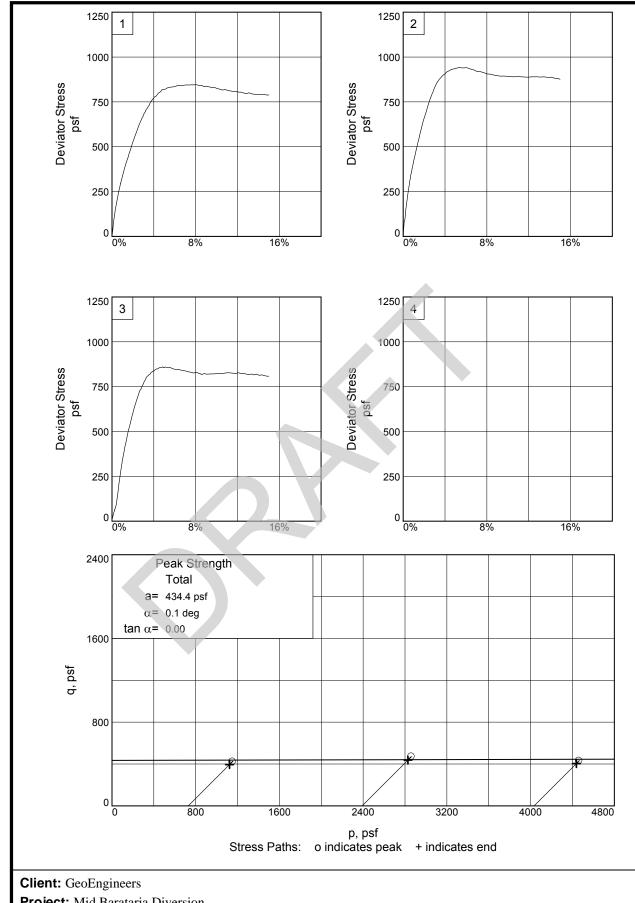
Unconsolidated Undrained

Sample Type: Undistrubed

Description: So, Gr Fat CLAY with silt

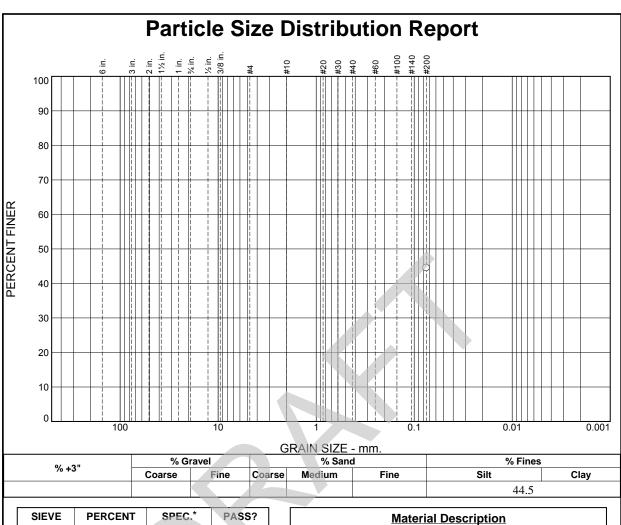
pockets and lenses (CH)

LL= 73 PL= 26 Pl= 47 Assumed Specific Gravity= 2.80


Remarks: Failure Type: 60 Degree Shear

Figure

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 15-15.6

Source of Sample: NL-6A **Depth:** 15-15.6 **Figure** Project No.: B13-018

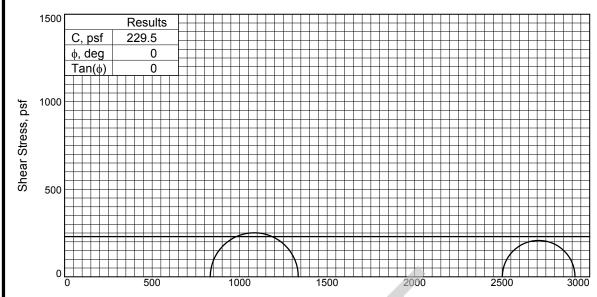
Southern Earth Sciences, Inc.

SIEVE	PERCENT	SPEC.*	PASS?			
SIZE	FINER	PERCENT	(X=NO)			
#200	44.5					
(no sr	(no specification provided)					

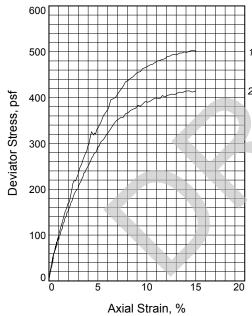
Gr Silty SAND Atterberg Limits PL= LL= PI= Classification USCS= (SM) AASHTO= Remarks Moisture Content: 20.6%

(no specification provided)

Source of Sample: NL-6A Depth: 16.8-17


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

0 🗀 🗀				
0	5	10	15	20
	Ах	kial Strain	, %	
Type of Test Unconsolid		drained		

ı ype	от і	est:
-------	------	------

Sample Type: Undistrubed

Description: vSo, Gr CLAY with sand

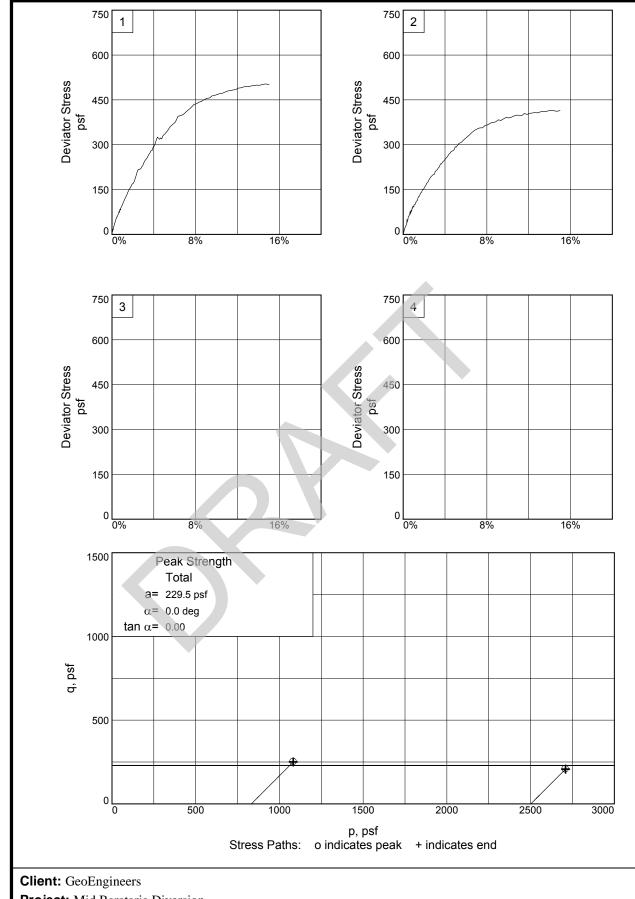
pockets and silt lenses (CH4)

Assumed Specific Gravity= 2.75

Remarks: Failure Type:

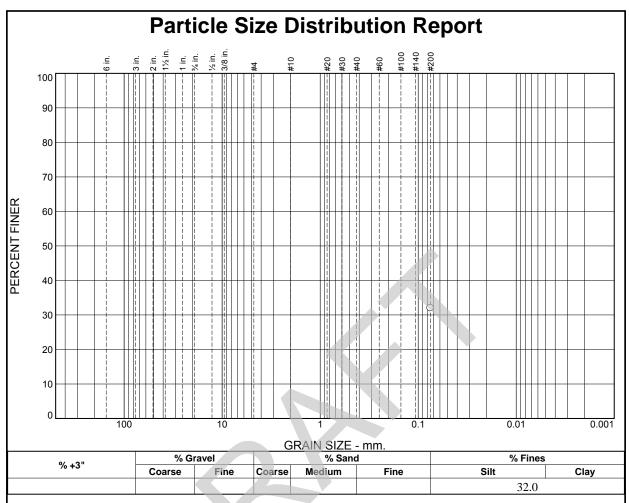
- 1 Bulge
- 2 Bulge
- 3 Could not trim

igure	


	Sample No.		1	2	
1	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	55.3 68.5 100.9 1.5069 1.384 2.803	107.0 1.5485 1.364	
	AtTest	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	54.8 68.5 100.0 1.5069 1.384 2.803	67.4 100.0 1.5485 1.364	
	Ba Ce Fai S Ult	ain rate, in./min. ck Pressure, psi Il Pressure, psi il. Stress, psf Strain, % . Stress, psf Strain, %	502.9 14.6	0.000 17.370 415.0 15.0	
		Failure, psf Failure, psf		2916.3 2501.3	

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: NL-6A **Depth:** 17.3-17.8

Proj. No.: B13-018 **Date Sampled:** 6/4/13

Source of Sample: NL-6A Depth: 17.3-17.8

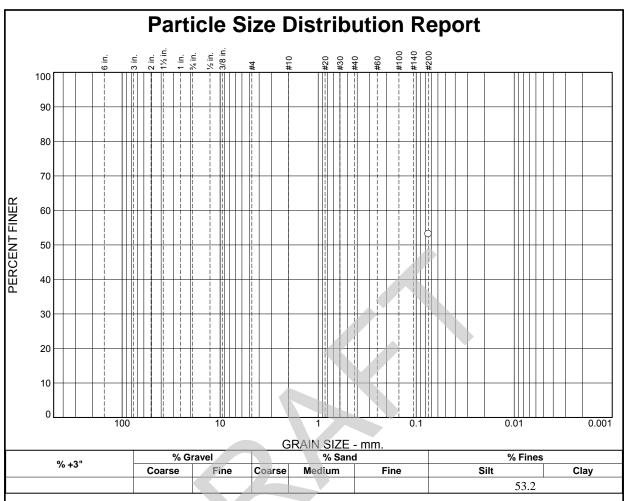
Project No.: B13-018 Figure _____ Southern Earth Sciences, Inc.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	32.0		
* (no sp	pecification provid	led)	

Material Description
Gr Silty SAND

PL= Atterberg Limits
LL= PI=
Classification
USCS= (SM) AASHTO=
Remarks
Moisture Content: 25.2%

(no specification provided)


Source of Sample: NL-6A Depth: 17-17.3

Date:

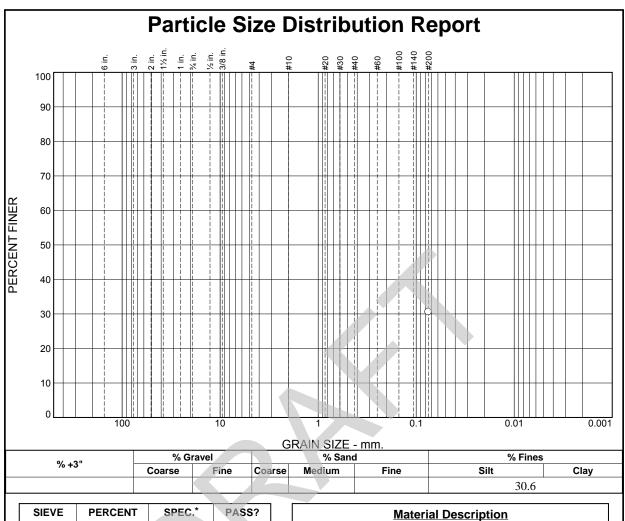
Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	53.2		
*	pecification provi		

Material Description Gr Sandy SILT PL= Atterberg Limits LL= Pl= Classification USCS= (ML) AASHTO= Remarks Moisture Content: 28.9%


Source of Sample: NL-6A Depth: 18-19

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	30.6		
*			

Gr Silty SAND

PL=

Atterberg Limits

LL=

Pl=

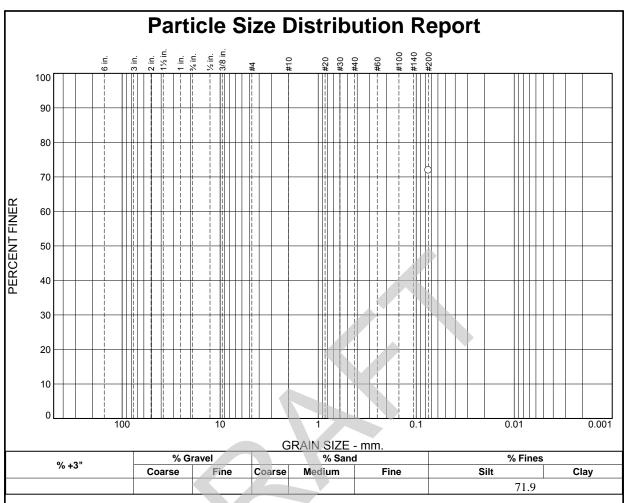
Classification

AASHTO=

Remarks

Moisture Content: 19.2%

(no specification provided)


Source of Sample: NL-6A Depth: 19.3-20

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

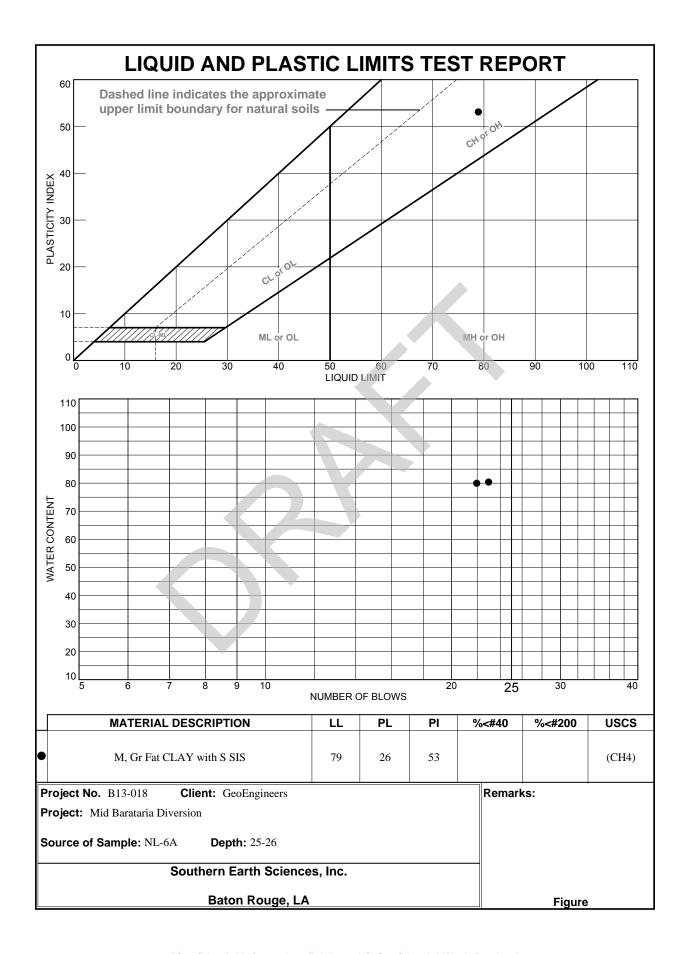
Project: Mid Barataria Diversion

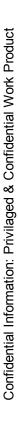
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	71.9		

Material Description Gr SILT with sand and clay Atterberg Limits PL= LL= PI= Classification USCS= (ML) AASHTO= Remarks Moisture Content: 33.1%

Source of Sample: NL-6A

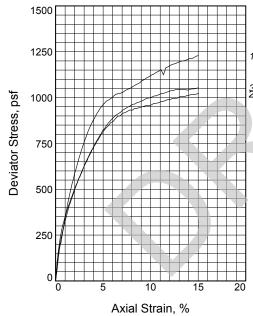
(no specification provided)


Depth: 20-21.5


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers


Project: Mid Barataria Diversion

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

Unconsolidated Undrained

Sample Type: Undistrubed

Description: M, Gr Fat CLAY with sandy silt

lenses (CH4)

LL= 79 **PL=** 26 **PI=** 53 **Assumed Specific Gravity=** 2.70

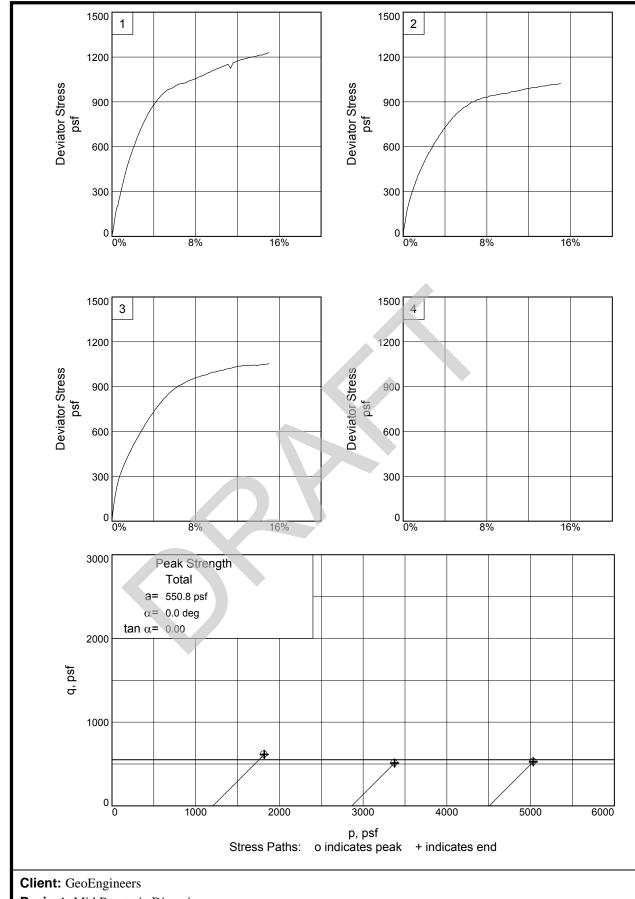
Remarks: Failure Type:

1 Bulge

2 Bulge

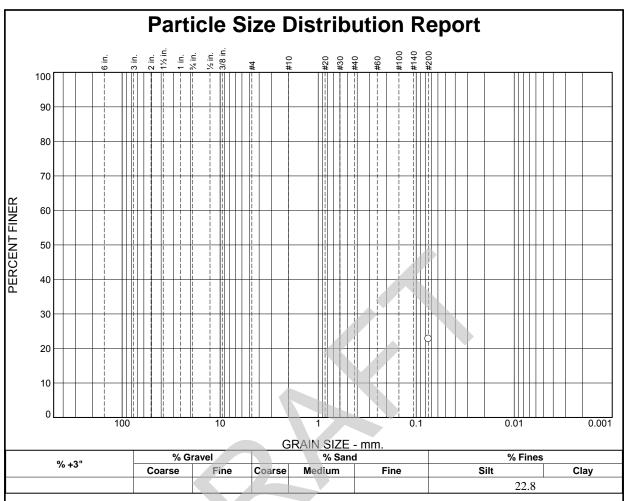
3 45 Degree Shear

Figure


Water Content, % 46.4 41.6 41.4 41.6 Dry Density, pef 78.9 78.4 80.0 8aturation, % 110.3 97.7 101.0 10.0 1.1373 1.1500 1.1061 1.382 1.399 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.393 1.39	
Saturation, % 110.3 97.7 101.0 Void Ratio 1.1373 1.1500 1.1061 Diameter, in. Height, in. 2.803 2	
Diameter, in. Height, in. 2.803 2.803 2.803 Water Content, % 42.1 42.6 41.0 Dry Density, pcf 78.9 78.4 80.0 Saturation, % 100.0 100.0 100.0 Void Ratio 1.1373 1.1500 1.1061 Diameter, in. 1.382 1.399 1.392 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Diameter, in. Height, in. 2.803 2.803 2.803 Water Content, % 42.1 42.6 41.0 Dry Density, pcf 78.9 78.4 80.0 Saturation, % 100.0 100.0 100.0 Void Ratio 1.1373 1.1500 1.1061 Diameter, in. 1.382 1.399 1.392 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Height, in. Height, in. 2.803 2.803 2.803 Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. 2.803 2.803 2.803 1.1000 100.0 100.0 100.0 100.0 100.0 100.0 1.1373 1.1500 1.1061 1.1382 1.399 1.392 1.392 1.399 1.392 1.393 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Water Content, % 42.1 42.6 41.0 Dry Density, pcf 78.9 78.4 80.0 Saturation, % 100.0 100.0 100.0 Void Ratio 1.1373 1.1500 1.1061 Diameter, in. 1.382 1.399 1.392 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Dry Density, pcf 78.9 78.4 80.0 Saturation, % 100.0 100.0 100.0 Void Ratio 1.1373 1.1500 1.1061 Diameter, in. 1.382 1.399 1.392 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Saturation, % 100.0 100.0 100.0 Void Ratio 1.1373 1.1500 1.1061 Diameter, in. 1.382 1.399 1.392 Height, in. 2.803 2.803 2.803 Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Diameter, in. 1.382 1.399 1.392	
Diameter, in. 1.382 1.399 1.392	
Diameter, in. 1.382 1.399 1.392	
Strain rate, in./min. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Cell Pressure, psi 8.370 19.890 31.290 Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Fail. Stress, psf 1228.9 1022.6 1053.4 Strain, % 15.0 15.0 15.0	
Strain, % 15.0 15.0 15.0	
Lilt Strose nef	
Oil. Oiless, psi	
Strain, %	
σ ₁ Failure, psf 2434.2 3886.7 5559.1	
σ_3 Failure, psf 1205.3 2864.2 4505.8	

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: NL-6A **Depth:** 25-26

Proj. No.: B13-018 **Date Sampled:** 6/4/13

Source of Sample: NL-6A Depth: 25-26 Project No.: B13-018 Figure

Figure ____ Southern Earth Sciences, Inc.

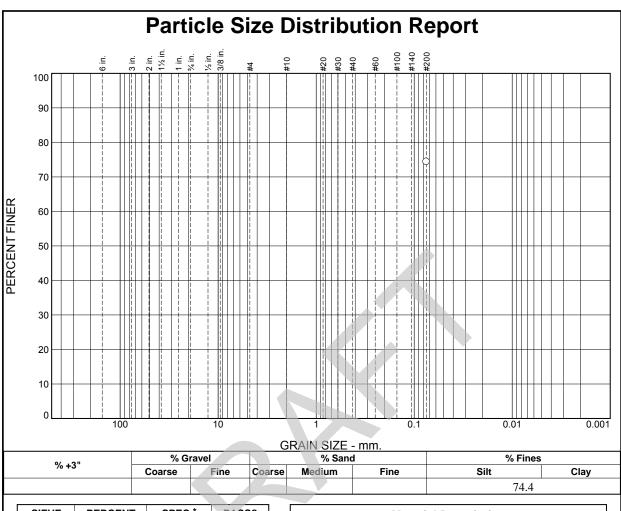
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	22.8		

Gr Silty SAND PL= Atterberg Limits LL= Pl= Classification USCS= (SM) AASHTO=

Material Description

Remarks
Moisture Content: 25.11%

(no specification provided)


Source of Sample: NL-6A Depth: 27-28

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	74.4		
11200	/4.4	[
* .			

Material Description

Gr SILT with sand

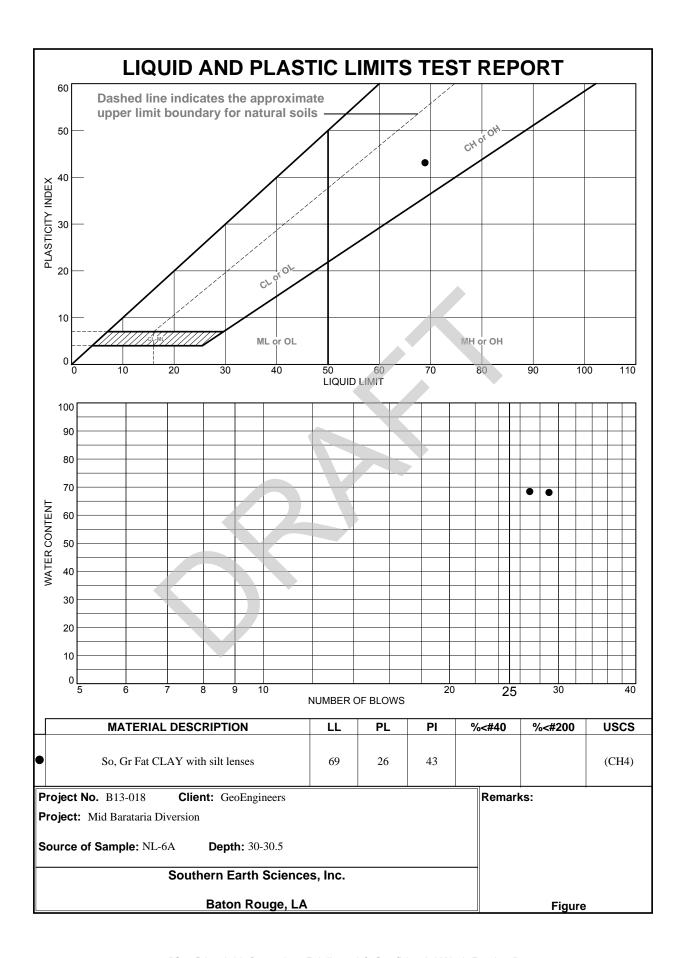
PL= Atterberg Limits
LL= PI=

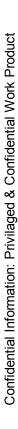
USCS= (CH3) Classification AASHTO=

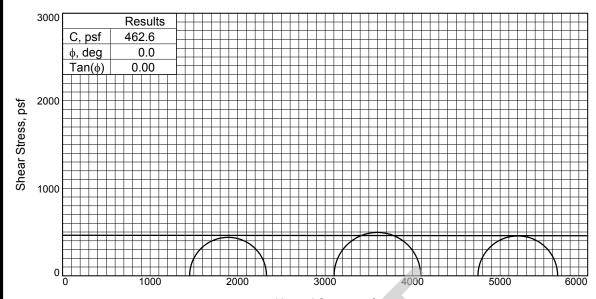
Remarks

Moisture Content: 25.2%

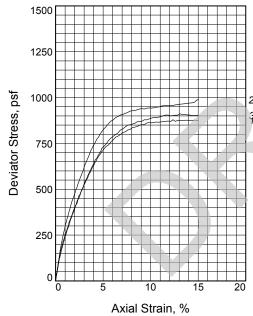
(no specification provided)


Source of Sample: NL-6A Depth: 30.5-31


Date:


Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers


Project: Mid Barataria Diversion

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Unconsolidated Undrained **Sample Type:** Undistrubed

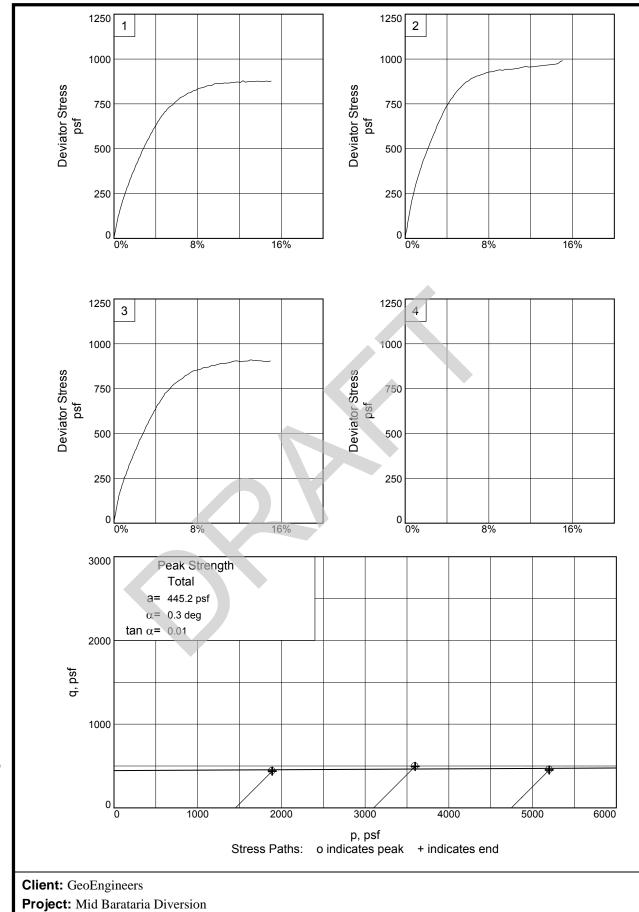
Description: So, Gr Fat CLAY with silt

lenses

LL= 69 PL= 26 Pl= 43 Assumed Specific Gravity= 2.75

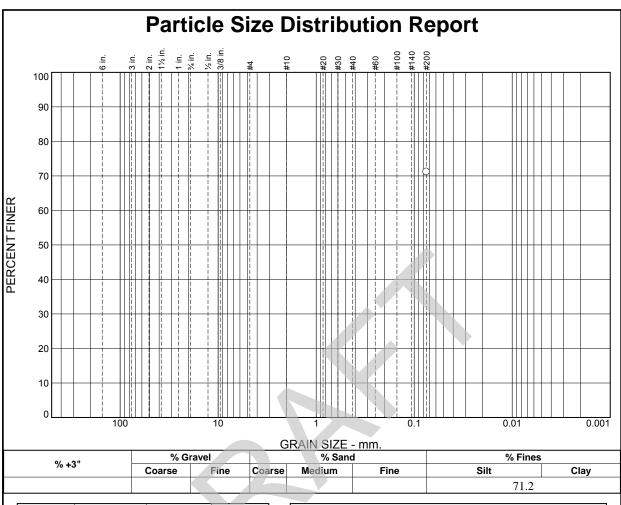
Remarks: Failure Type:

Bulge


rigure

	Sa	mple No.	1	2	3	
		Water Content, %	50.8	51.2	50.8	
		Dry Density, pcf	71.6	71.6	71.6	
	ial	Saturation, %	100.0	100.7	99.9	
	Initial	Void Ratio	1.3970	1.3980	1.3975	
2	\ 	Diameter, in.	1.399	1.402	1.408	
3		Height, in.	2.803	2.803	2.803	
/		Water Content, %	50.8	50.8	50.8	
	st	Dry Density, pcf	71.6	71.6	71.6	
	e.	Saturation, %	100.0	100.0	100.0	
	At Te	Void Ratio	1.3970	1.3980	1.3975	
	1	Diameter, in.	1.399	1.402	1.408	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	10.080	21.540	32.960	
Fa		il. Stress, psf	879.0	990.8	911.1	
	5	Strain, %	12.3	15.0	13.1	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	2330.5	4092.5	5657.3	
	σ_3	Failure, psf	1451.5	3101.8	4746.2	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 30-30.5

Project No.: B13-018

Figure _____ Southern Earth Sciences, Inc.

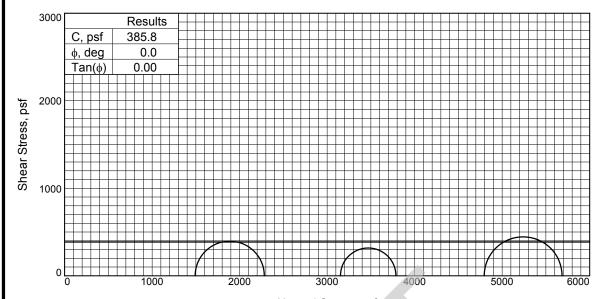
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	71.2	, = 5	(21-110)
11200	71.2		
* (no cr	pecification provide	dad)	I.

Material Description
Gr Silty SAND

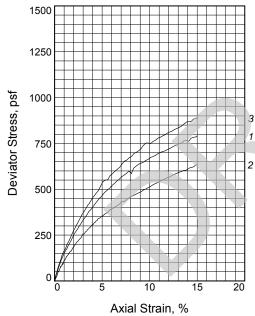
PL= Atterberg Limits
LL= PI=
Classification
USCS= (SM) AASHTO=
Remarks
Moisture Content: 26.1

(no specification provided)

Source of Sample: NL-6A Depth: 31.7-32


Date:

Southern Earth Sciences, Inc. Baton Rouge, LA


Client: GeoEngineers

Project: Mid Barataria Diversion

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

Unconsolidated Undrained

Sample Type: Undistrubed

Description: So, Alternating layers and lenses of Gr CLAY, Silty CLAY, Sandy SILT,

Silty SAND (CL4)

Assumed Specific Gravity= 2.65

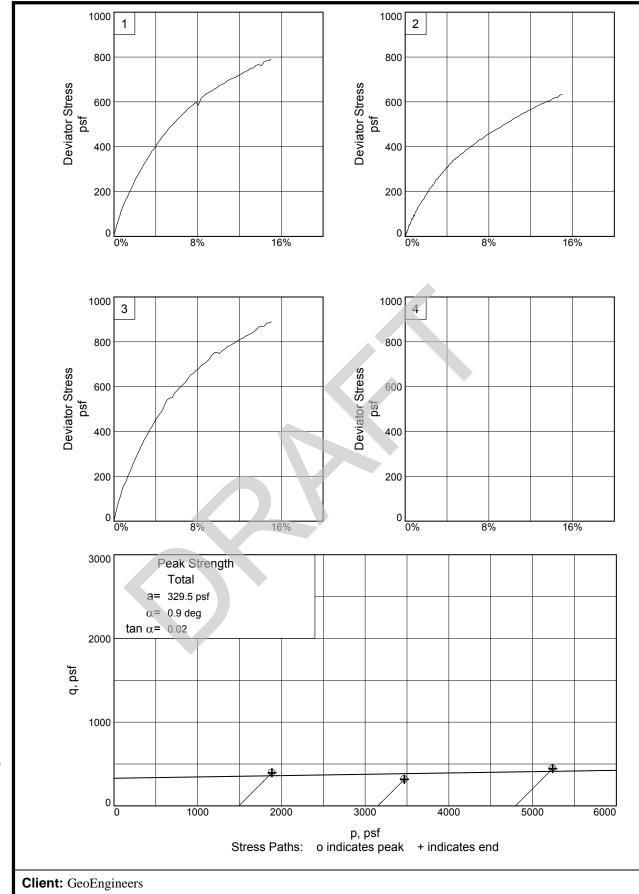
Remarks: Failure Type:

1 Bulge

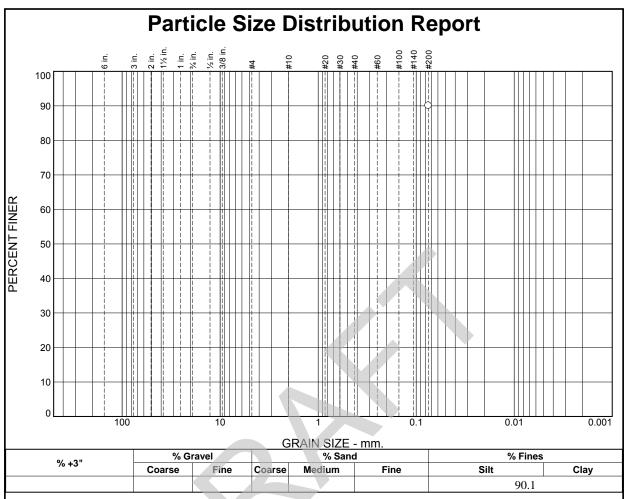
2 Bulge

3 Bulge

Figure


	Sa	mple No.	1	2	3	
		Water Content, %	36.7	35.9	35.3	
		Dry Density, pcf	87.5	86.9	89.0	
	Initial	Saturation, %	109.4	105.1	109.1	
	lni	Void Ratio	0.8901	0.9044	0.8582	
		Diameter, in.	1.352	1.374	1.366	
3		Height, in.	2.803	2.803	2.803	
1		Water Content, %	33.6	34.1	32.4	
1	19	Dry Density, pcf	87.5	86.9	89.0	
2	Fest	Saturation, %	100.0	100.0	100.0	
_	AtT	Void Ratio	0.8901	0.9044	0.8582	
		Diameter, in.	1.352	1.374	1.366	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	10.360	21.890	33.300	
	Fai	I. Stress, psf	790.4	634.1	889.3	
	Strain, %		15.0	15.0	15.0	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	2282.2	3786.3	5684.5	
	σ_3	Failure, psf	1491.8	3152.2	4795.2	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 31-31.3

Proj. No.: B13-018 **Date Sampled:** 6/5/13

Southern Earth Sciences, Inc.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	90.1	3	, 44
11200	70.1		
	· ·		
*			

Material Description

So, Alternating layers and lenses Silty CLAY, Sandy SILT, Silty SAND

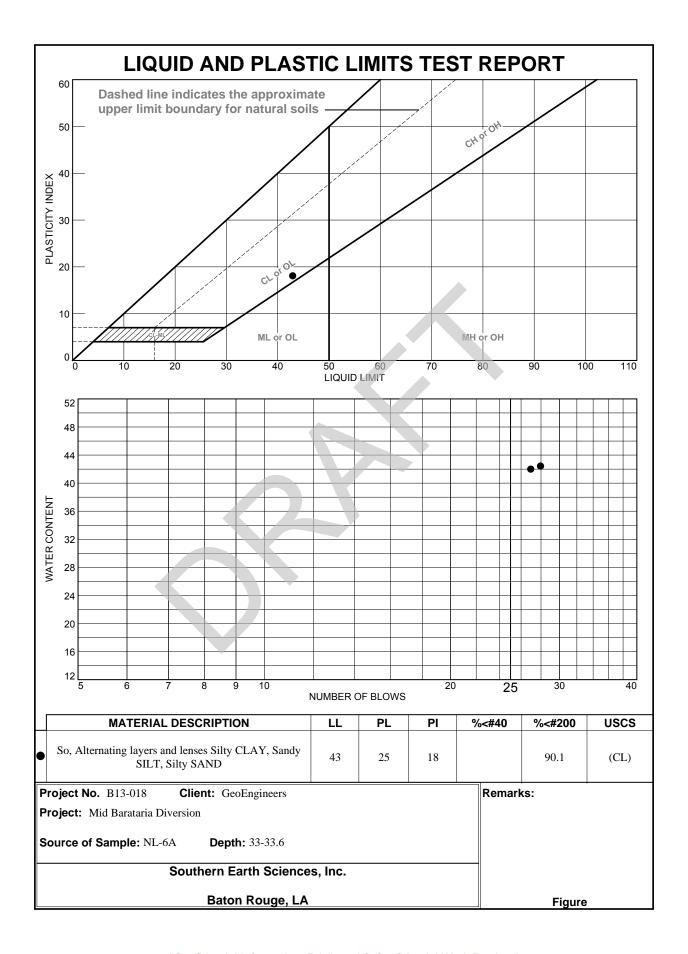
PL= 25 Atterberg Limits
LL= 43 Pl= 18

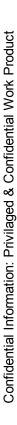
USCS= (CL4) Classification AASHTO=

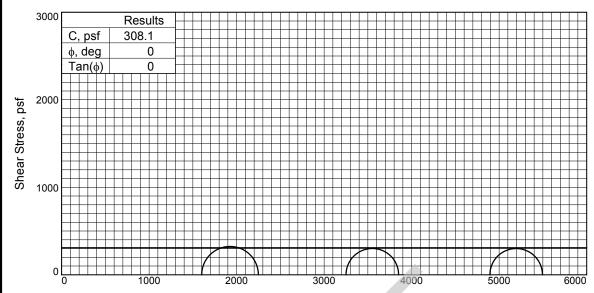
Remarks

Moisture Content: 33.1%

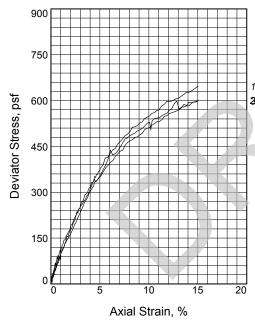
(no specification provided)


Source of Sample: NL-6A Depth: 33-33.6


Date: 6/5/13


Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers


Project: Mid Barataria Diversion

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Unconsolidated Undrained

Sample Type: Undistrubed

Description: So, Alternating layers and lenses

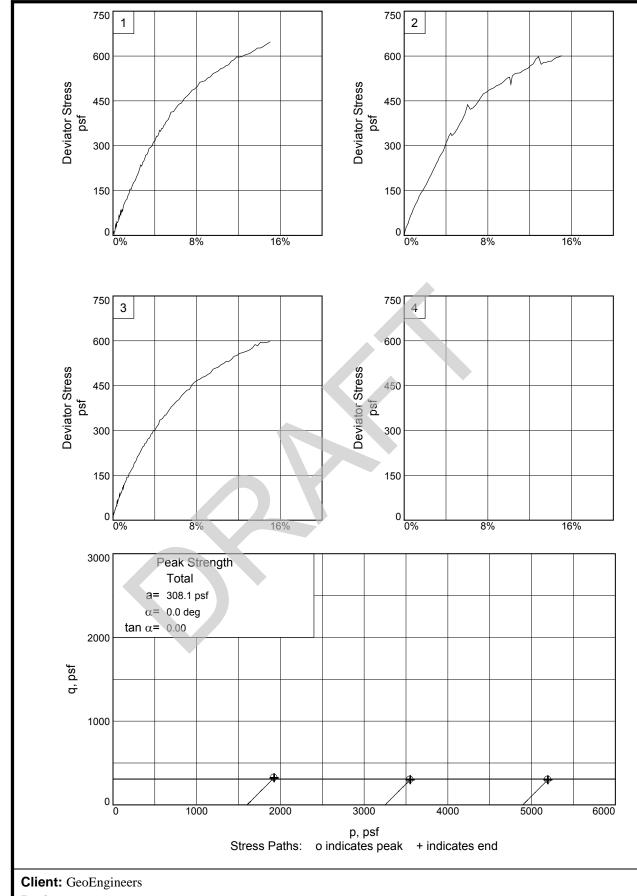
Silty CLAY, Sandy SILT, Silty SAND

LL= 43 PL= 25 Pl= 18
Assumed Specific Gravity= 2.65

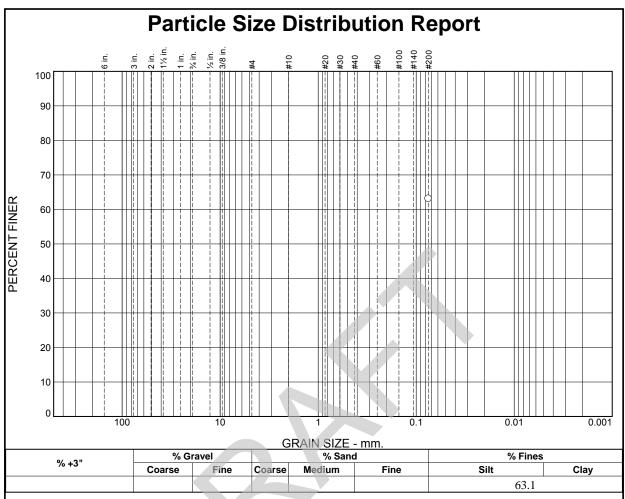
Remarks: Failure Type:

Bulge

All Samples Slumping Under Own Weight


Fiq	ure	

	Sample No.		1	2	3	
		Water Content, %	33.1	43.2	42.9	
		Dry Density, pcf	91.7	78.6	82.4	
	Initial	Saturation, %	109.0	103.7	112.8	
1	2	Void Ratio	0.8046	1.1038	1.0085	
3		Diameter, in.		1.391	1.376	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	30.4	41.7	38.1	
	ot	Dry Density, pcf	91.7	78.6	82.4	
	At Test	Saturation, %	100.0	100.0	100.0	
	<u>+</u>	Void Ratio	0.8046		1.0085	
		Diameter, in.	1.349	1.391	1.376	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	15.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Cell Pressure, psi		11.120	22.570	33.990	
	Fa	il. Stress, psf	647.3	601.2	600.3	
	5	Strain, %	15.0	15.0	15.0	
	Ult. Stress, psf					
	Strain, %		15.0			
	σ₁ Failure, psf		2248.6	3851.3	5494.9	
	σ_3	Failure, psf	1601.3	3250.1	4894.6	


Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 33-33.6

Southern Earth Sciences, Inc.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#200	63.1		

Material Description

Remarks

Gr Silty SAND with O pockets and tr clay

Atterberg Limits
LL= NP PL= NP

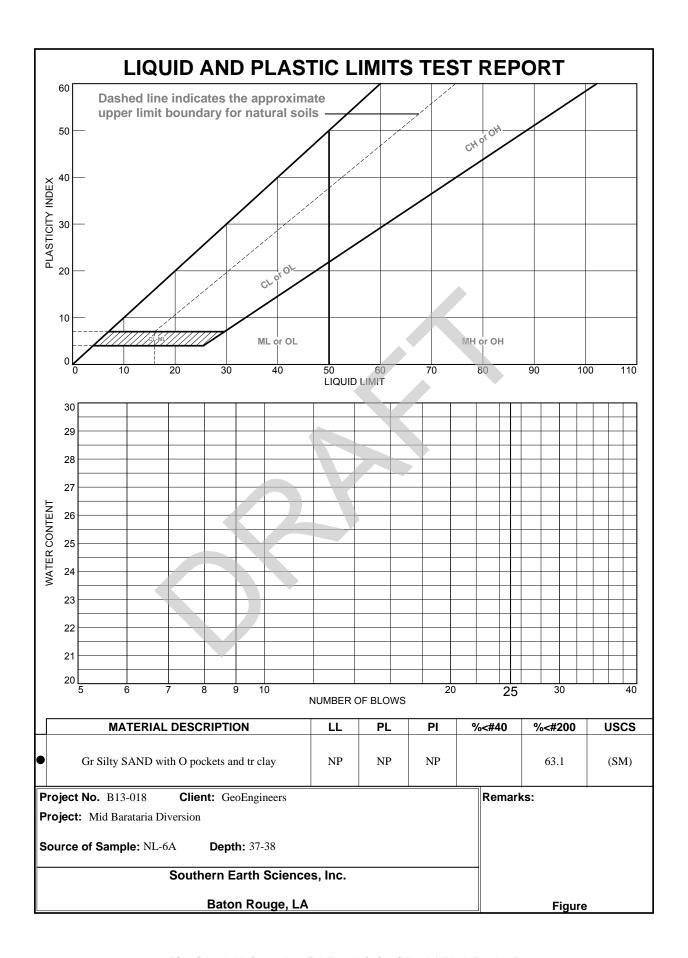
Classification AASHTO=

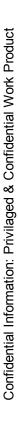
USCS= (SM)

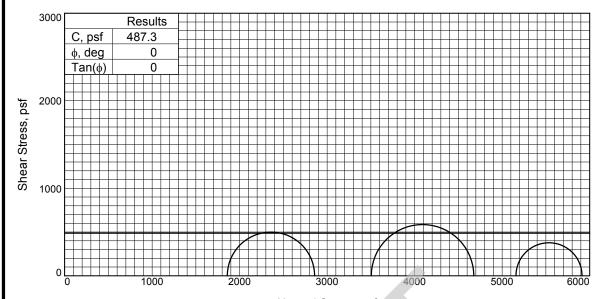
Moisture Content: 27.4%

(no specification provided)

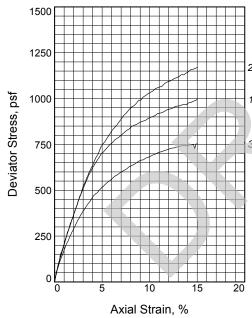
Depth: 37-38 Source of Sample: NL-6A


Date: 6/5/13


PI= NP


Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers


Project: Mid Barataria Diversion

Normal Stress, psf

Type	of	Test:
------	----	-------

Unconsolidated Undrained

Sample Type: Undistrubed

Description: So Alternating layers of CLAY, Silty CLAY, Clayey SILT with O pockets

(CL4)

Assumed Specific Gravity= 2.65

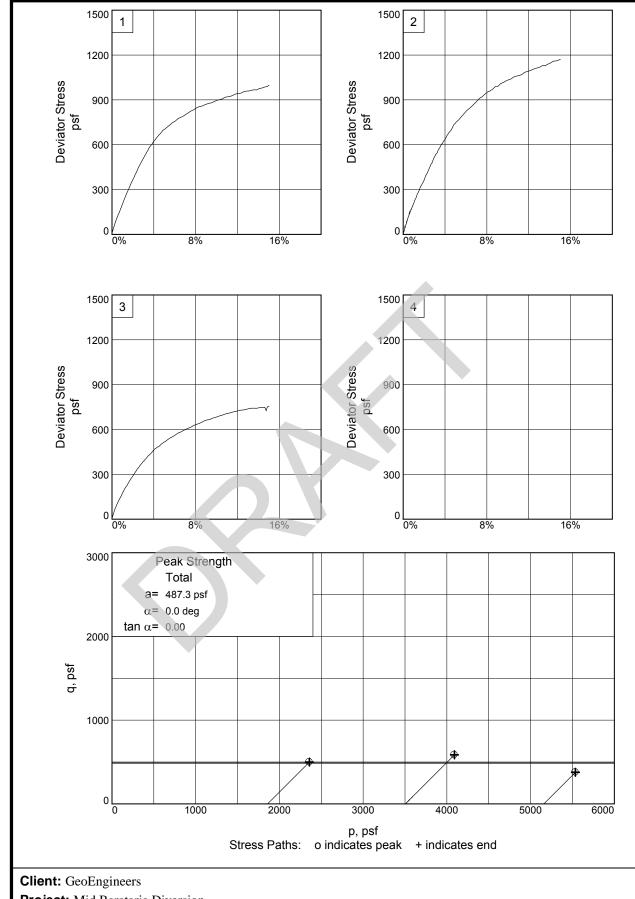
Remarks: Failure Type:

1 Bulge

2 Bulge

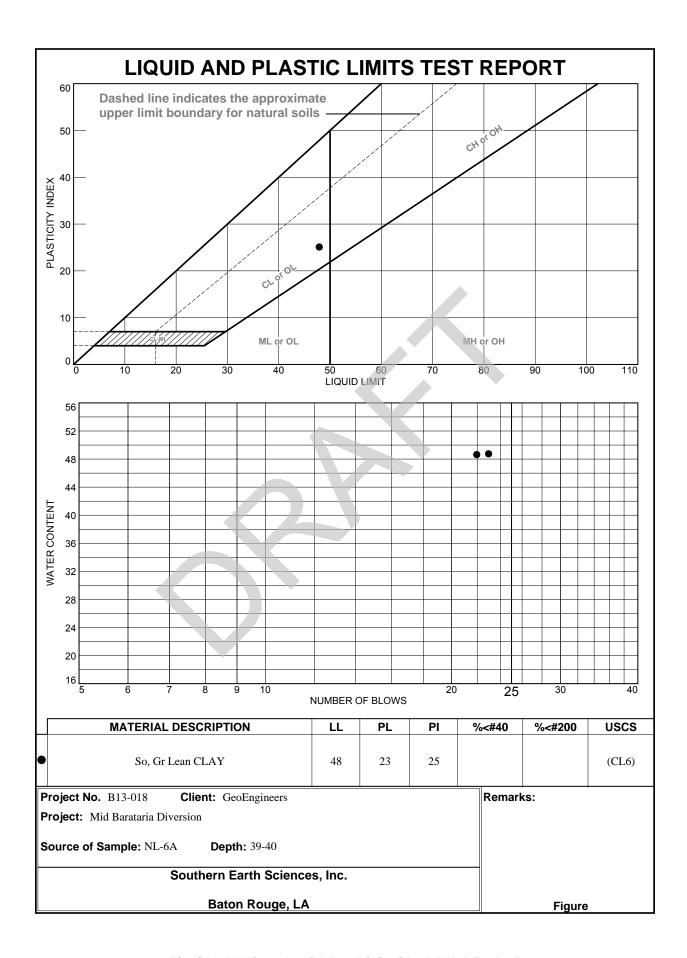
3 Bulge

Figure

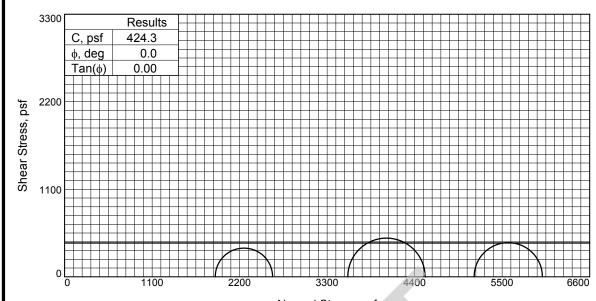

	Sample No.		1	2	3	
		Water Content, %	40.3	38.9	38.9	
		Dry Density, pcf	83.5	85.4	82.9	
2	Initial	Saturation, %	108.8	110.0	103.7	
	lni	Void Ratio	0.9811	0.9367	0.9949	
1		Diameter, in.	1.378			
		Height, in.	2.803	2.803	2.803	
		Water Content, %	37.0	35.3	37.5	
3)ţ	Dry Density, pcf	83.5	85.4	82.9	
	Fe st	Saturation, %	100.0	100.0	100.0	
	At T	Void Ratio	0.9811	0.9367	0.9949	
	<i>'</i>	Diameter, in.	1.378	1.378	1.378	
		Height, in.	2.803	2.803	2.803	
	Strain rate, in./min.		1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	12.910	24.340	35.820	
	Fail. Stress, psf Strain, % Ult. Stress, psf Strain, %		998.1	1170.9	754.6	
			15.0	15.0	15.0	
	σ_1 Failure, psf σ_3 Failure, psf		2857.2	4675.8	5912.7	
			1859.0	3505.0	5158.1	

Client: GeoEngineers

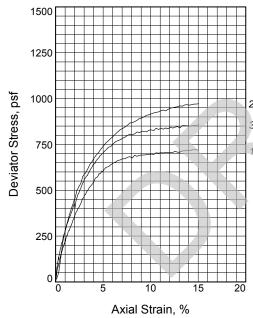
Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 38-39

Proj. No.: B13-018 **Date Sampled:** 6/5/13



Source of Sample: NL-6A Depth: 38-39 Project No.: B13-018 Figure


Southern Earth Sciences, Inc.

Normal Stress, psf

Ty	рe	of	T	es	t:

Unconsolidated Undrained Sample Type: Undistrubed

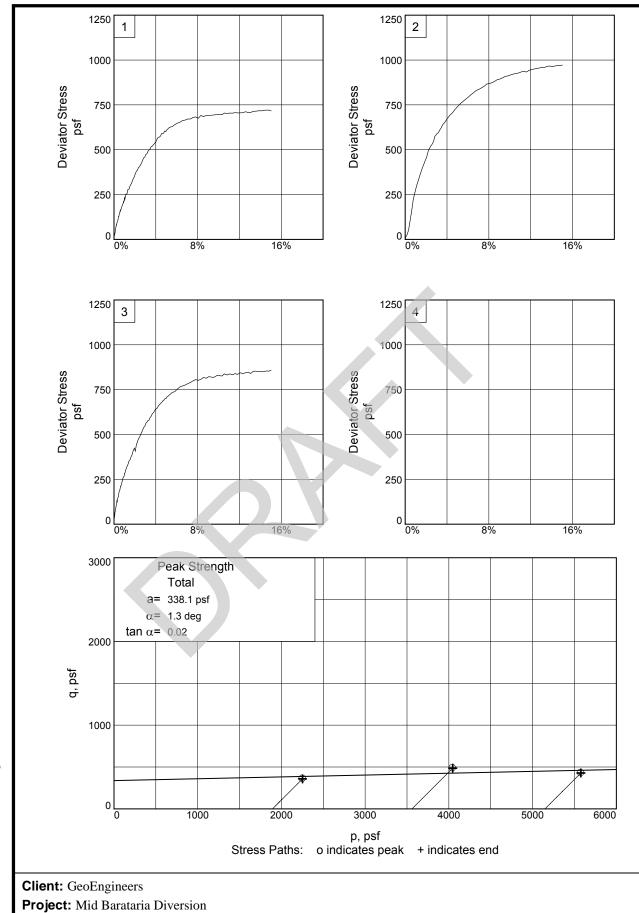
Description: So, Gr Lean CLAY (CL6)

LL= 48 **PL=** 23 **PI=** 25 **Assumed Specific Gravity=** 2.70

Remarks: Failure Type:

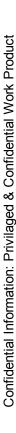
1 Bulge 2 Bulge 3 Bulge

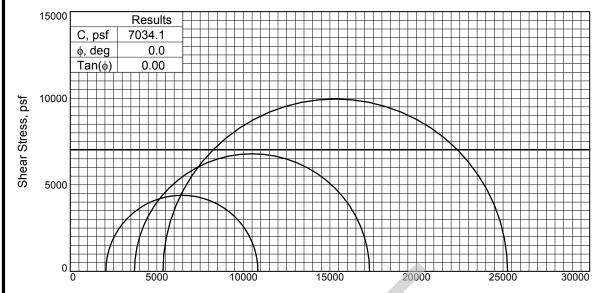
Figure


Sample No.		1	2	3	
	Water Content, %	45.2	38.0	44.1	
	Dry Density, pcf	77.6	81.4	79.7	
lial	Saturation, %	104.1	95.9	106.9	
Ιυ	Void Ratio	1.1719	1.0703	1.1148	
\ 	Diameter, in.				
	Height, in.	2.803	2.803	2.803	
	Water Content, %	43.4	39.6	41.3	
st	Dry Density, pcf	77.6	81.4	79.7	
<u>e</u>	Saturation, %	100.0	100.0	100.0	
At 1	Void Ratio	1.1719	1.0703	1.1148	
	Diameter, in.	1.379	1.389	1.382	
	Height, in.	2.803	2.803	2.803	
Strain rate, in./min.		1.000	1.000	1.000	
Ва	ck Pressure, psi	0.000	0.000	0.000	
Cell Pressure, psi		13.150	24.720	35.750	
Fail. Stress, psf Strain, %		720.9	972.2	857.7	
		14.8	15.0	15.0	
Ult	. Stress, psf				
Strain, %					
σ₁ Failure, psf		2614.5	4531.8	6005.7	
σ_3 Failure, psf		1893.6	3559.7	5148.0	
	Str Ba Ce Fa Str Unitial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Strain rate, in./min. Back Pressure, psi Cell Pressure, psi Cell Pressure, psi Fail. Stress, psf Strain, % Ult. Stress, psf Strain, % on Failure, psf	Water Content, % Dry Density, pof 77.6 Saturation, % 104.1 Void Ratio 1.1719 Diameter, in. Height, in. 2.803 Water Content, % Dry Density, pof 77.6 Saturation, % 100.0 Void Ratio 1.1719 Diameter, in. Height, in. 2.803 Strain rate, in./min. 1.379 Height, in. 2.803 Strain rate, in./min. 1.000 Back Pressure, psi 0.000 Cell Pressure, psi 13.150 Fail. Stress, psf 720.9 Strain, % 14.8 Ult. Stress, psf Strain, % 14.8 Ult. Stress, psf Strain, % 3 Failure, psf 2614.5 2614.5 3 3 3 3 3 3 3 3 3	Water Content, % Dry Density, pcf 45.2 38.0 Dry Density, pcf 77.6 81.4 Saturation, % 104.1 95.9 Void Ratio 1.1719 1.0703 Diameter, in. 1.379 1.389 Height, in. 2.803 2.803 Water Content, % 43.4 39.6 Dry Density, pcf 77.6 81.4 Saturation, % 100.0 100.0 Void Ratio 1.1719 1.0703 Diameter, in. 1.379 1.389 Height, in. 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 13.150 24.720 Fail. Stress, psf 720.9 972.2 Strain, % 14.8 15.0 Ult. Stress, psf Strain, % 14.8 15.0 Ult. Stress, psf Strain, % 2614.5 4531.8	Water Content, % Dry Density, pcf 45.2 38.0 44.1 Dry Density, pcf 77.6 81.4 79.7 Saturation, % 104.1 95.9 106.9 Void Ratio Diameter, in. Height, in. 1.379 1.389 1.382 Water Content, % Dry Density, pcf 43.4 39.6 41.3 Dry Density, pcf 77.6 81.4 79.7 Saturation, % 100.0 100.0 100.0 Void Ratio Diameter, in. Height, in. 1.379 1.389 1.382 Height, in. 2.803 2.803 2.803 Strain rate, in./min. Height, in. 1.000 1.000 1.000 Back Pressure, psi 0.000 0.000 0.000 Cell Pressure, psi 13.150 24.720 35.750 Fail. Stress, psf 720.9 972.2 857.7 Strain, % 14.8 15.0 15.0 Ult. Stress, psf Strain, % 2614.5 4531.8 6005.7

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: NL-6A **Depth:** 39-40


Proj. No.: B13-018 **Date Sampled:** 6/5/13

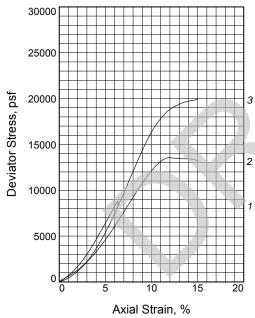

Source of Sample: NL-6A **Depth:** 39-40

Figure Project No.: B13-018 Southern Earth Sciences, Inc.

Tν	pe	of	Tes	st:

Unconsolidated Undrained **Sample Type:** Undistrubed

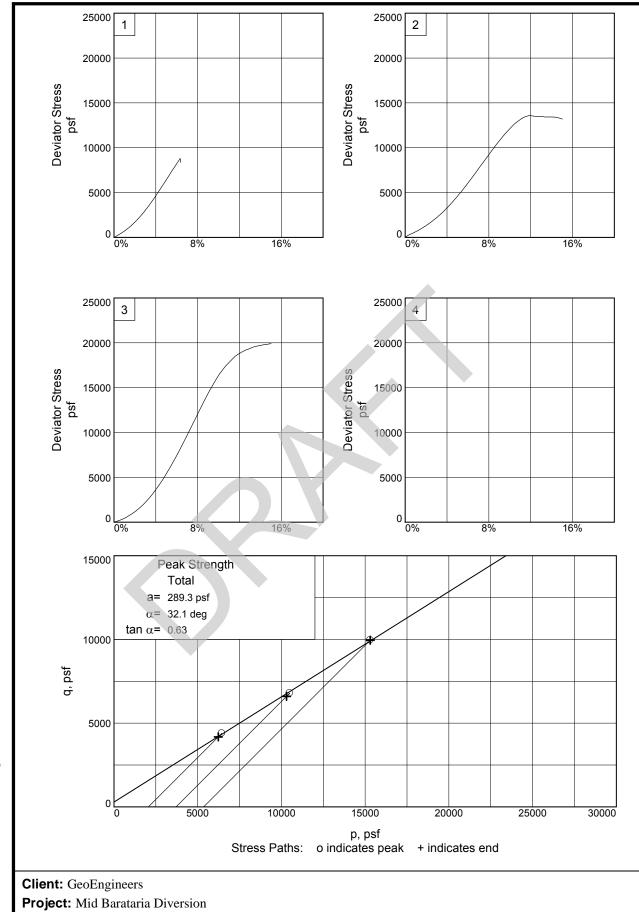
Description: Gr Silty SAND with clay

pockets (SM)

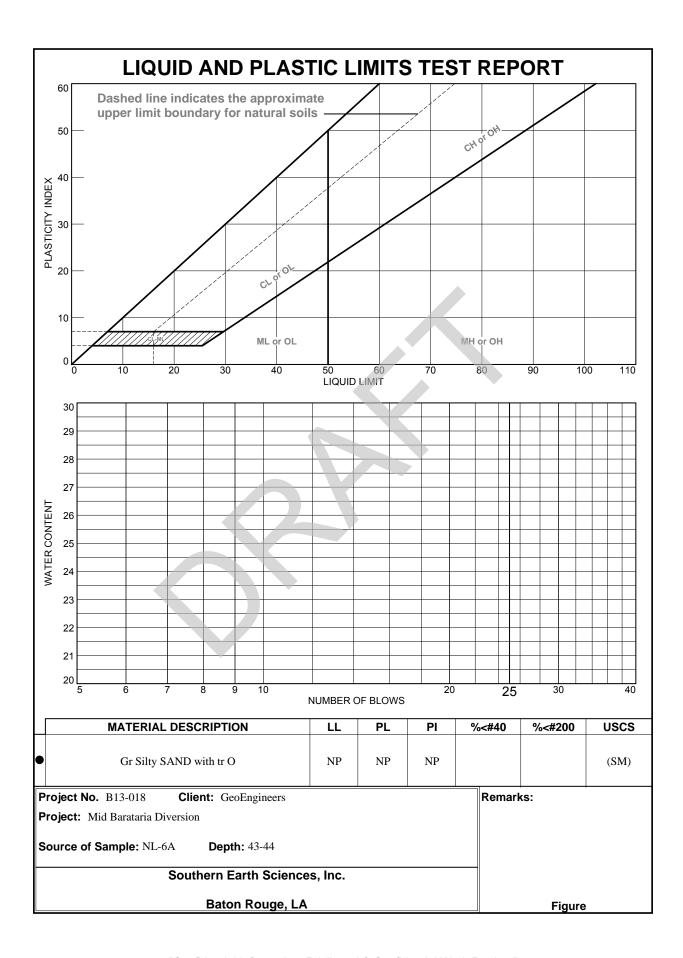
Assumed Specific Gravity= 2.60

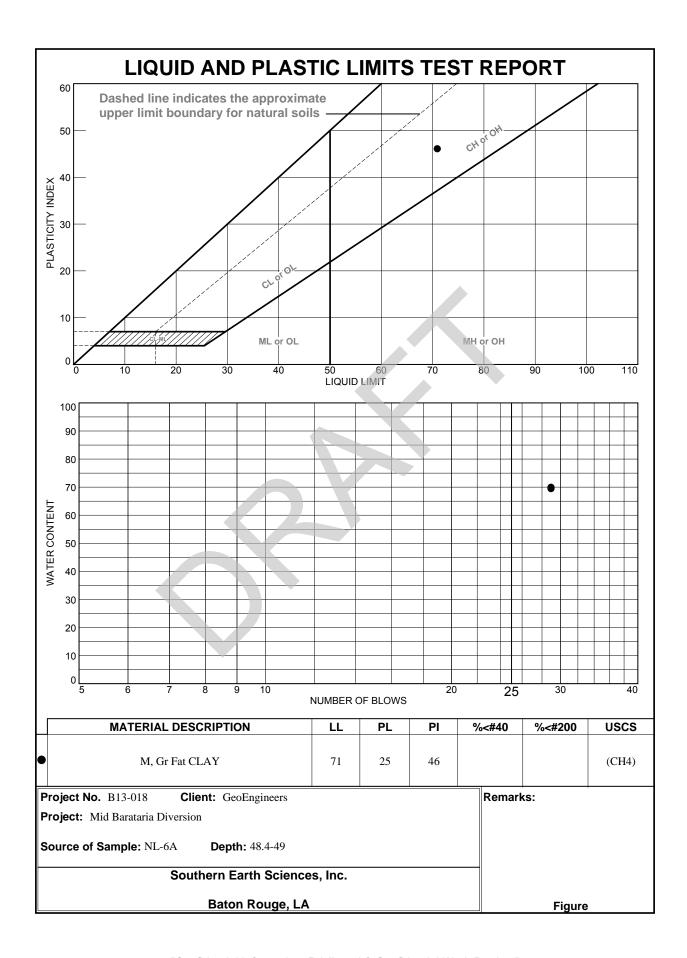
Remarks: Sample 1: Maxed out 100 lb ring

Failure Type: 2 45 Degree Shear

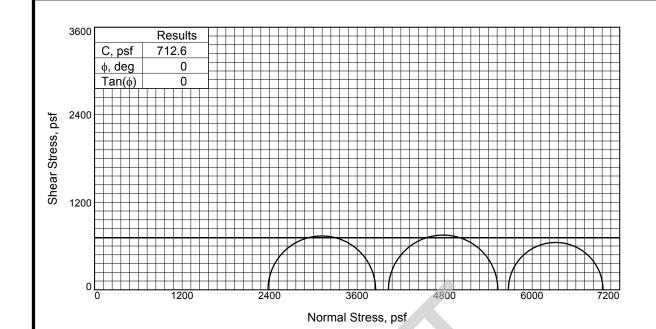

3 Bulge **Figure**

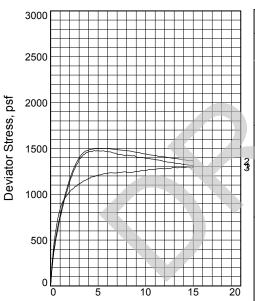
	Sample No.		1	2	3	
		Water Content, %	25.3	25.0	24.7	
		Dry Density, pcf	102.3	101.9	107.0	
	Initial	Saturation, %	112.1	109.8	124.2	
	lni	Void Ratio	0.5861	0.5928	0.5176	
3		Diameter, in.	1.375	1.374	1.340	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	22.5	22.8	19.9	
)ţ	Dry Density, pcf	102.3	101.9	107.0	
2	Fest	Saturation, %	100.0	100.0	100.0	
	AtT	Void Ratio	0.5861	0.5928	0.5176	
	`	Diameter, in.	1.375	1.374	1.340	
1		Height, in.	2.803	2.803	2.803	
	Strain rate, in./min.		1.000	1.000	1.000	
	Back Pressure, psi Cell Pressure, psi Fail. Stress, psf Strain, % Ult. Stress, psf Strain, %		0.000	0.000	0.000	
			14.260	25.750	37.180	
			8786.6	13577.6	19906.2	
			6.3	11.8	15.0	
	σ1	Failure, psf	10840.0	17285.6	25260.2	
	σ_3	Failure, psf	2053.4	3708.0	5353.9	


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 42-42.3




Figure Southern Earth Sciences, Inc. Project No.: B13-018

Axial Strain, %

PI= 46

_		_
Type	Λf	Test:
IVDE	vı	ı cot.

Unconsolidated Undrained Sample Type: Undistrubed

Description: M, Gr Fat CLAY (CH4)

PL= 25

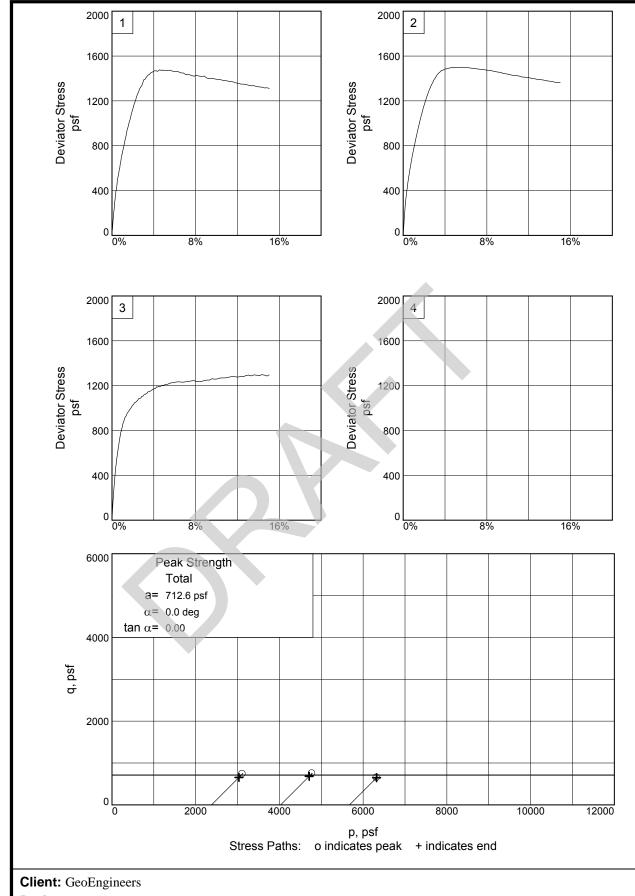
Assumed Specific Gravity= 2.80 Remarks: Failure Type:

1 Bulge

LL= 71

2 Bulge

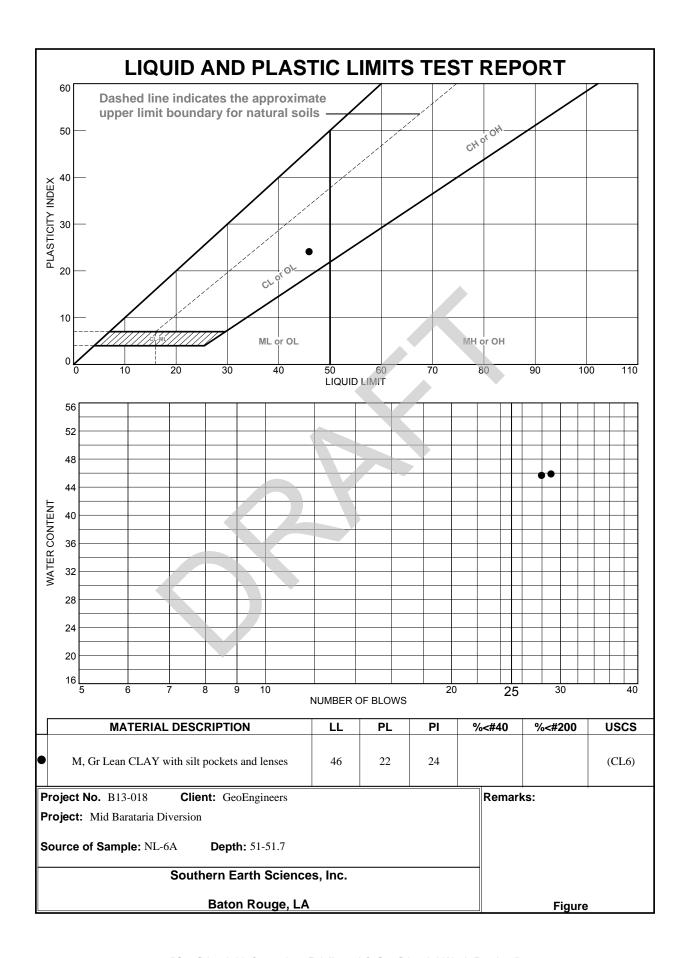
3 45 Degree Shear

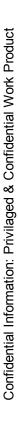

	Sa	mple No.	1	2	3	
		Water Content, %	49.5	45.6	52.1	
		Dry Density, pcf	72.7	75.8	70.4	
	ial	Saturation, %	98.5	97.9	98.3	
	Initial	Void Ratio	1.4059	1.3050	1.4842	
		Diameter, in.	1.399	1.399	1.401	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	50.2	46.6	53.0	
	st	Dry Density, pcf	72.7	75.8	70.4	
3	l as	Saturation, %	100.0	100.0	100.0	
	At T	Void Ratio	1.4059	1.3050	1.4842	
	1	Diameter, in.	1.399	1.399	1.401	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	16.510	27.980	39.400	
	Fa	il. Stress, psf	1476.6	1500.7	1298.1	
	5	Strain, %	4.6	5.8	14.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	3854.1	5529.9	6971.7	
	σ_3	Failure, psf	2377.4	4029.1	5673.6	

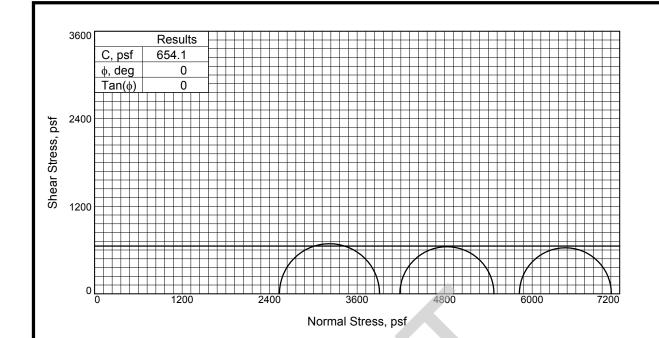
Client: GeoEngineers

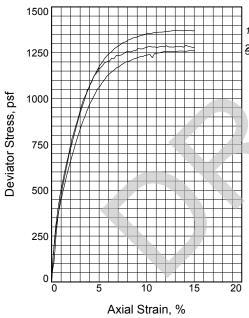
Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 48.4-49


Proj. No.: B13-018 **Date Sampled:** 6/5/13




Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 48.4-49
Project No.: B13-018 Figure

Southern Earth Sciences, Inc.

SC	1000	Н	+	\dashv	1	\vdash															
Deviator Stress, ps		П	1	7	7																
SS				/	Z												_				
re			_ /	II											Δ						Д
St	750	Н		Д	_									4						4	
'n		Н	-//	4	_								_		1				4		Н
닱		Н	H	\dashv	-				H							1		-4			Н
.ie		Η.	#/	\dashv	_																Н
e)	=00	- 1	"	\dashv														1			Н
	500	- 1/	+	1				7											1		
							1														
		1	4	4														L			Ш
	250	H	+	\dashv												4		_			Н
		H	+	\dashv						_						4	/				Н
		H	+	\dashv	_				\vdash	-	-						Н				Н
		Н	$^{+}$	\dashv																	Н
	0	Ħ	1	1																	Ħ
		0				Ę	5				1	0				1	5				20
							,	A	κia	al	S	tra	air	٦,	%						

Туре	e of	Test:

Sample Type: Undistrubed

Description: M, Gr Lean CLAY with silt

pockets and lenses (CL6)

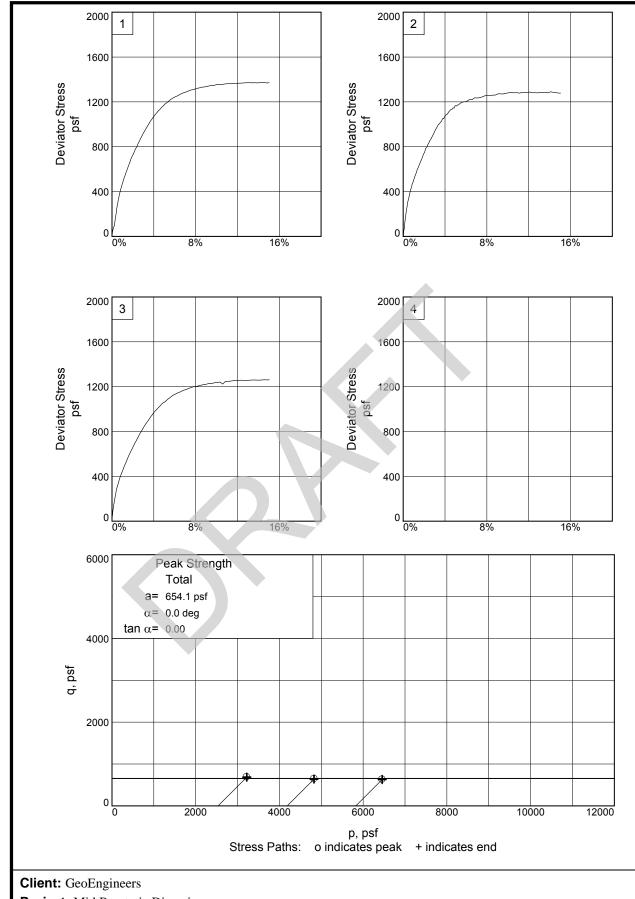
PL= 22 **LL=** 46 **PI=** 24 **Assumed Specific Gravity=** 2.75

Remarks: Failure Type:

1 Bulge

2 Bulge

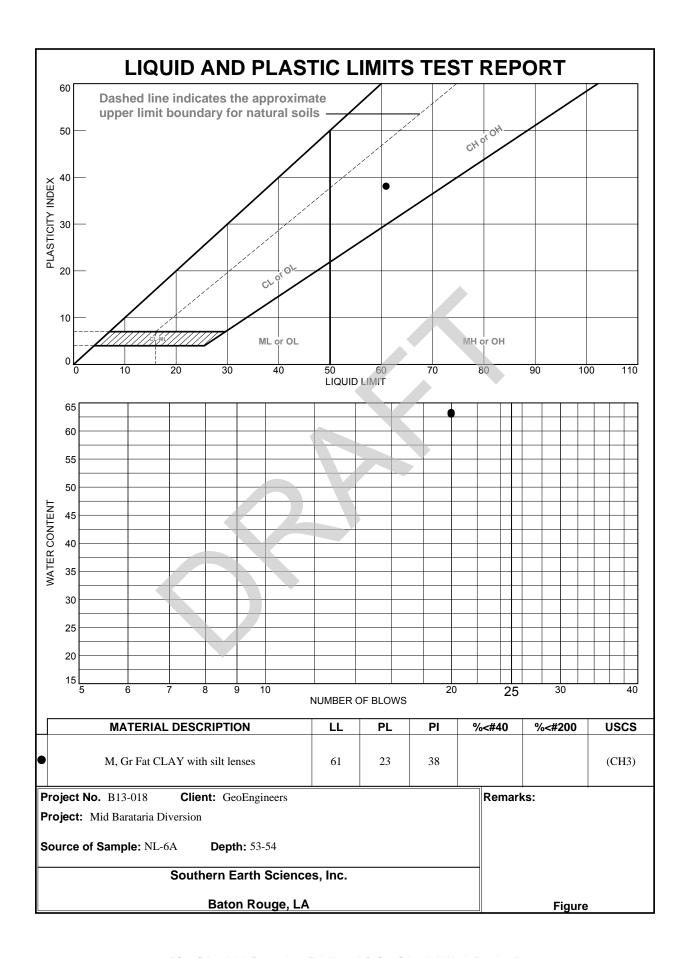
3 Bulge **Figure**

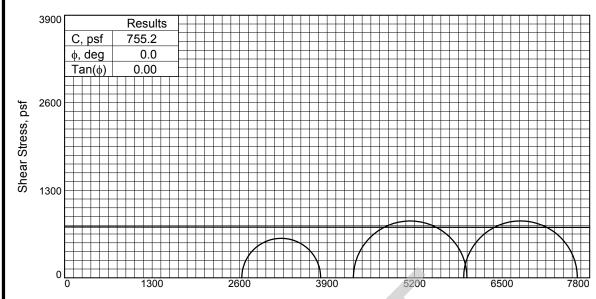

	Sa	mple No.	1	2	3	
1		Water Content, %	41.7	42.5	41.7	
3		Dry Density, pcf	80.8	80.0	78.5	
	Initial	Saturation, %	101.9	102.0	96.7	
	'n	Void Ratio	1.1254	1.1461	1.1860	
	\ \	Diameter, in.	1.377	1.391	1.390	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	40.9	41.7	43.1	
	it.	Dry Density, pcf	80.8	80.0	78.5	
	At Test	Saturation, %	100.0	100.0	100.0	
	7	Void Ratio	1.1254	1.1461	1.1860	
	`	Diameter, in.	1.377	1.391	1.390	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	17.600	29.070	40.450	
	Fai	il. Stress, psf	1372.9	1290.3	1261.4	
	5	Strain, %	15.0	14.1	15.0	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	3907.3	5476.4	7086.2	
	σ_3	Failure, psf	2534.4	4186.1	5824.8	

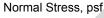
Client: GeoEngineers

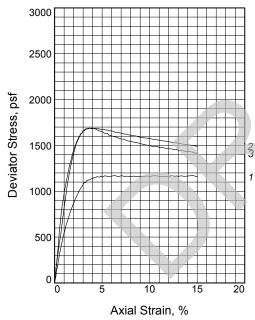
Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 51-51.7


Proj. No.: B13-018 **Date Sampled:** 6/5/13


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 51-51.7


Project No.: B13-018 Figure _____ Southern Earth Sciences, Inc.

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Sample Type: Undistubed

Description: M, Gr Fat CLAY with silt lenses

(CH3)

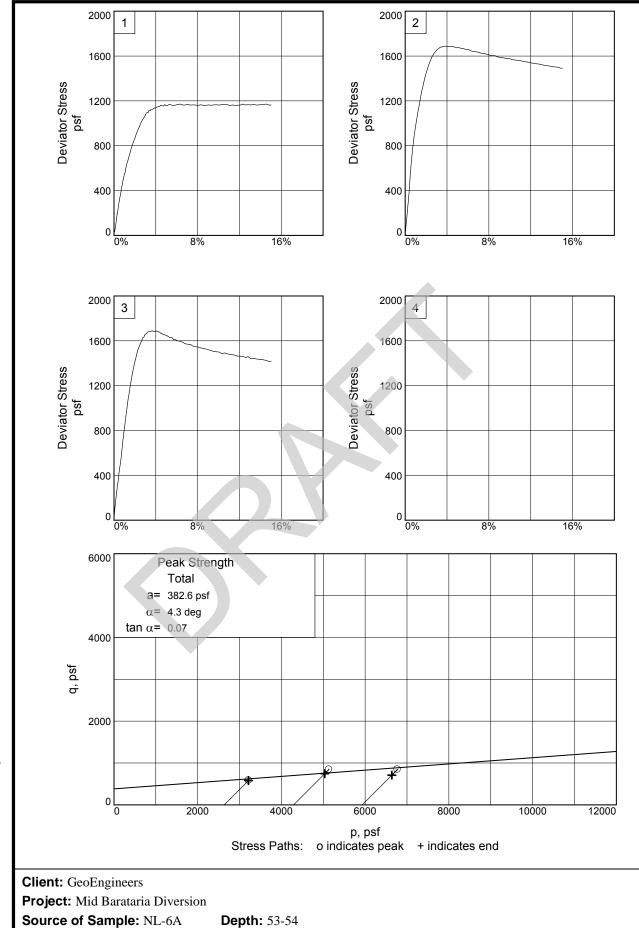
LL= 61 PL= 23 PI= 38 Assumed Specific Gravity= 2.80

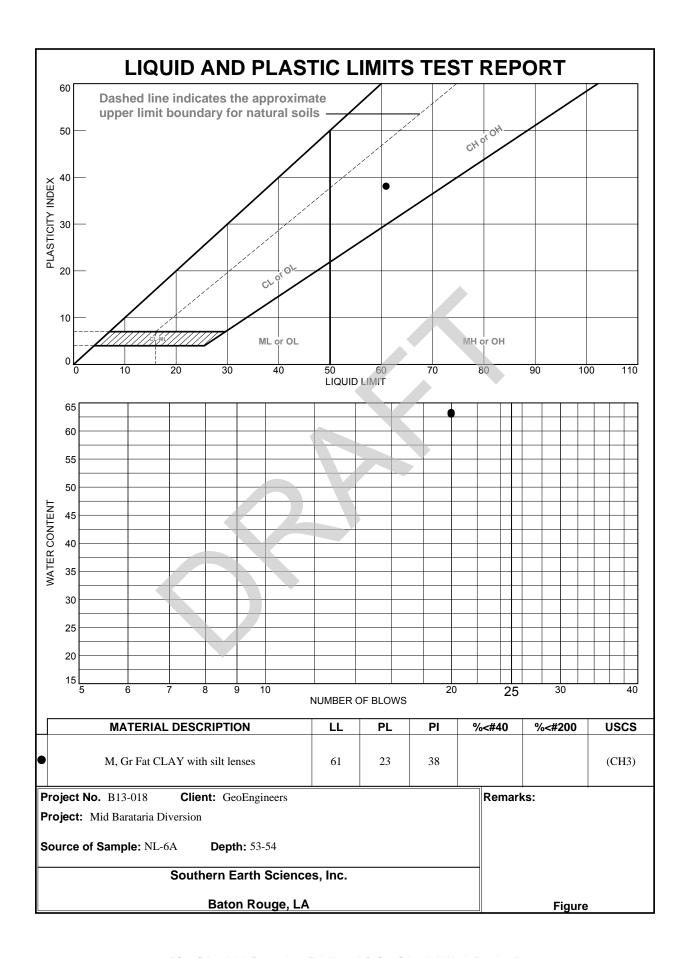
Remarks: Failure Type:

1 45 Degree Shear

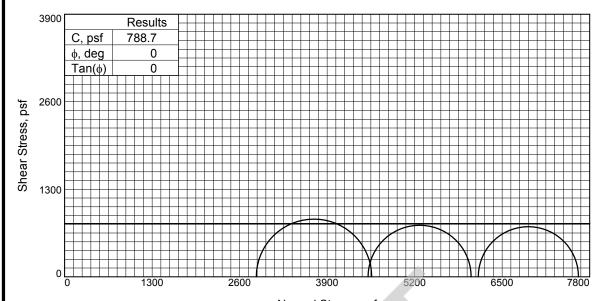
2 45 Degree Shear and Bulge

3 Bulge

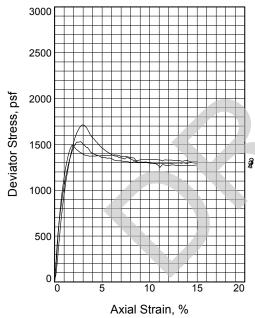

Figure _____


	Sa	mple No.	1	2	3	
		Water Content, %	46.3	46.6	45.3	
		Dry Density, pcf	75.9	77.1	75.8	
	Initial	Saturation, %	99.4	103.0	97.2	
	lni	Void Ratio	1.3043	1.2668	1.3061	
		Diameter, in.	1.397	1.384	1.397	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	46.6	45.2	46.6	
3	st	Dry Density, pcf	75.9	77.1	75.8	
•	(D)	Saturation, %	100.0	100.0	100.0	
1	At T	Void Ratio	1.3043	1.2668	1.3061	
	`	Diameter, in.	1.397		1.397	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	18.280	29.790	41.170	
	Fa	il. Stress, psf	1171.9	1687.9	1689.2	
	5	Strain, %	12.3	3.9	3.7	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	3804.2	5977.7	7617.7	
	σ_3	Failure, psf	2632.3	4289.8	5928.5	
	_					

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 53-54



Normal Stress, psf

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Sample Type: Undistrubed

Description: M, Gr Fat CLAY (CH2)

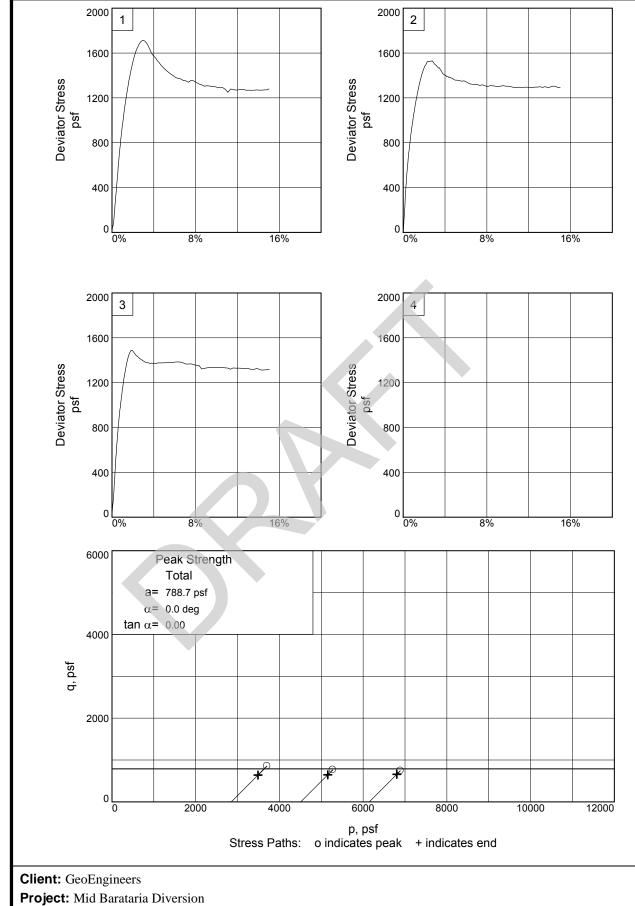
LL= 50 **PL=** 23 **PI=** 27

Assumed Specific Gravity= 2.80 Remarks: Failure Type:

1 45 Degree Shear (SLS)

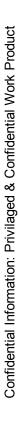
2 45 Degree Shear (SLS)

3 45 Degree Shear (SLS)

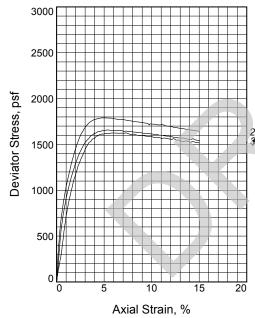

Figure ____

	Sa	mple No.	1	2	3	
		Water Content, %	52.5	48.0		
	-	Dry Density, pcf	70.4	73.5		
	Initial	Saturation, %	99.1	97.6		
	드	Void Ratio	1.4840	1.3767		
	\	Diameter, in.		1.389		
		Height, in.	2.803	2.803	2.803	
		Water Content, %	53.0	49.2	55.2	
	it	Dry Density, pcf	70.4	73.5	68.6	
3	At Test	Saturation, %	100.0	100.0	100.0	
	7	Void Ratio	1.4840	1.3767	1.5463	
	1	Diameter, in.	1.388	1.388	1.394	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	19.780	31.310	42.680	
	Fa	il. Stress, psf	1713.5	1530.7	1488.1	
	5	Strain, %	2.9	2.8	1.9	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	4561.8	6039.3	7634.0	
	σ_3	Failure, psf	2848.3	4508.6	6145.9	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 57-58


Source of Sample: NL-6A **Depth:** 57-58 Figure Project No.: B13-018

Southern Earth Sciences, Inc.

Normal Stress, psf

Type	of	Test:

Unconsolidated Undrained Sample Type: Undistrubed

Description: M, Gr Fat CLAY (CH4)

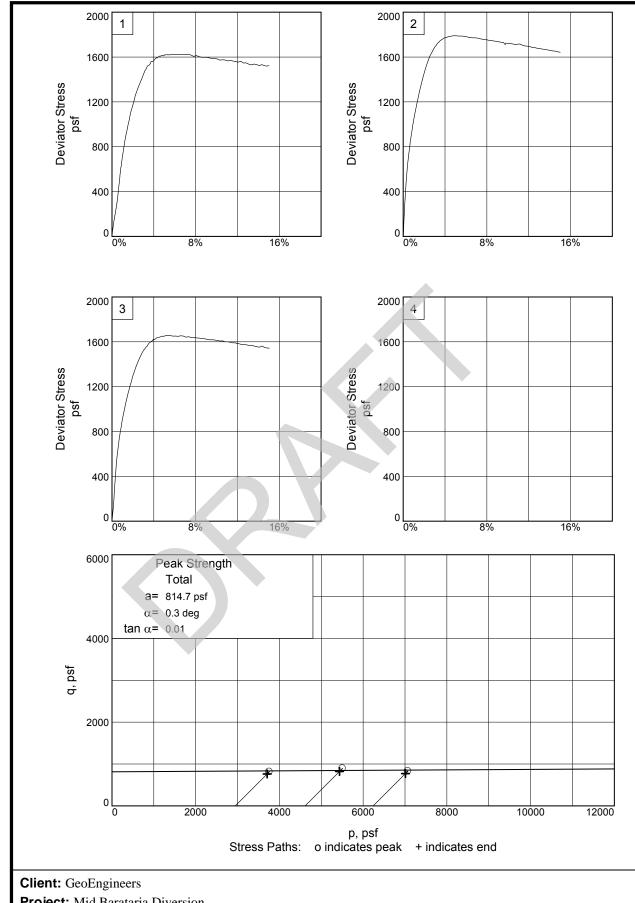
Assumed Specific Gravity= 2.80

Remarks: Failure Type:

1 Bulge

2 Bulge

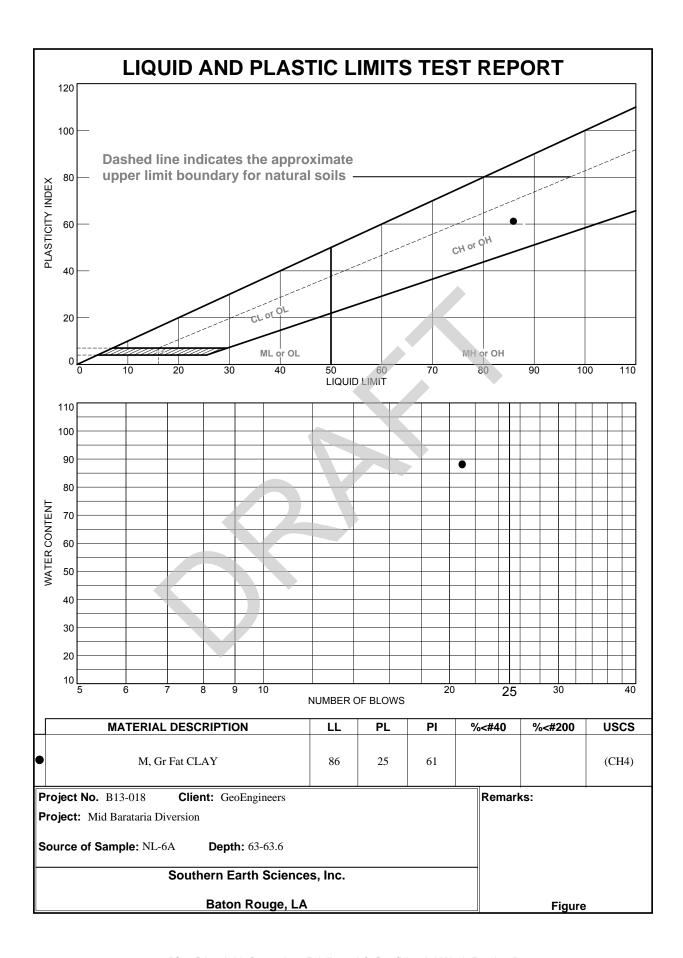
3 Bul	ige
igure	

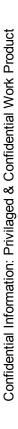

	Sa	mple No.	1	2	3	
		Water Content, %	44.4	44.0	43.7	
		Dry Density, pcf	77.5	76.8	77.0	
	Initial	Saturation, %	99.1	96.6	96.5	
	П	Void Ratio	1.2547	1.2748	1.2699	
		Diameter, in.	1.394	1.398	1.397	
		Height, in.	2.803	2.803	2.803	
2		Water Content, %	44.8	45.5	45.4	
Þ	st	Dry Density, pcf	77.5	76.8	77.0	
	At Test	Saturation, %	100.0	100.0	100.0	
	۸ŧ -	Void Ratio		1.2748		
	`	Diameter, in.	1.394	1.398	1.397	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	20.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Cell Pressure, psi		20.450	32.040	43.330	
	Fail. Stress, psf		1625.7	1789.9	1657.6	
	5	Strain, %	7.3	5.0	5.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	4570.5	6403.7	7897.1	
	σ_3	Failure, psf	2944.8	4613.8	6239.5	

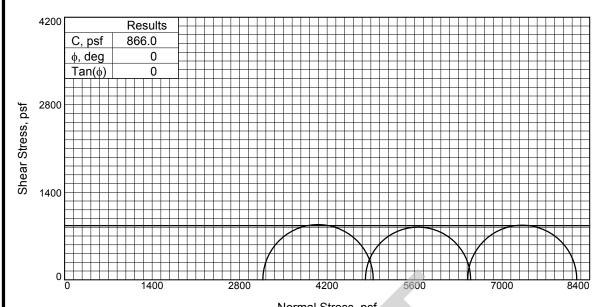
Client: GeoEngineers

Project: Mid Barataria Diversion

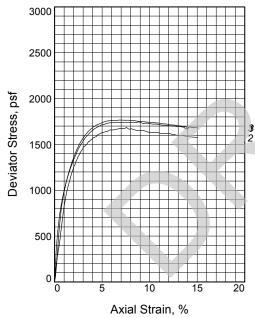
Source of Sample: NL-6A **Depth:** 59-60


Proj. No.: B13-018 **Date Sampled:** 6/5/13




Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 59-60 Project No.: B13-018


Figure Southern Earth Sciences, Inc.

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

Sample Type: Undistrubed **Description:** M, Gr Fat CLAY (CH4)

PL= 25 **PI=** 61 **LL=** 86

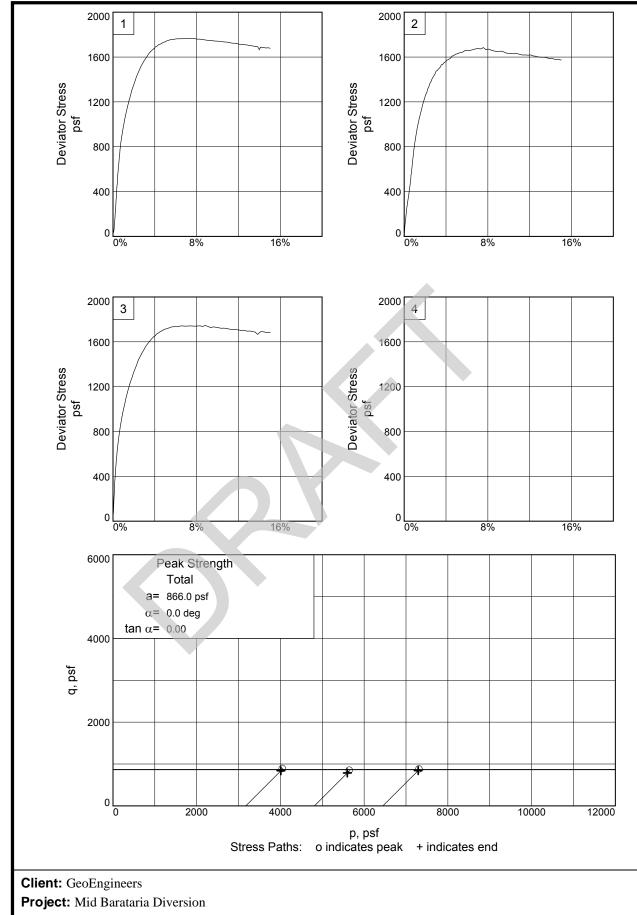
Assumed Specific Gravity= 2.80

Remarks: Failure Type:

1 Bulge

2 45 Degree Shear

3 45 Degree Shear

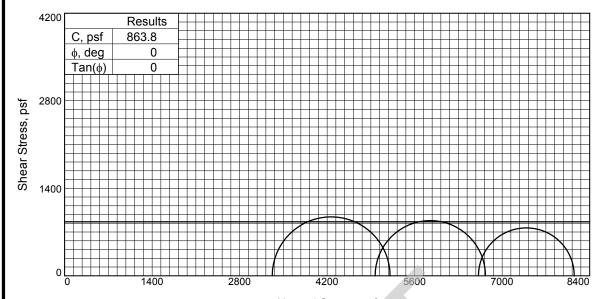

	Sample No.		1	2	3	
		Water Content, %	51.8	52.2	52.4	
		Dry Density, pcf	70.1	70.0	69.8	
	nitial	Saturation, %	97.1	97.5	97.6	
	lni	Void Ratio	1.4930	1.4983	1.5040	
		Diameter, in.	1.397	1.397	1.397	
		Height, in.	2.803	2.803	2.803	
8		Water Content, %	53.3	53.5	53.7	
)ţ	Dry Density, pcf	70.1	70.0	69.8	
	At Test	Saturation, %	100.0	100.0	100.0	
	٦	Void Ratio	1.4930	1.4983	1.5040	
	*	Diameter, in.	1.397	1.397	1.397	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	20.033	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	22.030	33.420	44.780	
	Fa	il. Stress, psf	1765.8	1684.3	1745.7	
	5	Strain, %	6.8	7.6	8.8	
	Ult. Stress, psf					
	5	Strain, %				
_	σ1	Failure, psf	4938.2	6496.8	8194.0	
	σ_3	Failure, psf	3172.3	4812.5	6448.3	

Client: GeoEngineers

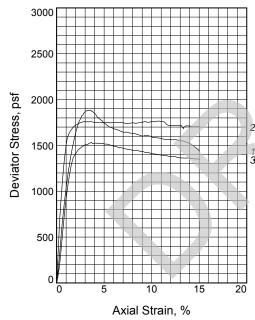
Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 63-63.6

Proj. No.: B13-018 **Date Sampled:** 6/5/13



Source of Sample: NL-6A


Depth: 63-63.6 **Figure** Project No.: B13-018

Southern Earth Sciences, Inc.

Normal Stress, psf

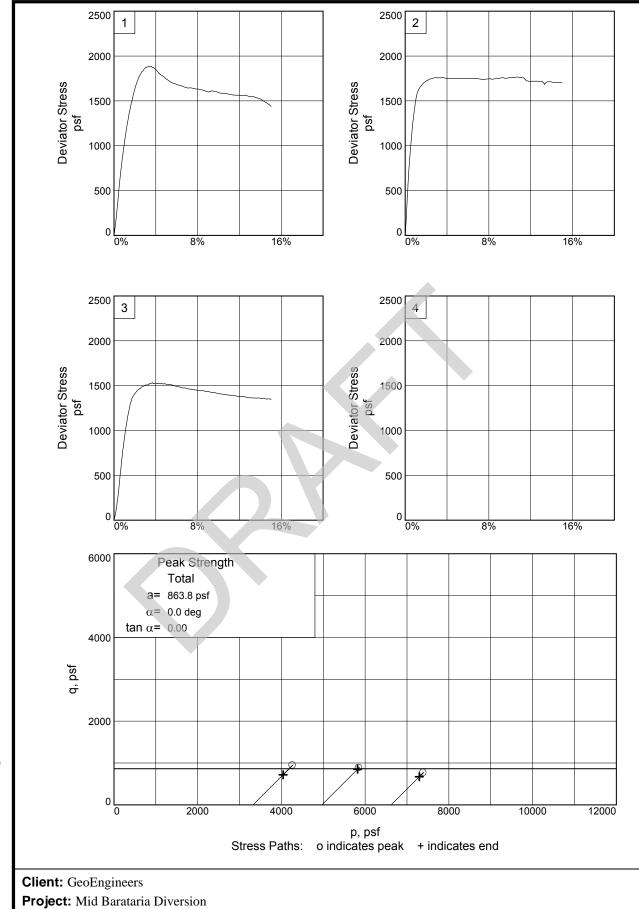
Type of Test:
Unconsolidated Undrained
Sample Type: Undistrubed

Description: M, Gr Fat CLAY (CH4)

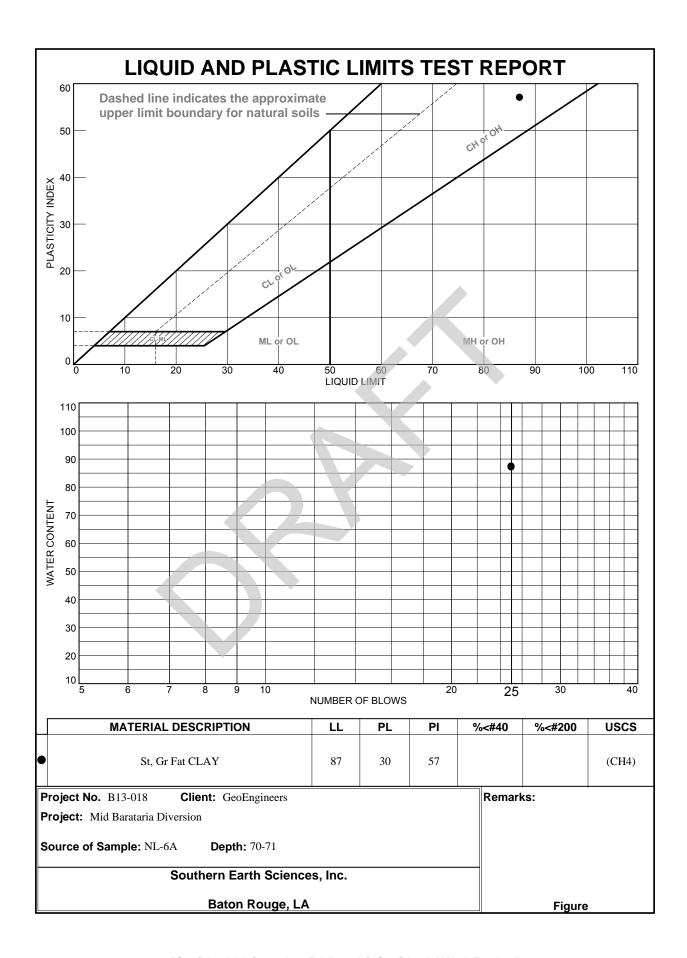
Assumed Specific Gravity= 2.80

Remarks: Failure Type: 1 45 Degree Shear 2 45 Degree Shear 3 45 Degree Shear

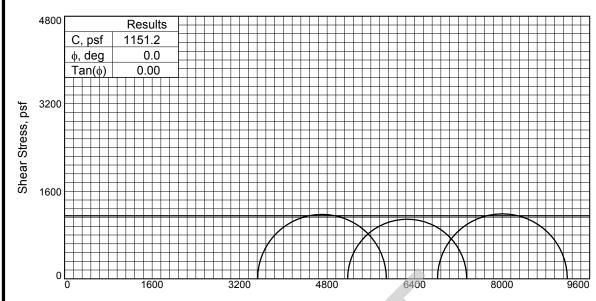
Figure

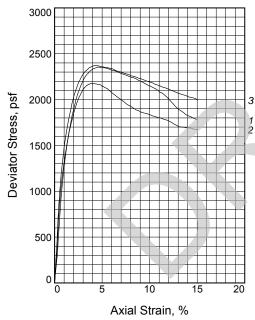

	Sa	mple No.	1	2	3	
		Water Content, %	55.9	54.6	52.5	
		Dry Density, pcf	66.6	67.1	68.3	
	Initial	Saturation, %	96.3	95.4	94.3	
	Ini	Void Ratio		1.6044		
	\ \	Diameter, in.	1.401		1.401	
		Height, in.	2.803	2.803	2.803	
2		Water Content, %	58.0	57.3	55.6	
1	st	Dry Density, pcf	66.6	67.1	68.3	
3	At Test	Saturation, %	100.0	100.0	100.0	
	۸ŧ٦	Void Ratio	1.6244	1.6044	1.5577	
	`	Diameter, in.	1.401	1.401	1.401	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	23.070	34.500	45.980	
	Fa	il. Stress, psf	1885.3	1765.0	1532.7	
	5	Strain, %	3.6	10.8	3.7	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	5207.4	6733.0	8153.8	
	σ_3	Failure, psf	3322.1	4968.0	6621.1	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 66-67


Source of Sample: NL-6A


Depth: 66-67

Tv	рe	of	Test:

Sample Type: Undistrubed

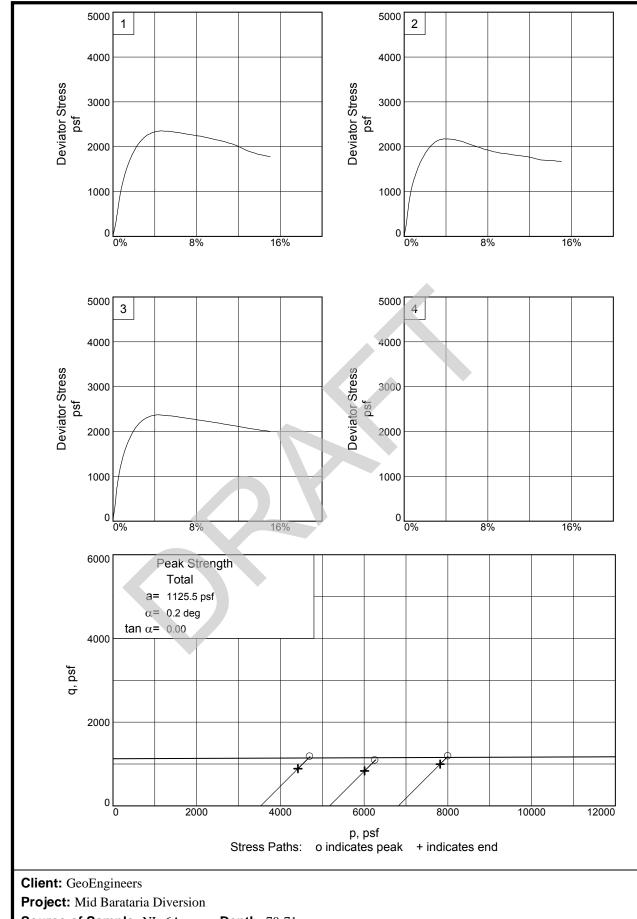
Description: St, Gr Fat CLAY (CH4)

LL= 87 PL= 30 Pl= 57 Assumed Specific Gravity= 2.80

Remarks: Failure Type: 1 45 Degree Shear

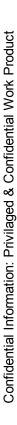
2 45 Degree Shear

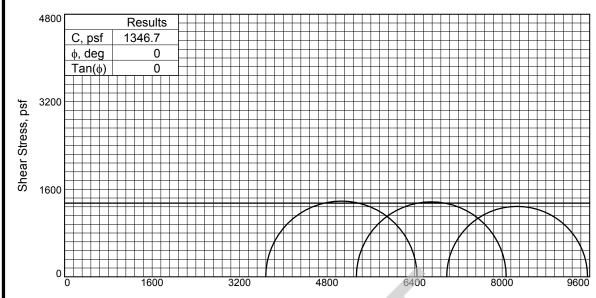
3 Bulge


Figure ____

	Sa	mple No.	1	2	3	
		Water Content, %	53.4	55.3	52.4	
		Dry Density, pcf	69.4	68.5	69.8	
	lial	Saturation, %	98.5	99.8	97.4	
	Initial	Void Ratio	1.5191	1.5500	1.5055	
3		Diameter, in.	1.398	1.398	1.398	
1		Height, in.	2.803	2.803	2.803	
1 2		Water Content, %	54.3	55.4	53.8	
	ot	Dry Density, pcf	69.4	68.5	69.8	
	At Test	Saturation, %	100.0	100.0	100.0	
	- -	Void Ratio	1.5191	1.5500	1.5055	
	`	Diameter, in.		1.398		
,		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	24.510	35.940	47.350	
	Fai	I. Stress, psf	2354.0	2176.7	2373.3	
	5	Strain, %	4.7	3.9	4.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	5883.5	7352.1	9191.7	
	σ_3	Failure, psf	3529.4	5175.4	6818.4	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 70-71

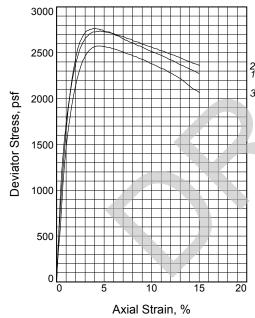

Source of Sample: NL-6A **Depth:** 70-71

Figure Southern Earth Sciences, Inc. Project No.: B13-018

Type	of	Test:

Unconsolidated Undrained **Sample Type:** Undisturbed

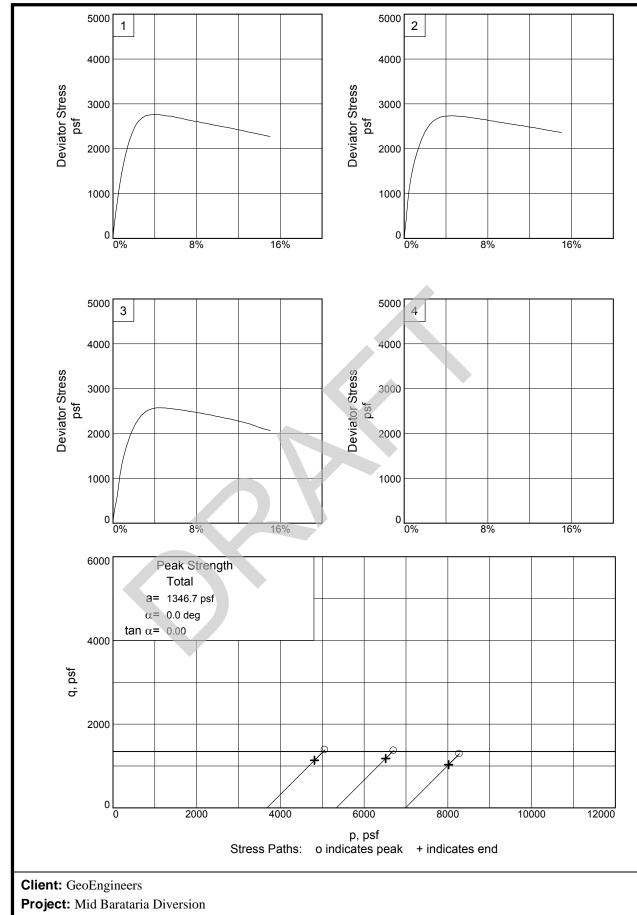
Description: St, Gr Fat CLAY (CH4)

Assumed Specific Gravity= 2.80

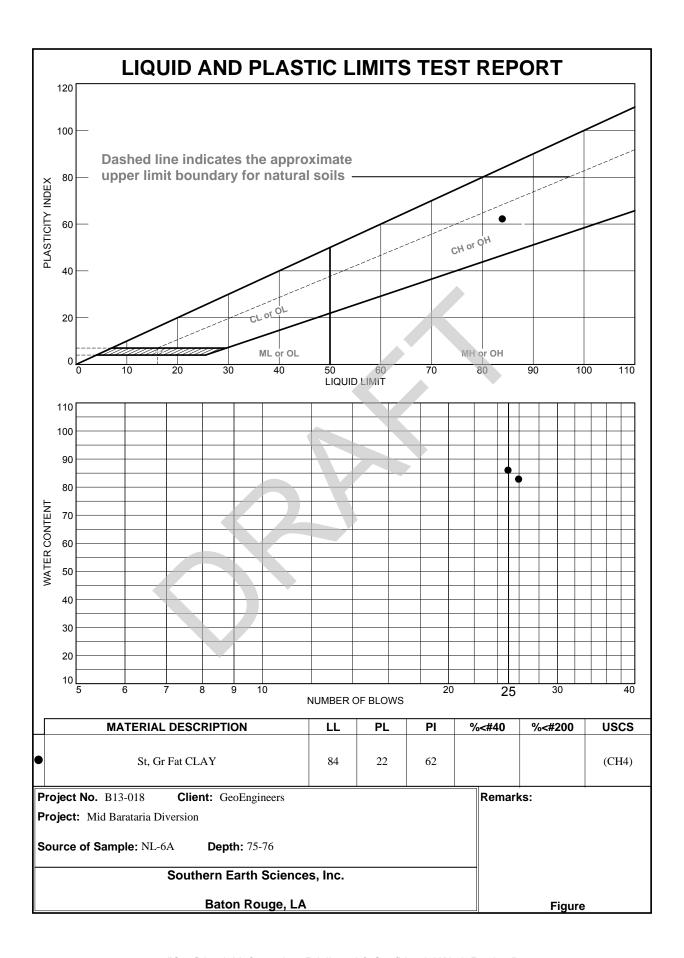
Remarks: Type Failure:

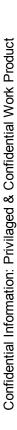
Multi Shear

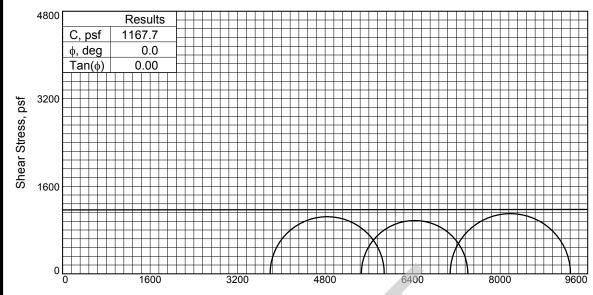
Figure

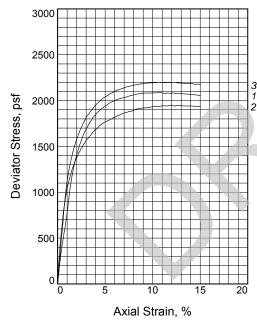

	Sa	mple No.	1	2	3	
		Water Content, %	50.5	50.4		
_		Dry Density, pcf	71.5	71.6	72.2	
2 1	Initial	Saturation, %	97.9	96.5		
3	п	Void Ratio	1.4438	1.4923		
J	1	Diameter, in.	1.398			
		Height, in.	2.803	2.803	2.803	
		Water Content, %	51.6	52.2	50.7	
	it.	Dry Density, pcf	71.5	71.6	72.2	
	AtTest	Saturation, %	100.0	100.0	100.0	
	٦t٦	Void Ratio	1.4438	1.4923	1.4194	
	1	Diameter, in.	1.398	1.398	1.398	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	0.999	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	25.540	37.050	48.520	
	Fai	il. Stress, psf	2766.7	2739.1	2574.6	
	5	Strain, %	4.0	4.6	4.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	6444.4	8074.3	9561.4	
	σ_3	Failure, psf	3677.8	5335.2	6986.9	
	_					

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 73.1-74


Proj. No.: B13-018 Date Sampled:


^e——— Southern Earth Sciences, Inc.

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Unconsolidated Undrained **Sample Type:** Undisturbed

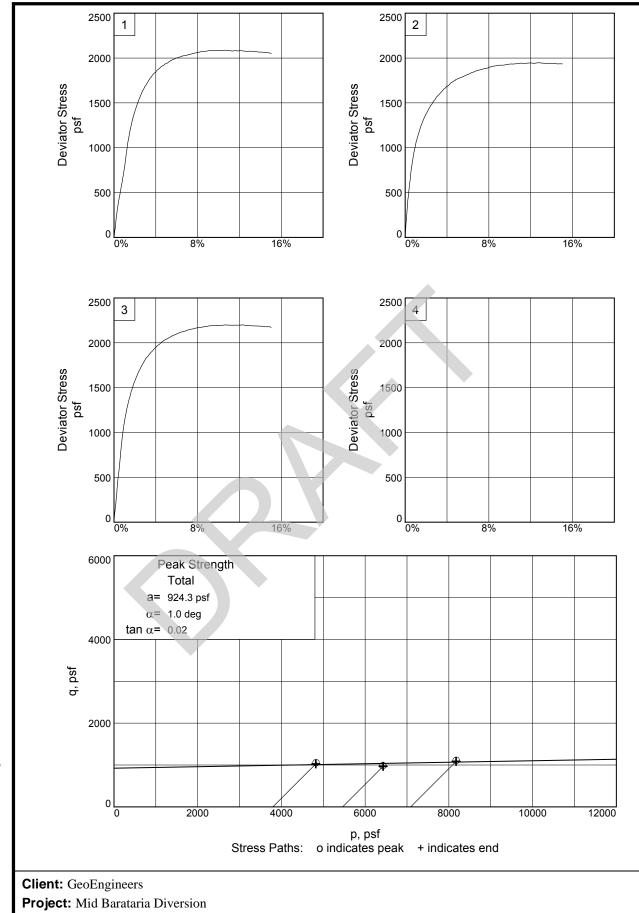
Description: St, Gr Fat CLAY (CH4)

LL= 84 PL= 22 Pl= 62 Assumed Specific Gravity= 2.80

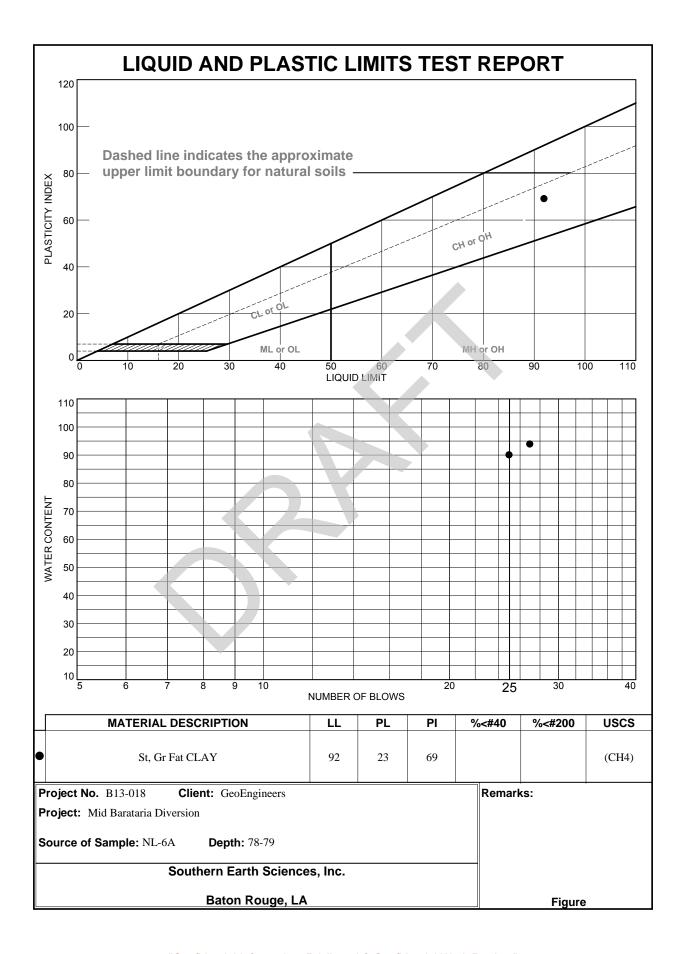
Remarks: Type Failure: 45 degree shear on sample 1

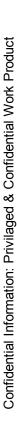
Bulge on sample 2 & 3

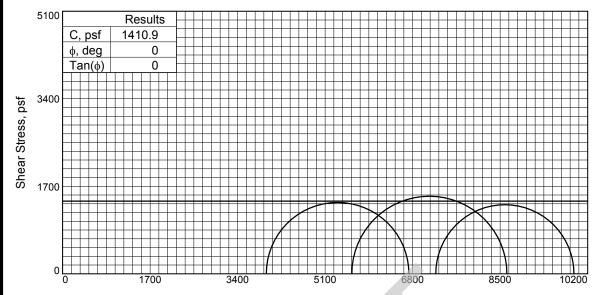
Figure _____

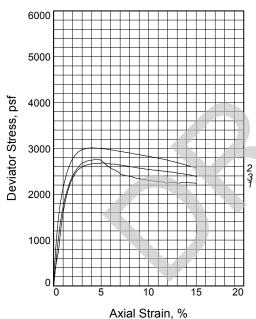

	Sample No.		1	2	3	
		Water Content, %	50.7			
	<u></u>	Dry Density, pcf	71.3 97.9			
,	Initial	Saturation, % Void Ratio	1.4511		1.4209	
1	=	Diameter, in.		1.392		
2		Height, in.	2.803			
		Water Content, %	51.8	51.6	50.7	
	it	Dry Density, pcf	71.3	71.5	72.2	
	At Test	Saturation, %	100.0	100.0	100.0	
	7	Void Ratio	1.4511	1.4442	1.4209	
	`	Diameter, in.		1.392		
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.001	1.000	0.999	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	26.350	37.930	49.210	
	Fai	il. Stress, psf	2087.3	1947.7	2200.0	
	5	Strain, %	10.6	12.8	12.4	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	5881.7	7409.6	9286.2	
	σ_{3}	Failure, psf	3794.4	5461.9	7086.2	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 75-76


Proj. No.: B13-018 Date Sampled:


Southern Earth Sciences, Inc.

Ty	рe	of	T	es	t:

Unconsolidated Undrained Sample Type: Undisturbed

Description: St, Gr Fat CLAY (CH4)

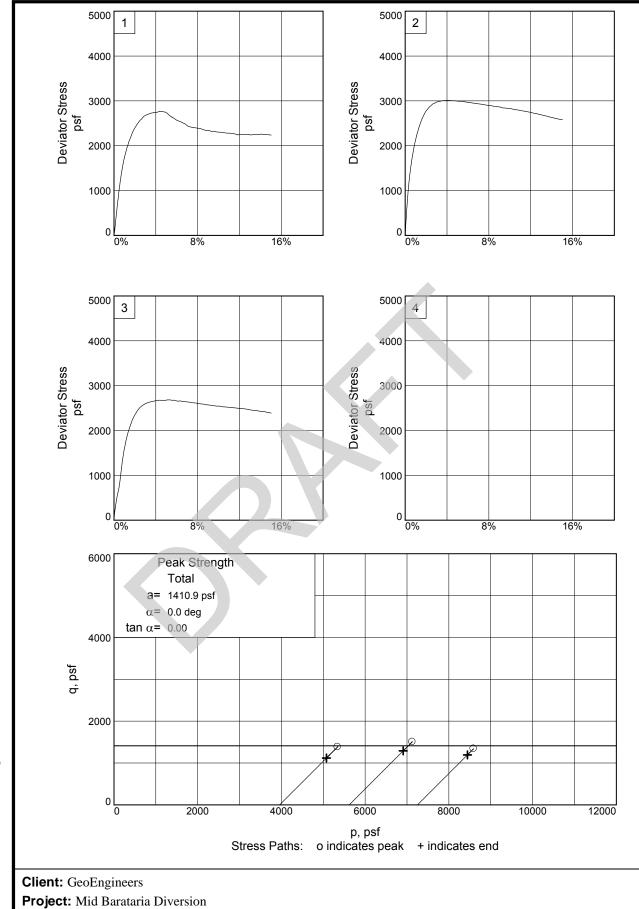
LL= 92 **PL=** 23 **PI=** 69 **Assumed Specific Gravity=** 2.80

Remarks: Type Failure:

45 Degree Shear on sample 1 Multi Shear on sample 2

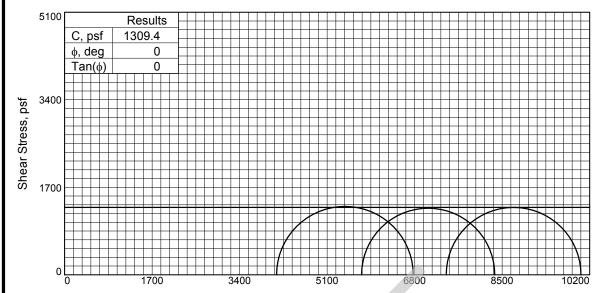
F	iq	ur	е		

	Sa	mple No.	1	2	3	
		Water Content, %	47.7	46.4	48.4	
		Dry Density, pcf	73.8	74.7	73.1	
	Initial	Saturation, %	97.7	96.9	97.4	
	2	Void Ratio	1.3674	1.3392	1.3908	
		Diameter, in.		1.388		
		Height, in.	2.803	2.803	2.803	
		Water Content, %	48.8	47.8	49.7	
)t	Dry Density, pcf	73.8	74.7	73.1	
23	Fest	Saturation, %	100.0	100.0	100.0	
	At T	Void Ratio	1.3674	1.3392	1.3908	
	_	Diameter, in.	1.388	1.388	1.388	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	0.999	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	27.480	39.020	50.350	
	Fa	il. Stress, psf	2770.3	3012.0	2682.9	
	5	Strain, %	4.4	4.1	5.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ_1	Failure, psf	6727.4	8630.9	9933.3	
	σ_{3}	Failure, psf	3957.1	5618.9	7250.4	
	$\overline{}$					

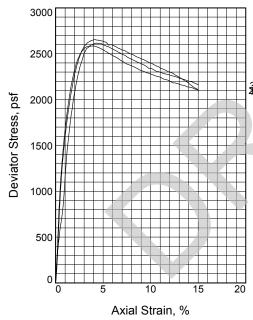

Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 78-79


Proj. No.: B13-018 **Date Sampled:**

Source of Sample: NL-6A



Depth: 78-79

Ty	рe	of	T	es	t:

Sample Type: Undisturbed

Description: St, Gr Fat CLAY with silt lenses

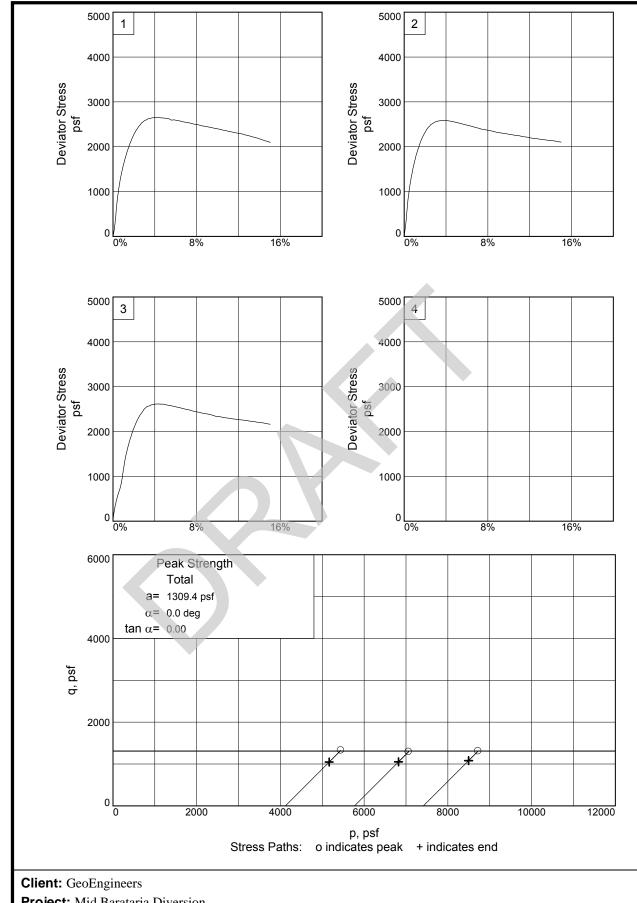
(CH4)

Assumed Specific Gravity= 2.80

Remarks: Type Failure:

45 degree Shear on sample 1 Bulge on sample 2 and 3

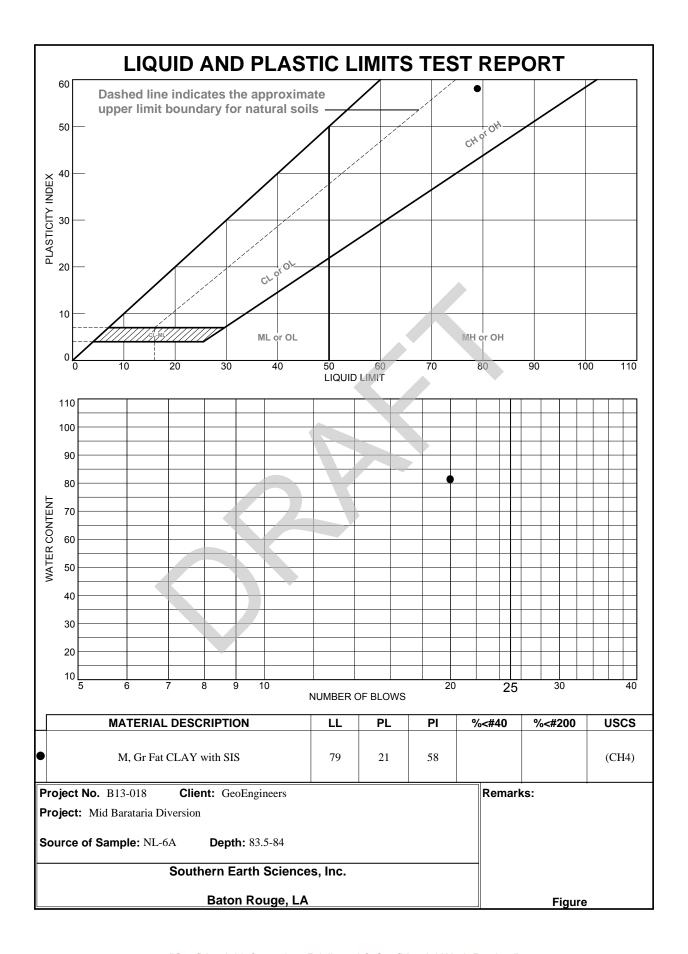
Fiq	ure	

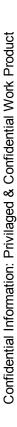

	Sample No.		1	2	3	
		Water Content, %	55.2	57.1	51.9	
		Dry Density, pcf	69.3	67.5	70.0	
	Initial	Saturation, %	101.4	100.6	97.0	
3	lпi	Void Ratio	1.5240	1.5893	1.4984	
4	\ 	Diameter, in.	1.389	1.389	1.389	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	54.4	56.8	53.5	
	ot	Dry Density, pcf	69.3	67.5	70.0	
	Te	Saturation, %	100.0	100.0	100.0	
	At Test	Void Ratio	1.5240	1.5893		
		Diameter, in.	1.390		1.389	
	Height, in.		2.803	2.803	2.803	
	Strain rate, in./min. Back Pressure, psi Cell Pressure, psi Fail. Stress, psf Strain, % Ult. Stress, psf Strain, %		1.000	1.000	1.001	
			0.000	0.000	0.000	
			28.600	40.070	51.490	
			2654.0	2585.9	2616.4	
			4.2	4.0	4.4	
	σ ₁	Failure, psf	6772.4	8355.9	10031.0	
	σ_3	Failure, psf	4118.4	5770.1	7414.6	

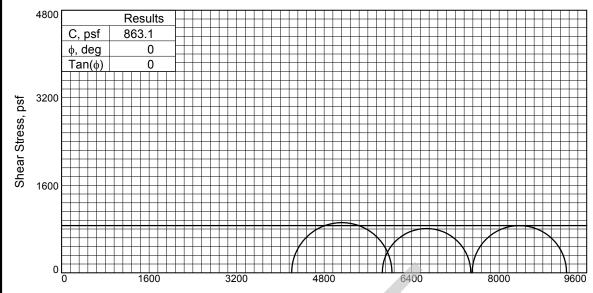
Client: GeoEngineers

Project: Mid Barataria Diversion

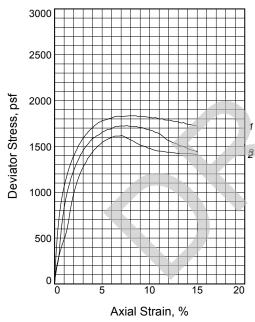
Source of Sample: NL-6A Depth: 81-82


Proj. No.: B13-018 Date Sampled:




Project: Mid Barataria Diversion

Source of Sample: NL-6A **Depth:** 81-82 **Figure** Project No.: B13-018


Southern Earth Sciences, Inc.

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Sample Type: Undisturbed

Description: M, Gr Fat CLAY with SIS

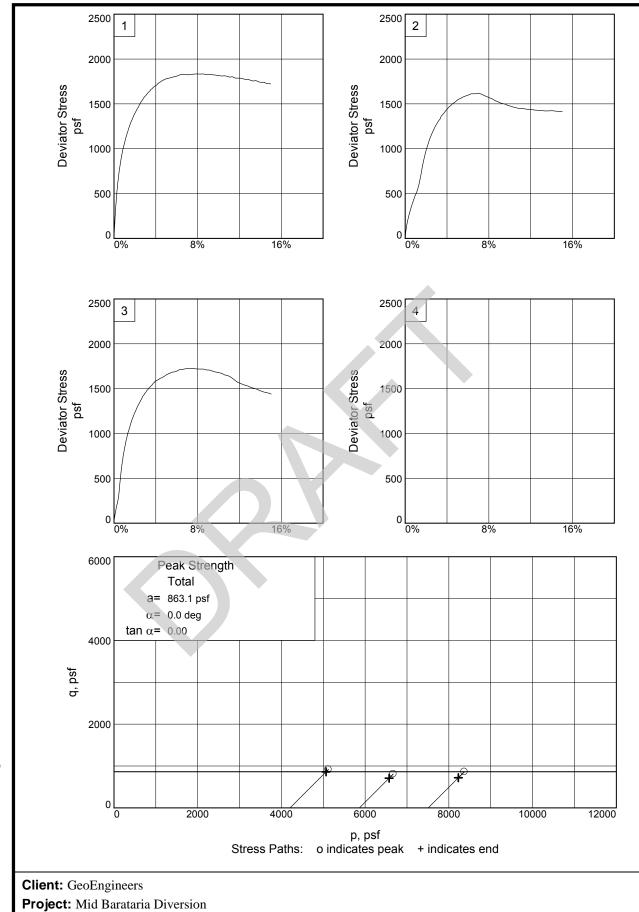
(CH4)

LL= 79 **PL=** 21 **PI=** 58

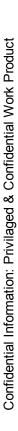
Assumed Specific Gravity= 2.80

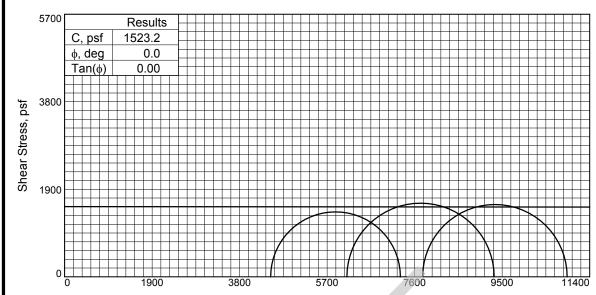
Remarks: Type Failure: 45 degree Shear

rigui e	Figure	
---------	--------	--


	Sample No.		1	2	3	
		Water Content, %	56.1	54.7	56.3	
		Dry Density, pcf	66.6	67.3	66.2	
	Initial	Saturation, %	96.7	95.9	96.2	
	П	Void Ratio	1.6245	1.5983	1.6391	
		Diameter, in.	1.399		1.399	
١.		Height, in.	2.803	2.803	2.803	
1		Water Content, %	58.0	57.1	58.5	
3	st	Dry Density, pcf	66.6	67.3		
_	Гe	Saturation, %	100.0	100.0	100.0	
	AtTe	Void Ratio	1.6245	1.5983		
		Diameter, in.	1.399			
		Height, in.	2.803	2.803	2.803	
	Strain rate, in./min. Back Pressure, psi Cell Pressure, psi Fail. Stress, psf Strain, % Ult. Stress, psf Strain, %		1.000	1.000	0.999	
			0.000	0.000	0.000	
			29.210	40.720	52.130	
			1834.3	1618.0	1726.0	
			8.6	7.1	7.6	
	σ1	Failure, psf	6040.6	7481.6	9232.8	
	σ_3	Failure, psf	4206.2	5863.7	7506.7	

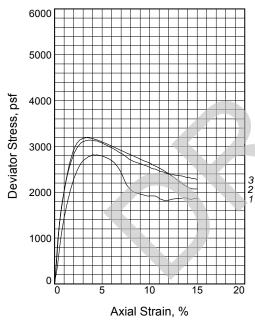
Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 83.5-84

Proj. No.: B13-018 Date Sampled:

Project No.: B13-018 Figure Southern Earth Sciences, Inc.



Normal Stress, psf

Water Content, %

Dry Density, pcf

Sample No.

			00.0	, 0.1	· · ·	
	Initial	Saturation, %	100.7	95.2	100.3	
	Ιυ	Void Ratio	1.6634	1.4934	1.6717	
		Diameter, in.	1.397	1.387	1.397	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	59.4	53.3	59.7	
	i,	Dry Density, pcf	65.6	70.1	65.4	
	AtTest	Saturation, %	100.0	100.0	100.0	
3	۲ţ	Void Ratio	1.6634	1.4934	1.6717	
3 2 1	1	Diameter, in.	1.397	1.387	1.397	
'		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.001	1.001	1.000	
	Back Pressure, psi		0.000	0.000	0.000	
	Се	Il Pressure, psi	31.070	42.570	53.990	
	Fail. Stress, psf		2817.0	3196.0	3136.6	
	5	Strain, %	4.1	3.3	3.6	
	Ult. Stress, psf					
	5	Strain, %				
	σ1	Failure, psf	7291.0	9326.1	10911.2	

1

59.8

65.6

2

50.8

70.1

4474.1 6130.1 7774.6

3

59.9

65.4

Type of Test:

Unconsolidated Undrained **Sample Type:** Undisturbed

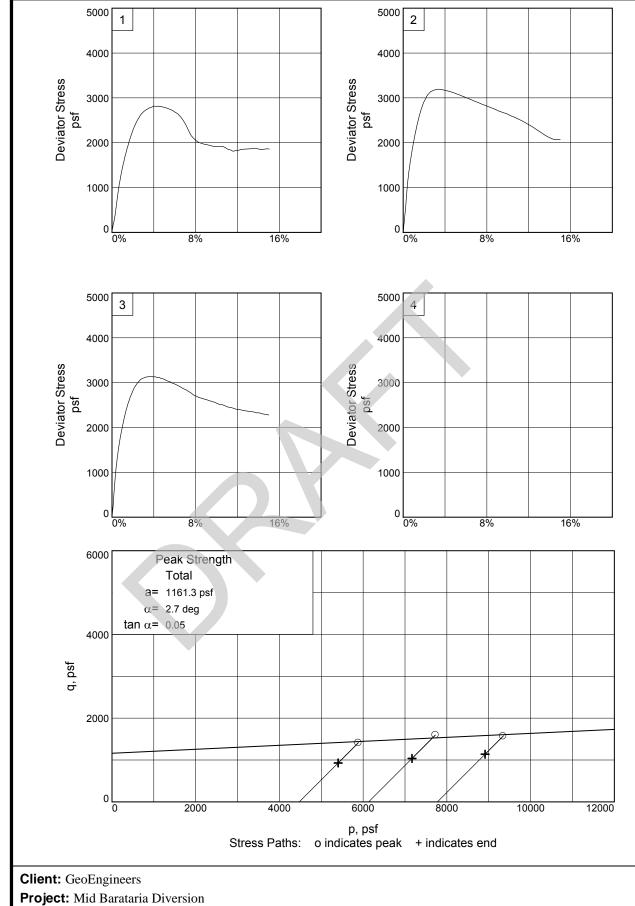
Description: St, Gr Fat CLAY with SIS

(CH4)

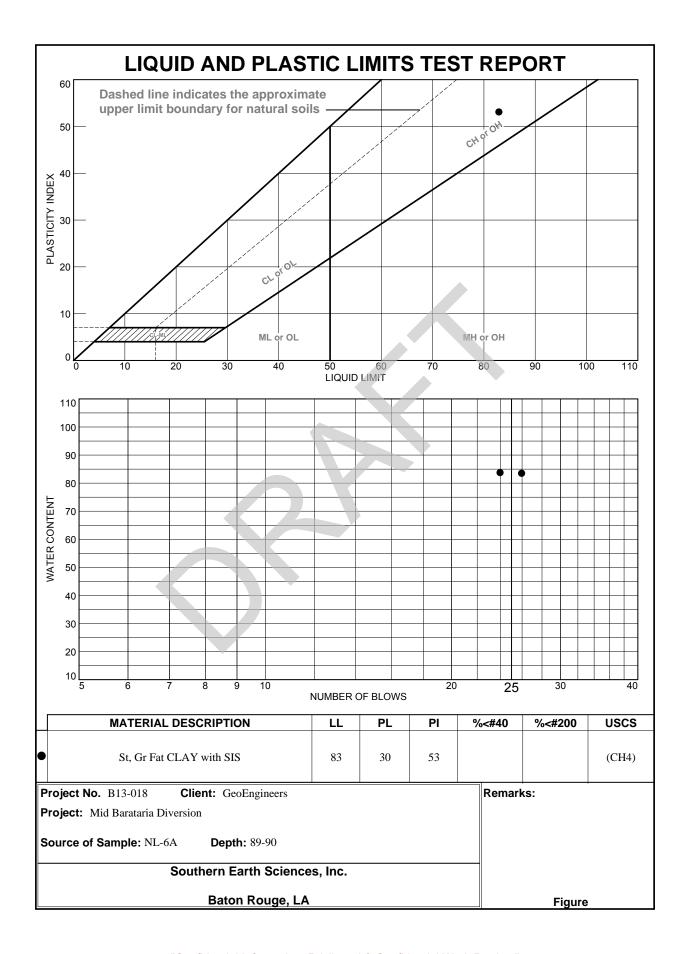
Assumed Specific Gravity= 2.80

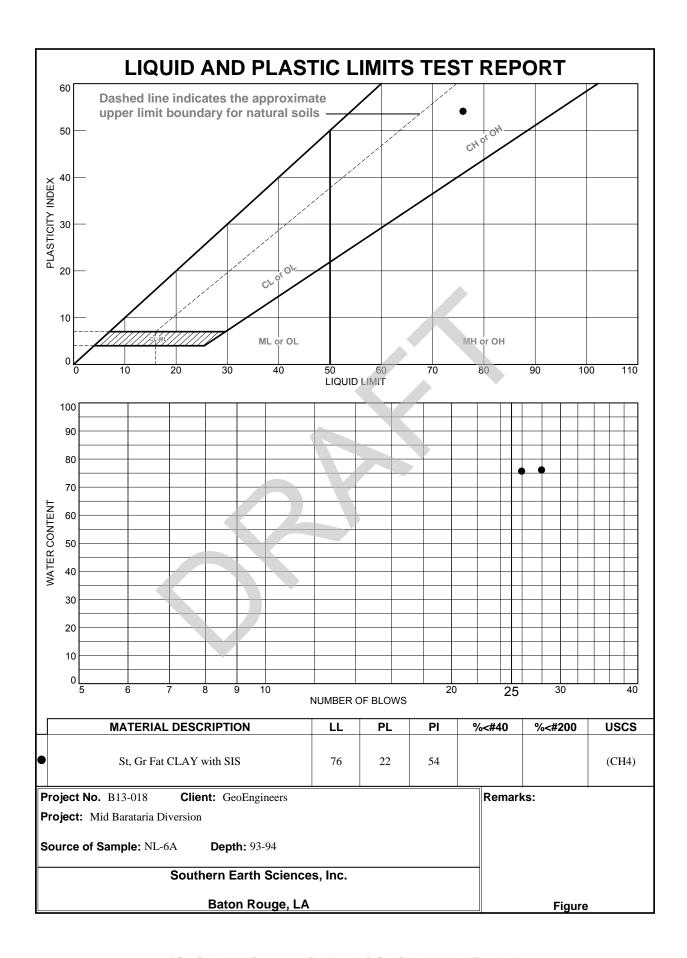
Remarks: Type Failure:

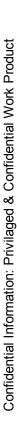
45 degree Shear on sample 1 and 2 Bulge and 45 degree Shear on sample 3 Void at bottom on sample 1

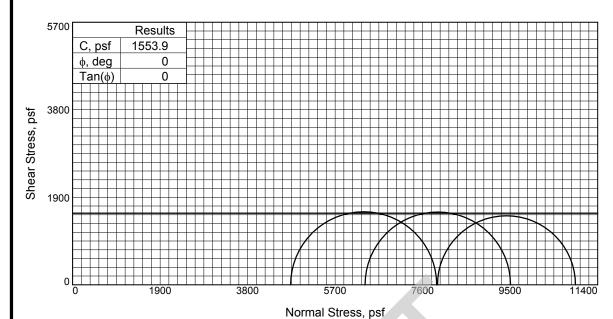

Figure _____

σ₃ Failure, psf


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 88-89


Proj. No.: B13-018 Date Sampled:



Source of Sample: NL-6A **Depth:** 88-89 **Figure** Project No.: B13-018

Type o	of T	est:
--------	------	------

Sample Type: Undisturbed

Description: St, Gr Fat CLAY with SIS

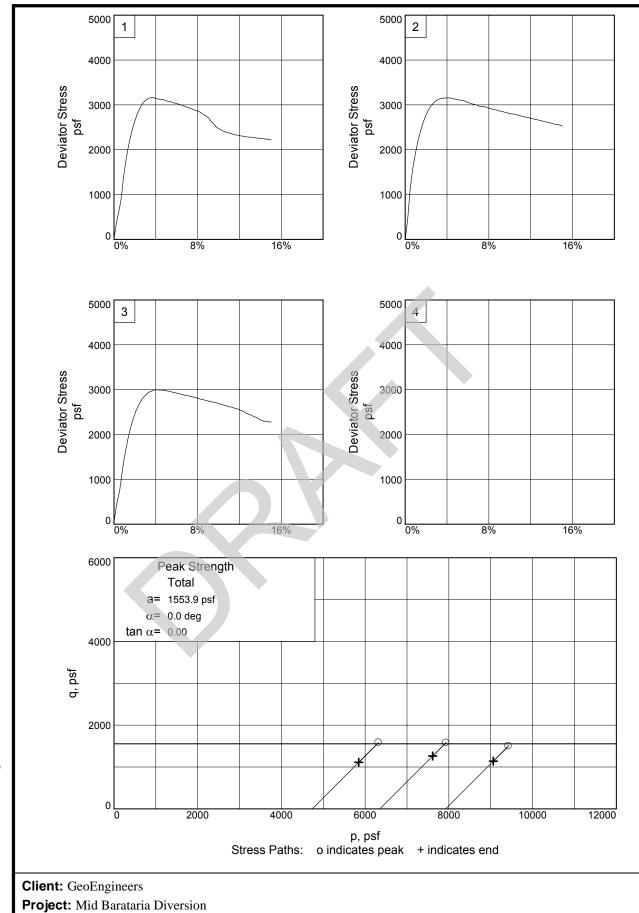
(CH4)

LL= 76 **PL=** 22 **PI=** 54

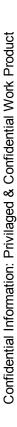
Assumed Specific Gravity= 2.80

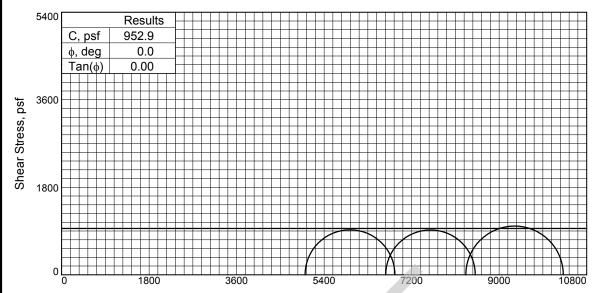
Remarks: Type Failure: Muiti Shear on sample 1

45 degree Shear on sample 2 and 3

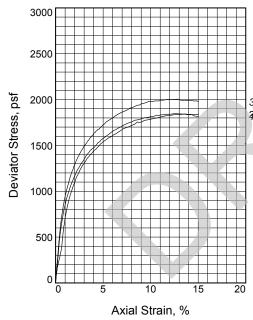

	Sa	mple No.	1	2	3	
	Ja	IIIpic No.			J	
		Water Content, %	57.2	55.6	56.6	
		Dry Density, pcf	67.3	69.1	67.4	
	Initial	Saturation, %	100.4	101.7	99.4	
	Ιυ	Void Ratio	1.5958	1.5294	1.5926	
	\ 	Diameter, in.	1.400	1.400	1.400	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	57.0	54.6	56.9	
	st	Dry Density, pcf	67.3	69.1	67.4	
2	Φ	Saturation, %	100.0	100.0	100.0	
	AtT	Void Ratio	1.5958	1.5294	1.5926	
•	_	Diameter, in.	1.400	1.400	1.400	
		Height, in.	2.803	2.803	2.803	
	Strain rate, in./min.		1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	32.880	44.100	55.020	
	Fa	il. Stress, psf	3169.7	3157.7	2996.1	
	5	Strain, %	3.6	4.3	4.1	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	7904.4	9508.1	10919.0	
	σ_3	Failure, psf	4734.7	6350.4	7922.9	
	-					

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 93-94

Proj. No.: B13-018 Date Sampled:



Source of Sample: NL-6A Depth: 93-94 Project No.: B13-018 Figure

Type	of	Test:	•
I ypc	VI.	ı cot.	•

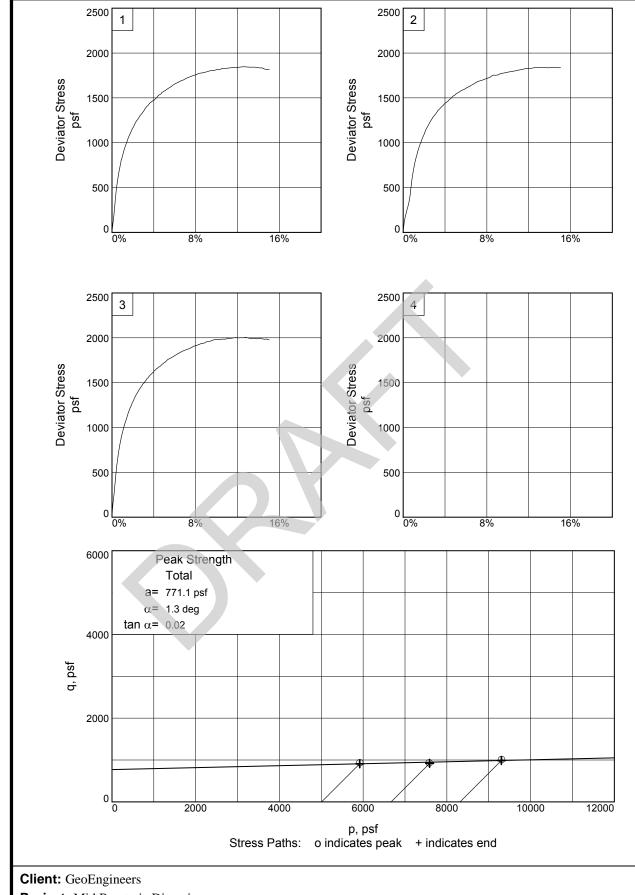
Description: M, Gr Fat CLAY with SIS

(CH4)

Assumed Specific Gravity= 2.80

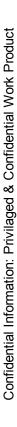
Remarks: Type Failure: Bulge on sample 2 and 3

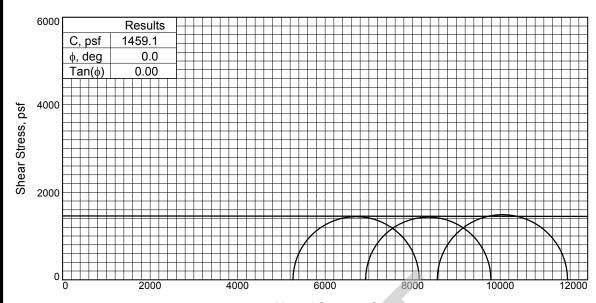
Fi	ia	ur	е		


	Sa	mple No.	1	2	3	
		Water Content, %	54.6	54.6	53.8	
		Dry Density, pcf	67.1	67.0	67.5	
	Initial	Saturation, %	95.1	95.0	94.8	
	Ini	Void Ratio	1.6067	1.6099	1.5899	
3		Diameter, in.	1.412	1.412	1.412	
7		Height, in.	2.803	2.803	2.803	
		Water Content, %	57.4	57.5	56.8	
	st	Dry Density, pcf	67.1	67.0	67.5	
	Гe	Saturation, %	100.0	100.0	100.0	
	AtTest	Void Ratio	1.6067	1.6099	1.5899	
		Diameter, in.	1.412			
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Cell Pressure, psi Fail. Stress, psf Strain, % Ult. Stress, psf		34.780	46.300	57.740	
			1847.7	1841.8	2004.8	
			12.6	15.0	12.8	
	5	Strain, %				
	σ ₁	Failure, psf	6856.0	8509.0	10319.4	
	σ_3	Failure, psf	5008.3	6667.2	8314.6	

Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 98-99


Proj. No.: B13-018 Date Sampled:

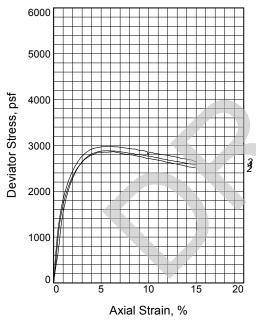

Source of Sample: NL-6A Depth: 98-99
Project No.: B13-018 Figure

Figure _____ Southern Earth Sciences, Inc.

Normal Stress, psf

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Unconsolidated Undrained

Sample Type: Undisturbed

Description: St, Gr Fat CLAY with SIS

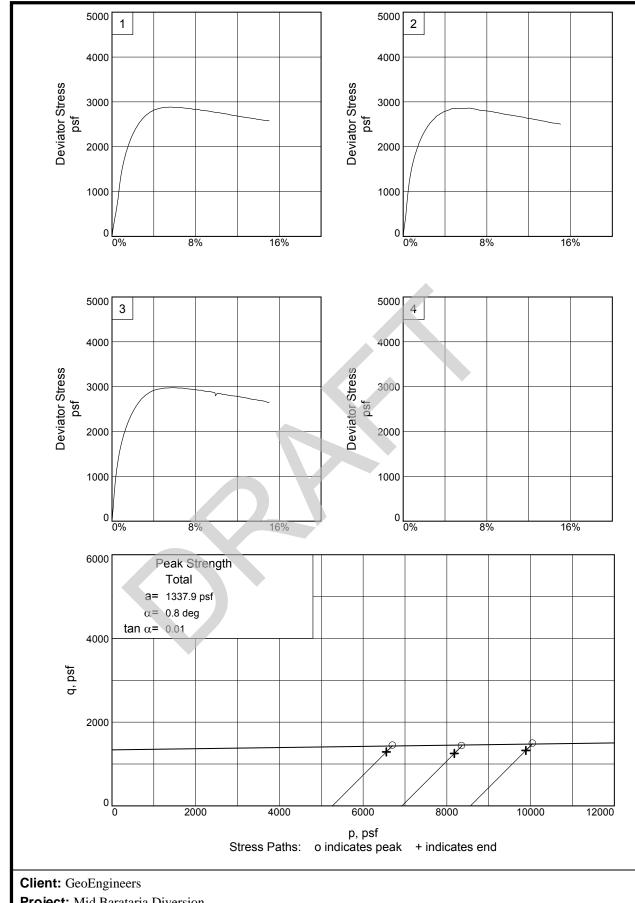
(CH4)

Assumed Specific Gravity= 2.80

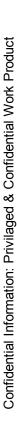
Remarks: Type Failure:

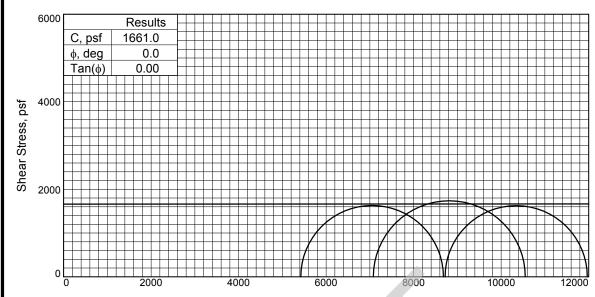
Bulge

	Figure	
_	_	

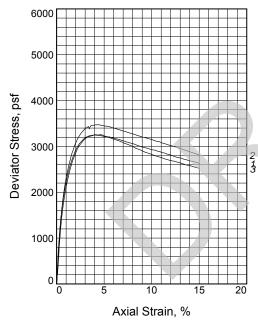

	Sa	mple No.	1	2	3	
		Water Content, %	53.3	52.2	52.5	
		Dry Density, pcf	69.8	70.4	69.9	
	la	Saturation, %	99.2	98.6	97.9	
	Initial	Void Ratio	1.5051	1.4836	1.4999	
	\ 	Diameter, in.	1.400	1.400	1.400	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	53.8	53.0	53.6	
	st	Dry Density, pcf	69.8	70.4	69.9	
3	At Test	Saturation, %	100.0	100.0	100.0	
_	7	Void Ratio	1.5051	1.4836	1.4999	
	`	Diameter, in.	1.400	1.400	1.400	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.001	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	Il Pressure, psi	36.570	48.100	59.470	
	Fa	il. Stress, psf	2884.6	2862.9	2976.8	
	5	Strain, %	5.6	6.3	5.8	
	Ult	. Stress, psf				
	5	Strain, %				
	σ ₁	Failure, psf	8150.7	9789.3	11540.5	
	σ_3	Failure, psf	5266.1	6926.4	8563.7	
		<u> </u>				

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 103-104

Proj. No.: B13-018 Date Sampled:



Source of Sample: NL-6A **Depth:** 103-104 **Figure** Project No.: B13-018

Type of	rest.
---------	-------

Description: St, Gr Fat CLAY with SIS

(CH4)

Assumed Specific Gravity= 2.80

Remarks: Type Failure:
Bulge on sample 1 and 3
45 degree Shear on sample 2

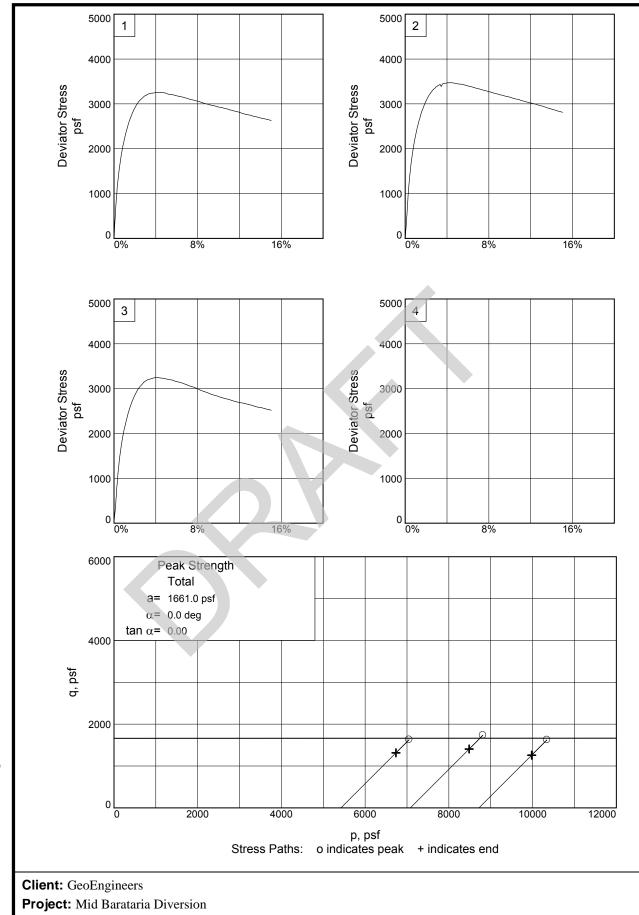
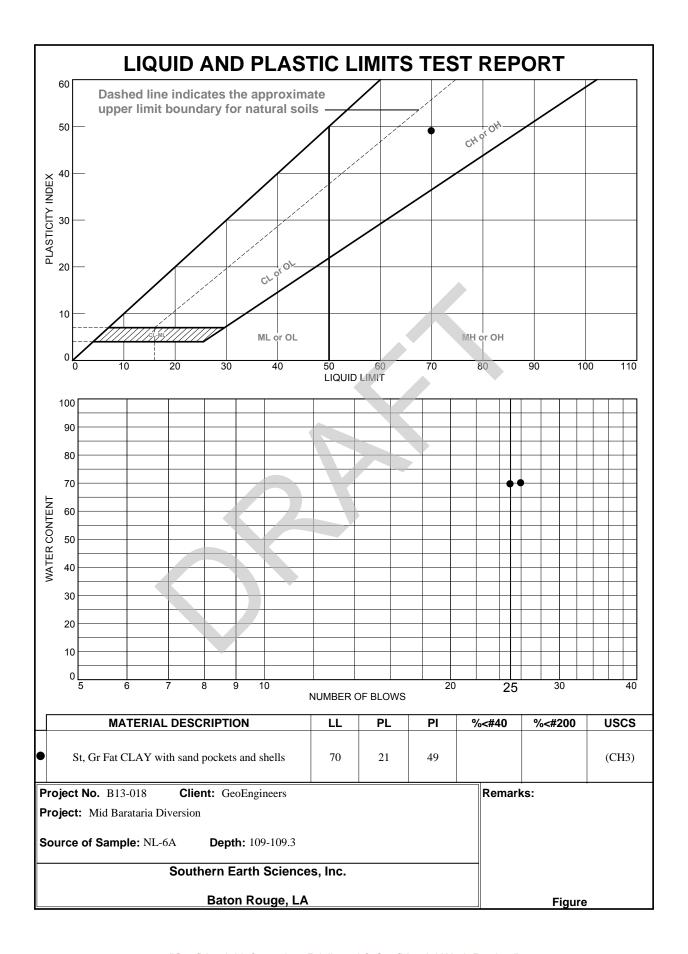
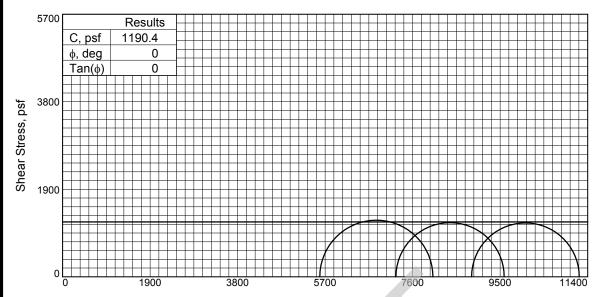
Sample No.		1	2	3	
	Water Content, %	51.4	51.0	52.9	
	Dry Density, pcf	69.9	70.5	69.5	
Initial	Saturation, %	95.8	96.6	97.7	
<u>-</u>	Void Ratio	1.5014	1.4799	1.5157	
\	Diameter, in.	1.407	1.407	1.407	
	Height, in.	2.803	2.803	2.803	
	Water Content, %	53.6	52.9	54.1	
+:	Dry Density, pcf	69.9	70.5	69.5	
AtTest	Saturation, %	100.0	100.0	100.0	
15	Void Ratio	1.5014	1.4799	1.5157	
_	Diameter, in.	1.407	1.407	1.407	
	Height, in.	2.803	2.803	2.803	
Str	ain rate, in./min.	1.001	1.000	0.999	
Ва	ck Pressure, psi	0.000	0.000	0.000	
Ce	ll Pressure, psi	37.650	49.160	60.550	
Fa	il. Stress, psf	3258.2	3471.8	3249.5	
5	Strain, %	4.7	4.4	4.1	
Ult	. Stress, psf				
(Strain, %				
σ ₁	Failure, psf	8679.8	10550.9	11968.7	
σ_3	Failure, psf	5421.6	7079.0	8719.2	

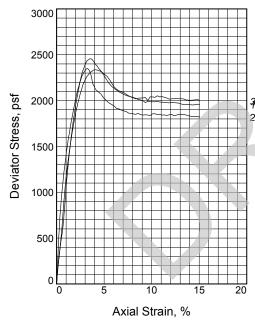
Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 106-107

Proj. No.: B13-018 Date Sampled:


Figure _____ Southern Earth Sciences, Inc.

Normal Stress, psf

Type	of	Te	st:
------	----	----	-----

Sample Type: Undisturbed

Description: St, Gr Fat CLAY with sand

pockets and shells (CH3)

LL= 70 PL= 21 Pl= 49 Assumed Specific Gravity= 2.80

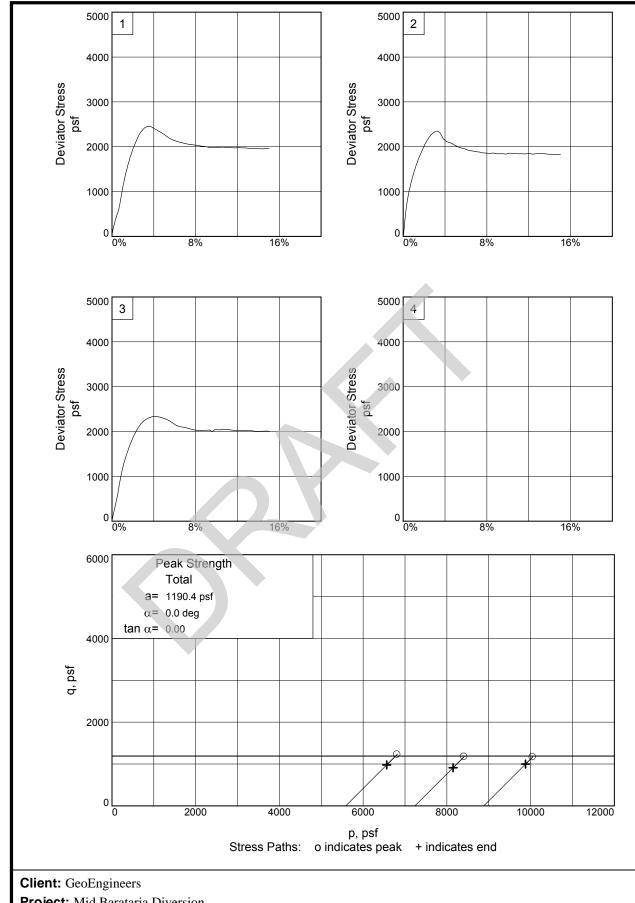
Remarks: Type Failure:

45 degree Shear on sample 1 and 3

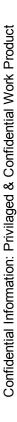
Multi Shear on sample 2

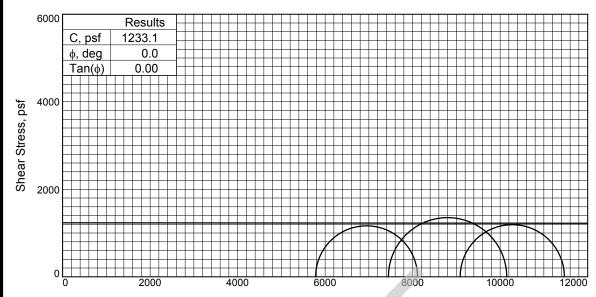
Some voids due to shell pockets on sample 1

igure	


58.1 54 65.8 68 98.1 97	
98.1 97	.2
	.7
6579 1.563	32
1.411 1.41	1
2.803 2.80)3
59.2 55	.8
65.8 68	.2
100.0 100	.0
6579 1.563	
	1
2.803 2.80)3
1.000 1.00	00
0.00 0.00	00
0.260 61.67	70
349.9 2336	.9
3.3 4	.1
587.4 11217	.3
237.4 8880	.5
	2.803 2.80 59.2 55 65.8 68 100.0 100 6579 1.563 1.411 1.41 2.803 2.80 1.000 1.00 0.000 0.00 0.260 61.67 349.9 2336 3.3 4

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 109-109.3

Proj. No.: B13-018 Date Sampled:



Source of Sample: NL-6A **Depth:** 109-109.3 Figure _ Project No.: B13-018

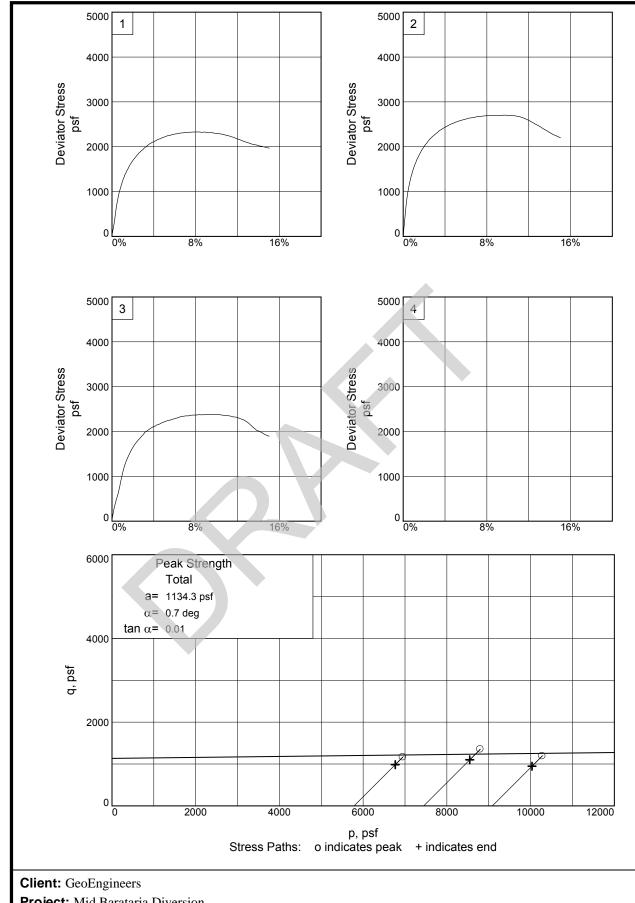
Normal Stress, psf

Type	of	Te	st:
------	----	----	-----

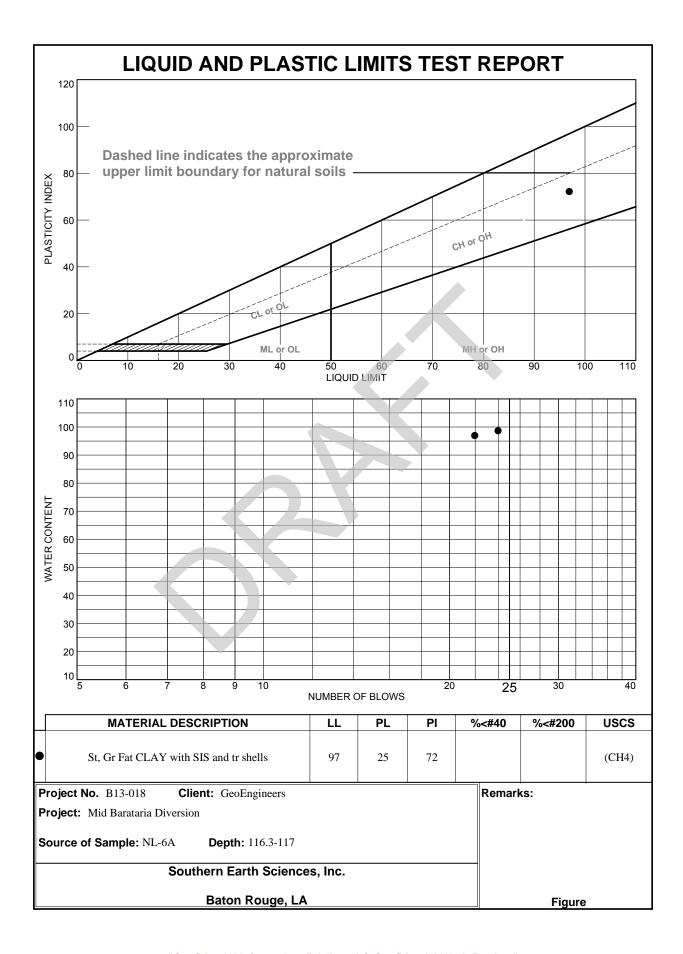
Description: St, Gr Fat CLAY (CH4)

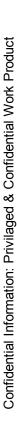
Assumed Specific Gravity= 2.80

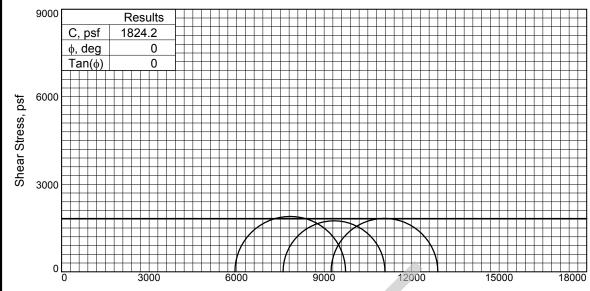
Remarks: Type Failure: 45 degree Shear

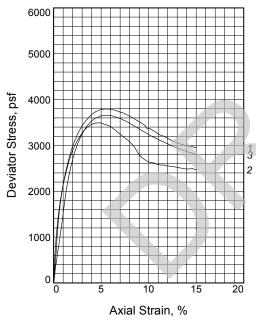

	Sa	mple No.	1	2	3	
		Water Content, %	54.0	53.5	53.4	
		Dry Density, pcf	68.1	68.2	67.9	
	Initial	Saturation, %	96.4	95.7	95.0	
2	<u>-</u>	Void Ratio	1.5672	1.5647	1.5726	
13		Diameter, in.	1.414	1.414	1.414	
3		Height, in.	2.803	2.803	2.803	
		Water Content, %	56.0	55.9	56.2	
	it	Dry Density, pcf	68.1	68.2	67.9	
	At Test	Saturation, %	100.0	100.0	100.0	
	- ₽	Void Ratio	1.5672	1.5647	1.5726	
	`	Diameter, in.	1.414	1.414	1.414	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	40.160	51.710	63.100	
	Fa	il. Stress, psf	2329.4	2705.3	2381.8	
	5	Strain, %	8.3	9.6	9.1	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	8112.5	10151.5	11468.2	
	σ_{3}	Failure, psf	5783.0	7446.2	9086.4	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 113-114


Proj. No.: B13-018 Date Sampled:


Source of Sample: NL-6A **Depth:** 113-114 **Figure** Project No.: B13-018

Normal Stress, psf

_	•	
Type	Λt	I Det:
IVDE	vı	ı cot.

Sample Type: Undisturbed

Description: St, Gr Fat CLAY with SIS and tr

shells

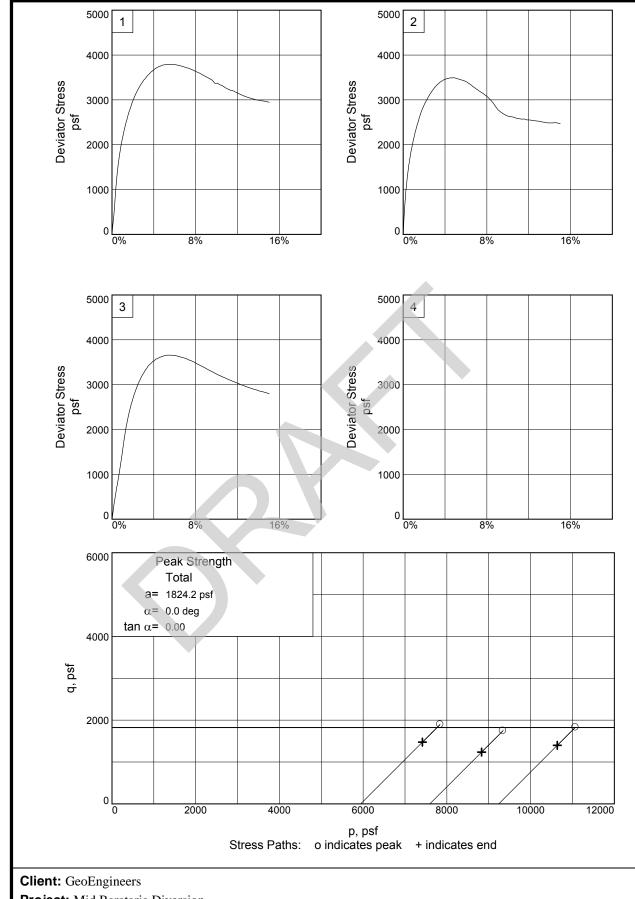
LL= 97 **PL=** 25 **PI=** 72

Assumed Specific Gravity= 2.80

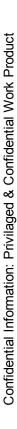
Remarks: Type Failure:
Multi Shear on sample 1

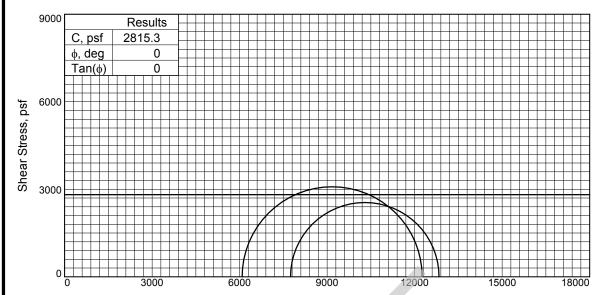
45 degree Shear on sample 2

45 degree Shear and bulge on sample 3 **Figure**

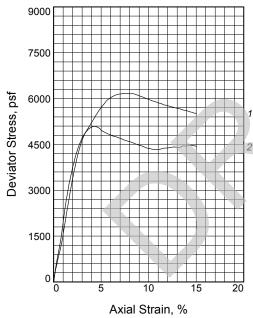

	Sa	mple No.	1	2	3	
		Water Content, %	56.1	56.1	56.1	
		Dry Density, pcf	67.0	66.7	66.7	
	Initial	Saturation, %	97.7	97.1	97.0	
	lпi	Void Ratio	1.6074	1.6189	1.6195	
	\ 	Diameter, in.	1.414	1.414	1.414	
		Height, in.	2.803	2.803	2.803	
		Water Content, %	57.4	57.8	57.8	
5	it	Dry Density, pcf	67.0	66.7	66.7	
,	At Test	Saturation, %	100.0	100.0	100.0	
-	<u>_</u>	Void Ratio	1.6074	1.6189	1.6195	
	`	Diameter, in.	1.414	1.414	1.414	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.001	1.001	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	41.260	52.730	64.160	
	Fa	il. Stress, psf	3793.8	3493.5	3658.1	
	5	Strain, %	5.6	4.8	5.3	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	9735.2	11086.6	12897.1	
	σ_3	Failure, psf	5941.4	7593.1	9239.0	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 116.3-117

Proj. No.: B13-018 Date Sampled:



Source of Sample: NL-6A **Depth:** 116.3-117 Figure _ Project No.: B13-018

Type	of	Te	st:
------	----	----	-----

Description: vSt, Gr Lean CLAY with SIS

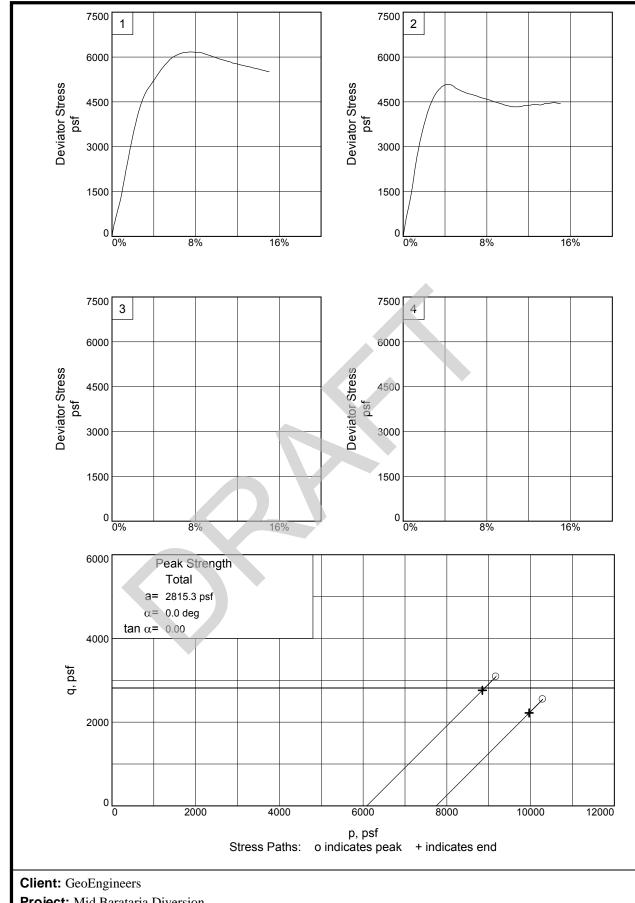
and layers (CL6)

Assumed Specific Gravity= 2.75

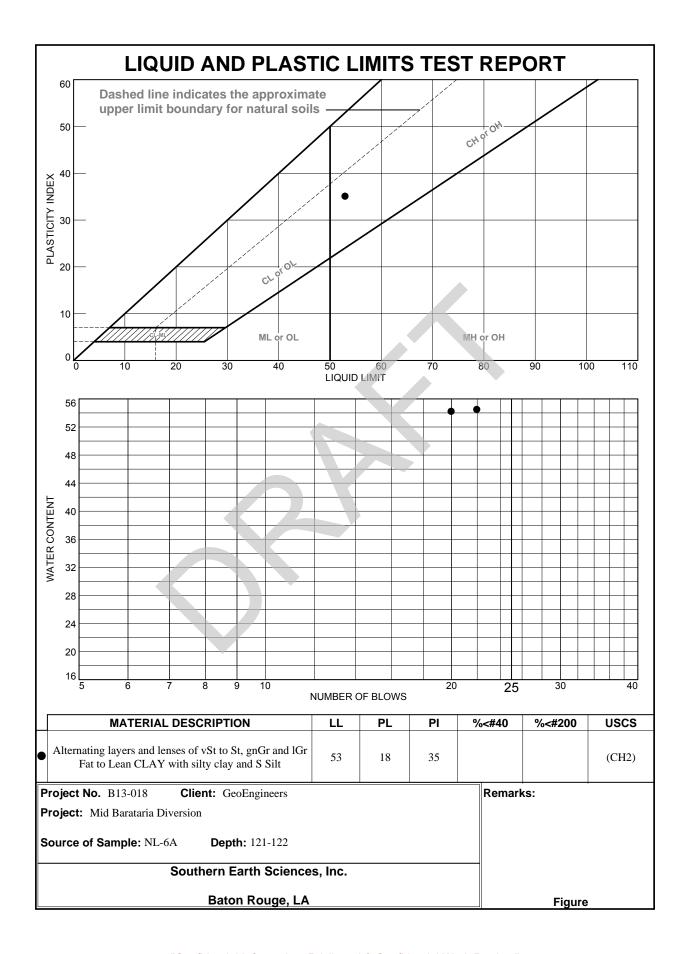
Remarks: Type Failure: Multi Shear on sample 1 60 degree Shear on sample 2

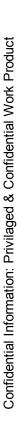
Brittle, less than 2:1 ratio sample 1, Brittle

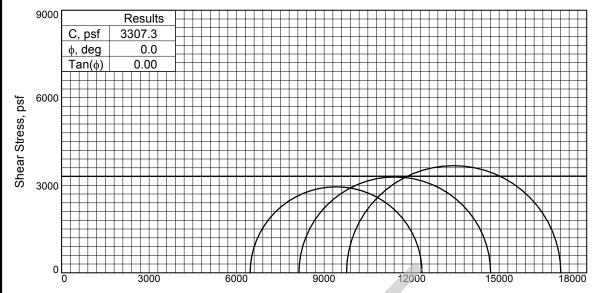
igure	
•	

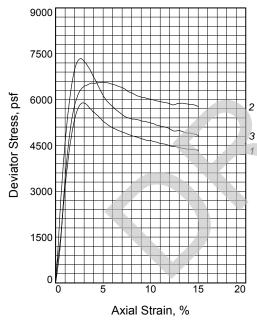

	Sa	mple No.	1	2	
		Water Content, %	30.6	30.0	
		Dry Density, pcf	93.5	93.0	
	Initial	Saturation, %	100.6	97.5	
	2	Void Ratio	0.8365	0.8466	
		Diameter, in.	1.426	1.421	
1		Height, in.	2.391	2.803	
		Water Content, %	30.4	30.8	
2	ب	Dry Density, pcf	93.5	93.0	
	At Test	Saturation, %	100.0	100.0	
	1	Void Ratio	0.8365	0.8466	
	~	Diameter, in.	1.426	1.421	
		Height, in.	2.391	2.803	
	Str	ain rate, in./min.	1.000	1.000	
	Ва	ck Pressure, psi	0.000	0.000	
	Се	ll Pressure, psi	42.270	53.790	
	Fa	il. Stress, psf	6170.9	5090.3	
	5	Strain, %	7.6	4.4	
	Ult	. Stress, psf			
	5	Strain, %			
	σ1	Failure, psf	12257.8	12836.1	
	σ_{3}	Failure, psf	6086.9	7745.8	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-6A Depth: 119-120


Proj. No.: B13-018 Date Sampled:


Source of Sample: NL-6A **Depth:** 119-120 **Figure** Project No.: B13-018

Type	of	Test:	•
I ypc	VI.	ı cot.	•

Description: vSt, Brittle, gnGr and lGr Fat

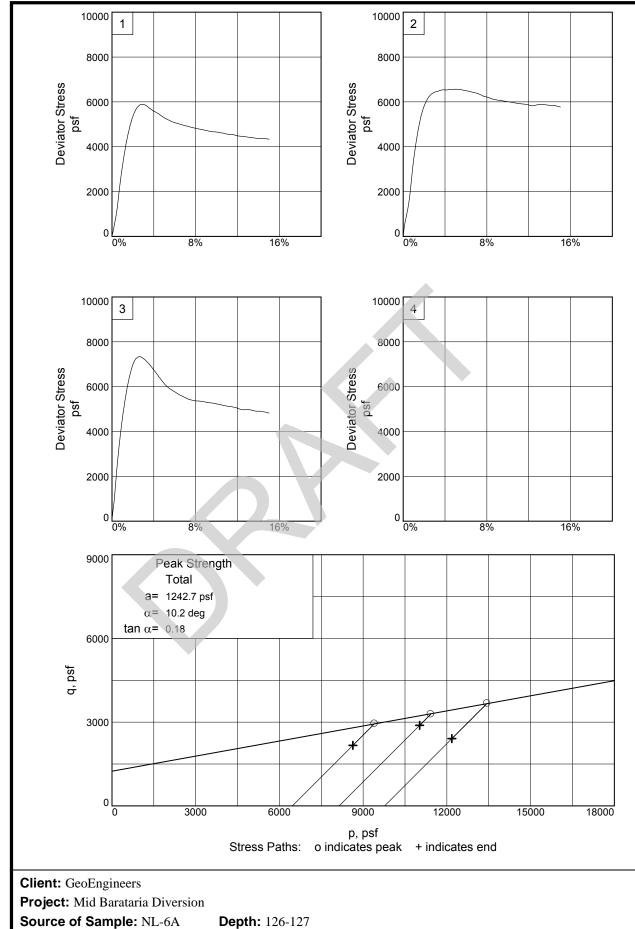
CLAY with jointed S SIS (CH3)

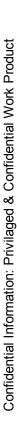
Assumed Specific Gravity= 2.75

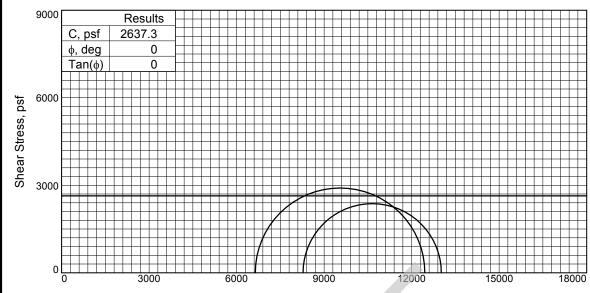
Remarks: Type Failure:

Multi Shear on sample 1 and 2 Jointed and Slicken Sides on sample 3 Brittle & Jointed samples, Erratic Perimeter

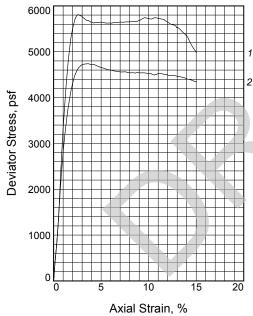
-ıg	lure	


	Sa	mple No.	1	2	3	
		Water Content, %	36.2	36.1	36.3	
		Dry Density, pcf	83.8	86.3	87.2	
	Initial	Saturation, %	94.9	100.3	103.2	
	lni	Void Ratio	1.0491	0.9890	0.9680	
_		Diameter, in.	1.389	1.399	1.403	
2		Height, in.	2.803	2.803	2.803	
3		Water Content, %	38.1	36.0	35.2	
1	st	Dry Density, pcf	83.8	86.3	87.2	
	<u>l</u> e	Saturation, %	100.0	100.0	100.0	
	At Te	Void Ratio	1.0491	0.9890	0.9680	
	`	Diameter, in.	1.389	1.399	1.403	
,		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	1.001	1.000	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	44.890	56.520	67.840	
	Fail. Stress, psf		5891.8	6569.2	7344.1	
	5	Strain, %	2.9	5.1	2.7	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	12356.0	14708.1	17113.1	
	σ_3	Failure, psf	6464.2	8138.9	9769.0	


Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 126-127


Proj. No.: B13-018 Date Sampled:

Ty	рe	of	T	es	t:

Sample Type: undisturbed

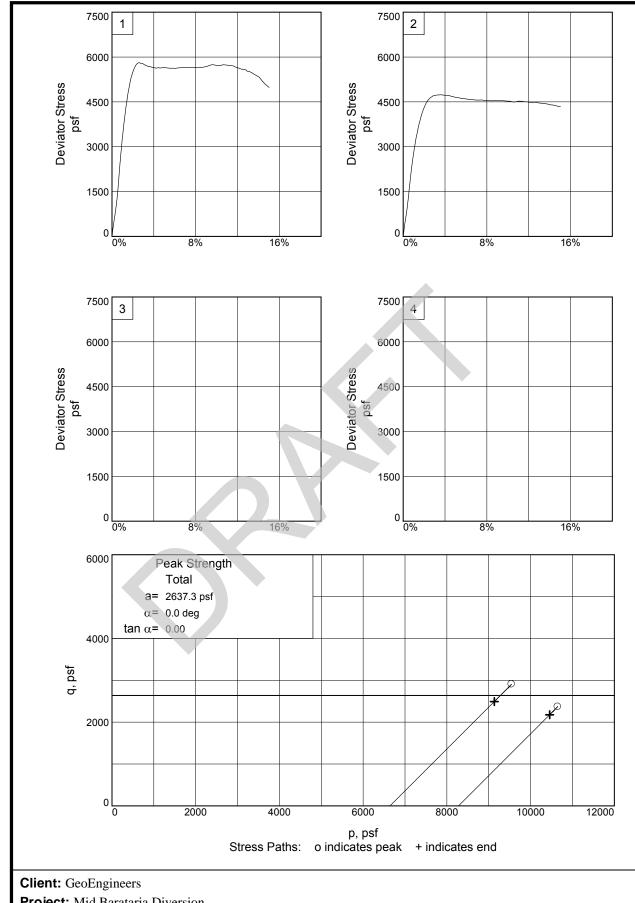
Description: vSt, Brittle, gnGr and lGr Fat CLAY with jointed SIS and layers (CH3)

Assumed Specific Gravity= 2.75

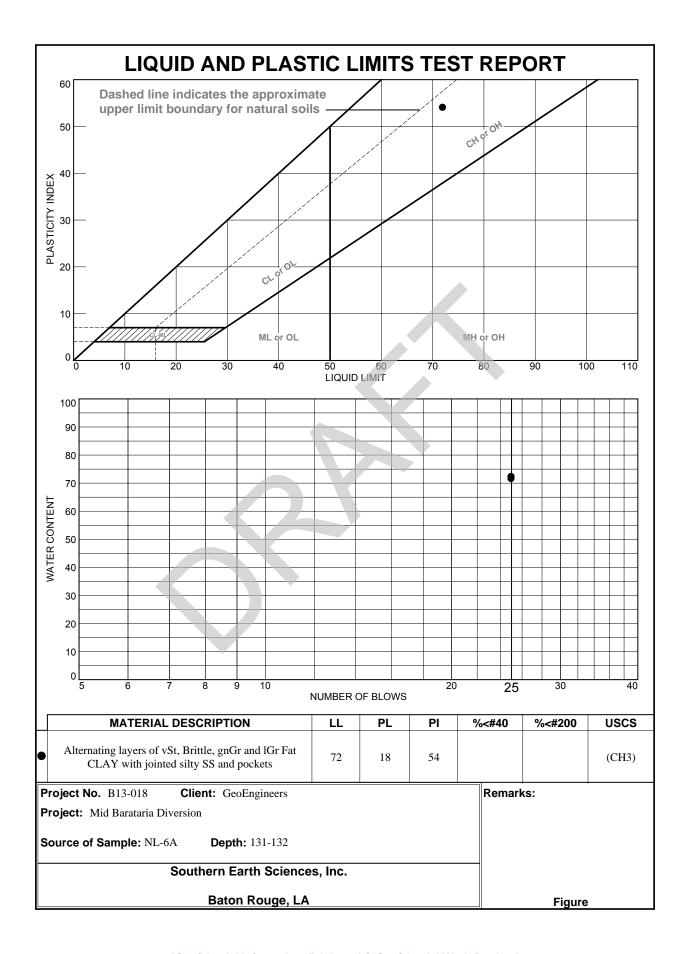
Remarks: Type Failure:

Multi Shear and Bulge on sample 1 60 degree Shear and Bulge on sample 2 Brittle and Jointed samples

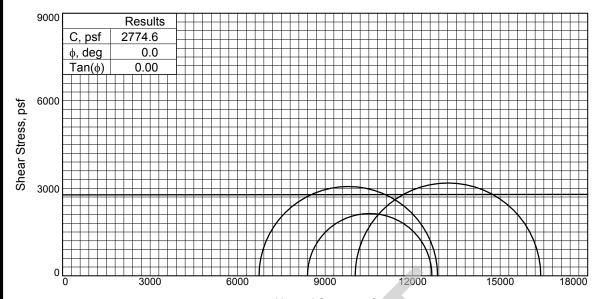
Figure	

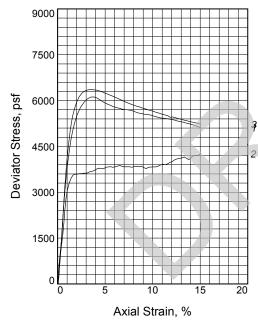

Water Content, % 35.2 34.1		Sa	mple No.	1	2	
Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Water Content, % 35.2 35.3 Dry Density, pcf 87.3 87.1 Saturation, % 100.0 100.0 Void Ratio 0.9667 0.9705 Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % 2.5 3.6 Tailure, psf 12451.9 13017.0	1		,			
Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Water Content, % 35.2 35.3 Dry Density, pcf 87.3 87.1 Saturation, % 100.0 100.0 Void Ratio 0.9667 0.9705 Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % 2.5 3.6 Tailure, psf 12451.9 13017.0		ia	Saturation, %	100.0	96.7	
Height, in. 2.803 2.803 Water Content, % 35.2 35.3 Dry Density, pcf 87.3 87.1 Saturation, % 100.0 100.0 Void Ratio 0.9667 0.9705 Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % 2.5 3.6 Ult. Stress, psf Strain, % 71 Failure, psf 12451.9 13017.0	2	<u>-</u>	Void Ratio	0.9667	0.9705	
Water Content, % 35.2 35.3 Dry Density, pcf 87.3 87.1 Saturation, % 100.0 100.0 Void Ratio 0.9667 0.9705 Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % 2.5 3.6 Tailure, psf 12451.9 13017.0			Diameter, in.	1.421	1.391	
Dry Density, pcf 87.3 87.1 Saturation, % 100.0 100.0 Void Ratio 0.9667 0.9705 Diameter, in. 1.421 1.391 Height, in. 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % 2.5 3.6 Tailure, psf 12451.9 13017.0			Height, in.	2.803	2.803	
			Water Content, %	35.2	35.3	
Diameter, in. 1.421 1.391 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % \sigma_1 Failure, psf 12451.9 13017.0);	Dry Density, pcf	87.3	87.1	
Diameter, in. 1.421 1.391 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % \sigma_1 Failure, psf 12451.9 13017.0		e	Saturation, %	100.0	100.0	
Diameter, in. 1.421 1.391 2.803 2.803 Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % \sigma_1 Failure, psf 12451.9 13017.0		7	Void Ratio	0.9667	0.9705	
Strain rate, in./min. 1.000 1.000 Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % σ_1 Failure, psf 12451.9 13017.0		_	Diameter, in.	1.421	1.391	
Back Pressure, psi 0.000 0.000 Cell Pressure, psi 46.120 57.490 Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % σ ₁ Failure, psf 12451.9 13017.0			Height, in.	2.803	2.803	
Cell Pressure, psi $46.120 ext{ } 57.490$ Fail. Stress, psf $5810.6 ext{ } 4738.4$ Strain, % $2.5 ext{ } 3.6$ Ult. Stress, psf Strain, % σ_1 Failure, psf $12451.9 ext{ } 13017.0$		Str	ain rate, in./min.	1.000	1.000	
Fail. Stress, psf 5810.6 4738.4 Strain, % 2.5 3.6 Ult. Stress, psf Strain, % σ ₁ Failure, psf 12451.9 13017.0		Ва	ck Pressure, psi	0.000	0.000	
Strain, % 2.5 3.6 Ult. Stress, psf Strain, % σ ₁ Failure, psf 12451.9 13017.0		Се	II Pressure, psi	46.120	57.490	
Ult. Stress, psf Strain, % σ ₁ Failure, psf 12451.9 13017.0		Strain, % Ult. Stress, psf		5810.6	4738.4	
Strain, % σ ₁ Failure, psf 12451.9 13017.0				2.5	3.6	
σ ₁ Failure, psf 12451.9 13017.0						
σ_3 Failure, psf 6641.3 8278.6		σ_1	Failure, psf	12451.9	13017.0	
		σ_{3}	Failure, psf	6641.3	8278.6	

Client: GeoEngineers


Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 129-130


Proj. No.: B13-018 Date Sampled:


Source of Sample: NL-6A **Depth:** 129-130 **Figure** Project No.: B13-018

T	-4	T	4.
Type	OΤ	1 es	π.

Sample Type: Undrained

Description: Alternating layers of vSt, Brittle, gnGr and lGr Fat CLAY with jointed silty

LL= 72 PL= 18 Pl= 54 Assumed Specific Gravity= 2.75

Remarks: Type Failure:

60 degree Shear on sample 1

45 degree Shear and Slicken Sides on

sample 2

Figure

	Sa	mple No.	1	2	3	
		Water Content, %	35.9	36.0	35.5	
		Dry Density, pcf	87.1	87.1	87.6	
	Initial	Saturation, %	101.6	101.8	101.7	
	П	Void Ratio	0.9714	0.9712	0.9591	
		Diameter, in.	1.405	1.409	1.425	
_		Height, in.	2.803	2.803	2.803	
3		Water Content, %	35.3	35.3	34.9	
2	st	Dry Density, pcf	87.1	87.1	87.6	
	At Test	Saturation, %	100.0	100.0	100.0	
	٦ť	Void Ratio	0.9714	0.9712	0.9591	
	`	Diameter, in.	1.405	1.409	1.425	
		Height, in.	2.803	2.803	2.803	
	Str	ain rate, in./min.	1.000	0.999	0.999	
	Ва	ck Pressure, psi	0.000	0.000	0.000	
	Се	II Pressure, psi	46.770	58.300	69.660	
	Fa	il. Stress, psf	6119.4	4265.2	6361.2	
	5	Strain, %	3.8	15.0	3.6	
	Ult	. Stress, psf				
	5	Strain, %				
	σ1	Failure, psf	12854.3	12660.4	16392.2	
	σ_3	Failure, psf	6734.9	8395.2	10031.0	

Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-6A Depth: 131-132

Proj. No.: B13-018 Date Sampled:

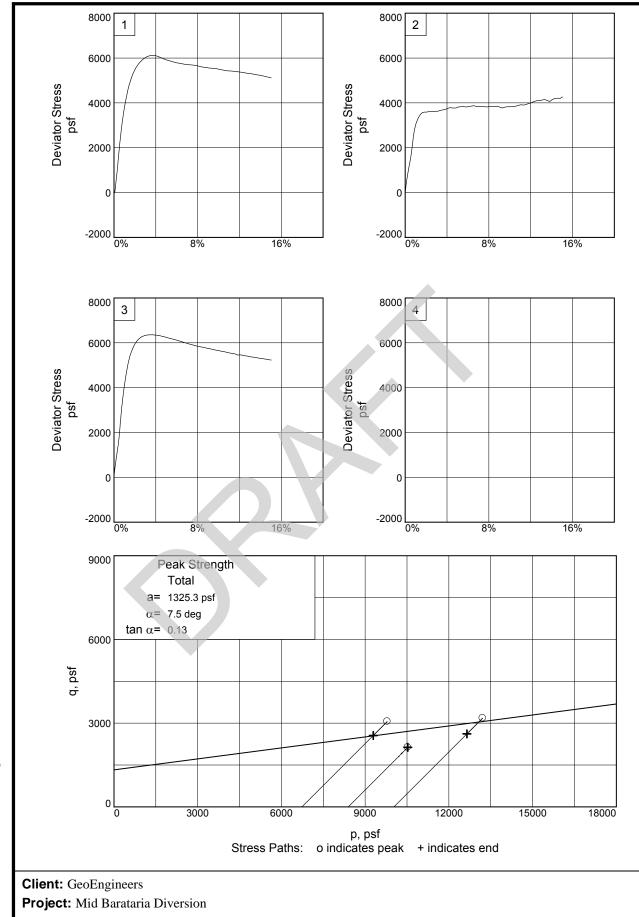
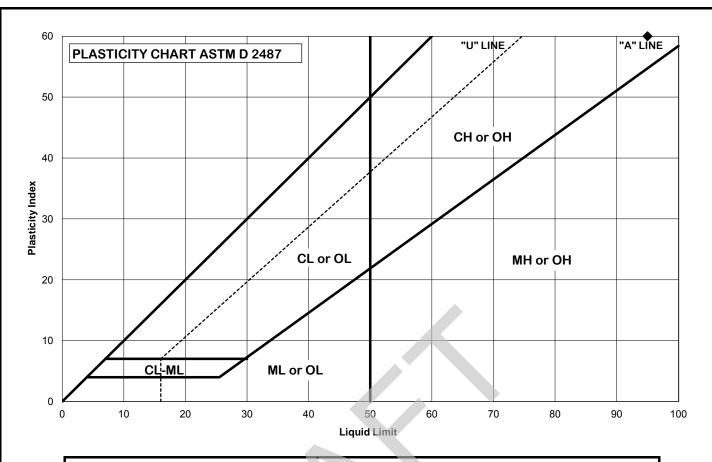



Figure _____ Southern Earth Sciences, Inc.

ATTERB	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	18274-00 ²	18274-001-00						
Boring No.	NL-8A				Natural WC:	#DIV/0!		
Depth, ft.	83 - 84				Preparation:	Air Dried		
Cup No.	1355	1355			No. Points:			
Percent Retained of	0		Estimated or Tested 0.0		0.0			
Original sample de	Stiff gray cla	y (CH3)						

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 95
Plastic Limit = 35
Plasticity Index = 60

Date: 9/4/2013

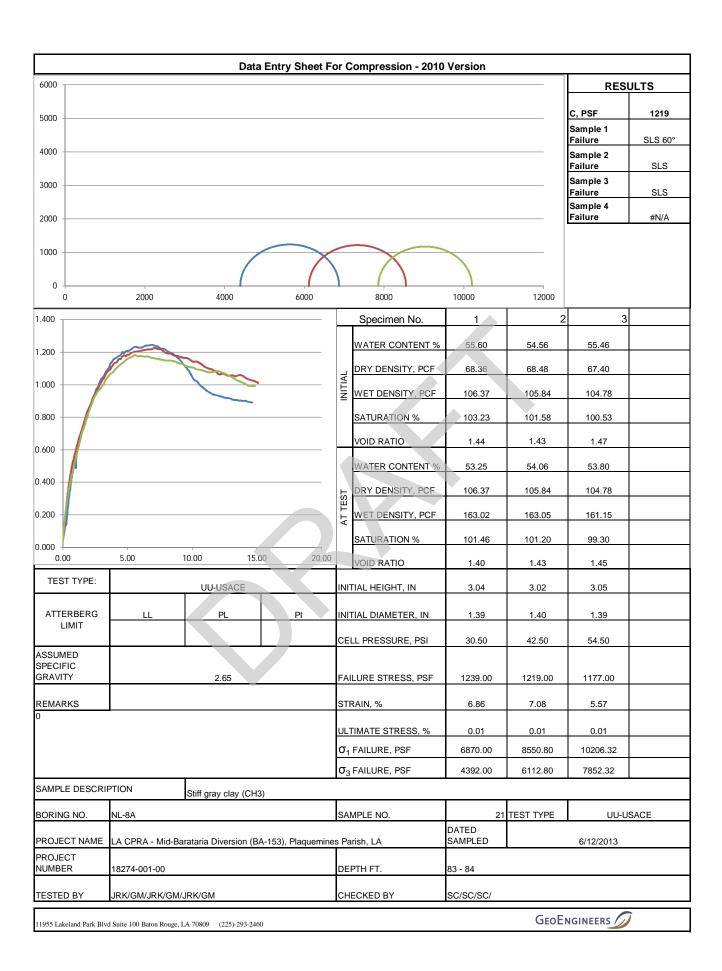
Tested By: BH

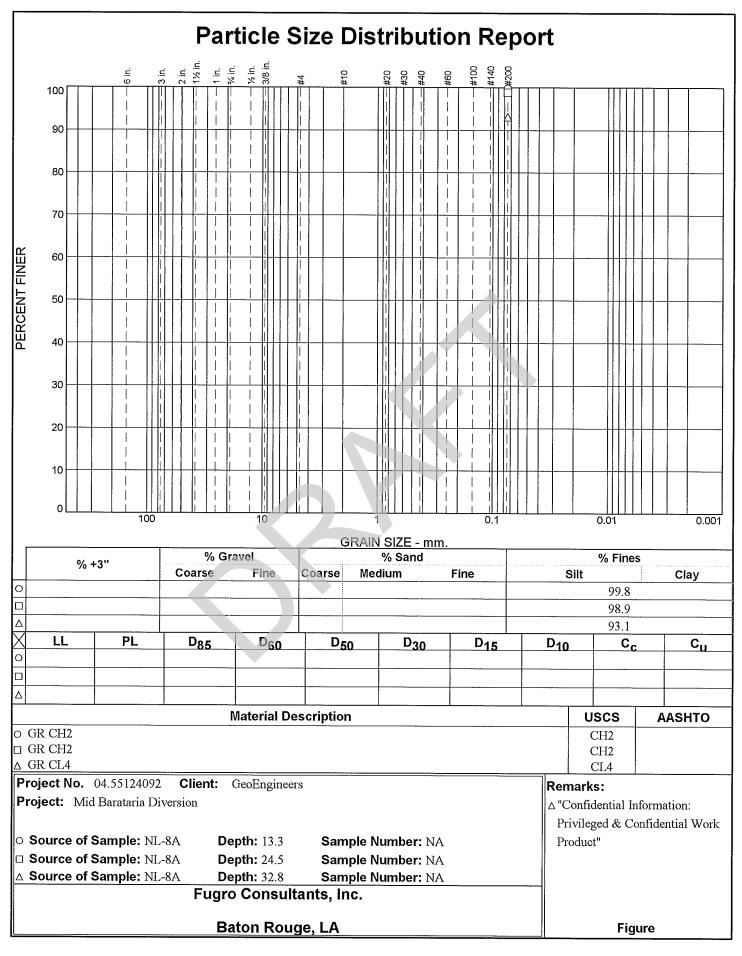
Checked By: SC

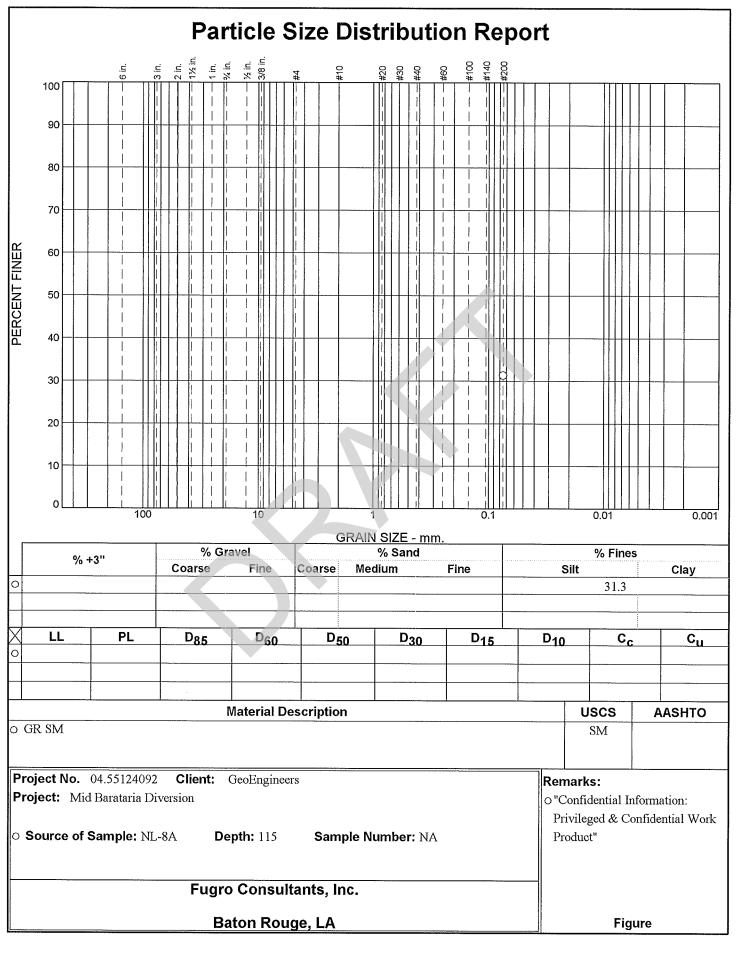
NOTES:

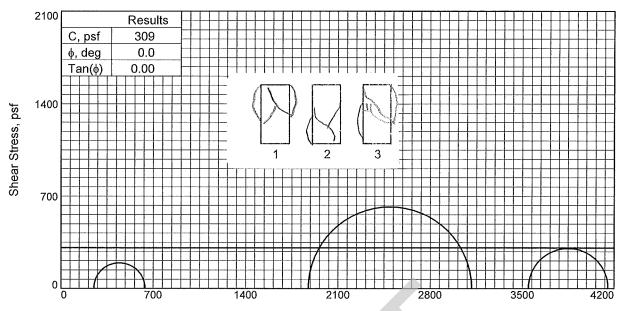
NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

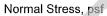
This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.




ATTERBERG LIMITS - ASTM D4318


LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA


11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-


18274-001-00



Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: SO BR & GR CH2 W/ ARS SP

LL= 51

PL= 21

PI= 30

Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

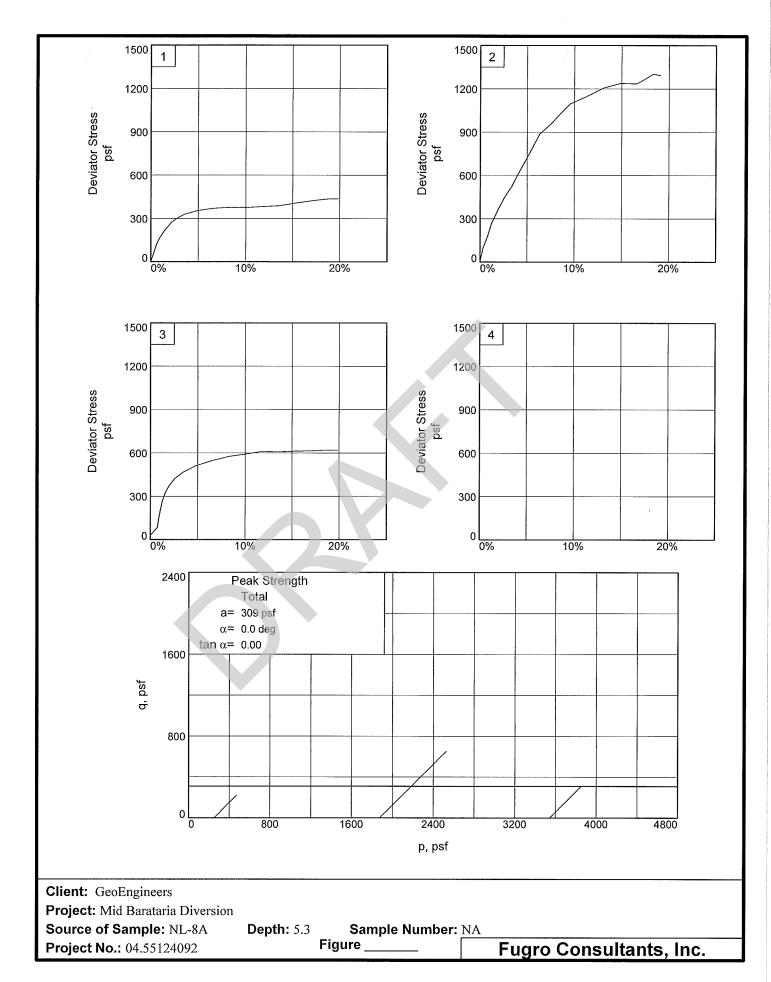
Confidential Work Product"

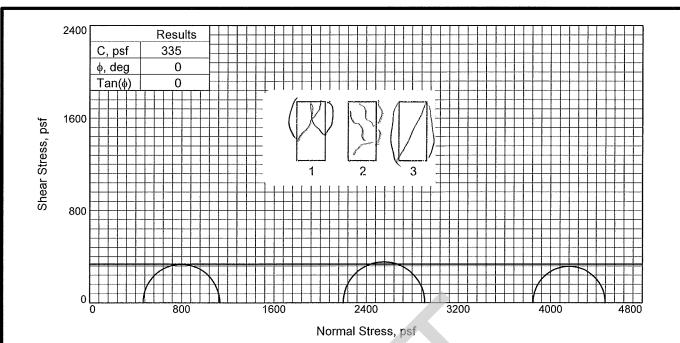
	Sa	mple No.		1	2	3	
2		Water Content, %		42.7	30.8	39.2	
١ -		Dry Density, pcf		76.1	90.1	81.3	
	nitia	Saturation, %		95.4	96.5	99.3	
V	宣	Void Ratio		1.1991	0.8559	1.0570	
		Diameter, in.		1.43	1.41	1.42	
		Height, in.		3.03	3.14	3.15	
		Water Content, %		42.7	30.8	39.2	
	75	Dry Density, pcf		76.1	90.1	81.3	
3	Test	Saturation, %		95.4	96.5	99.3	
2	¥.	Void Ratio		1.1991	0.8559	1.0570	
	~	Diameter, in.		1.43	1.41	1.42	
1		Height, in.		3.03	3.14	3.15	
	Str	ain rate, in./min.		1.00	1.00	1.00	
	Ba	ck Pressure, psi		0.00	0.00	0.00	
	Се	II Pressure, psi		1.74	13.02	24.61	
	Fail. Stress, psf		389	1239	611		
	5	Strain, %		13.6	14.9	11.8	
	Ult.	. Stress, psf		389	1239	607	
	5	Strain, %		13.6	14.9	13.6	
\dashv	σ_1	Failure, psf		639	3114	4155	
	σ_3	Failure, psf		251	1875	3544	

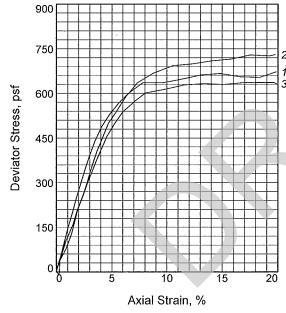
Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-8A Depth: 5.3


Sample Number: NA


Proj. No.: 04.55124092


Date Sampled: 6/27/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED Description: SO BR & GR CL4 W/O

LL= 42

PL= 22

PI= 20

Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

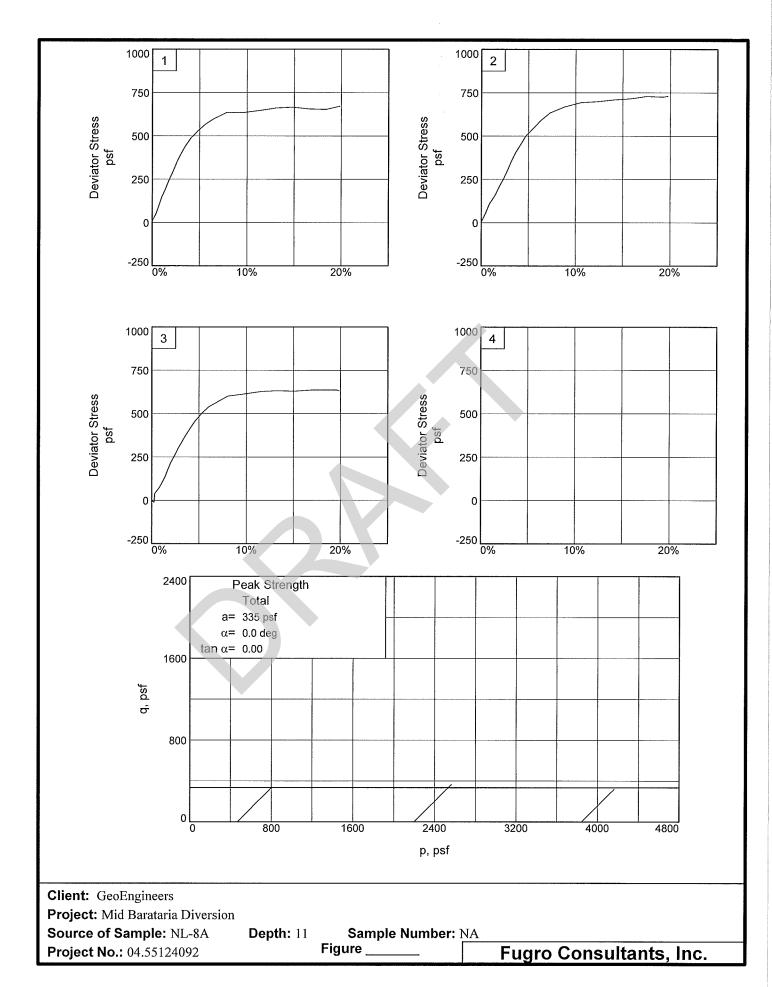
Confidential Work Product"

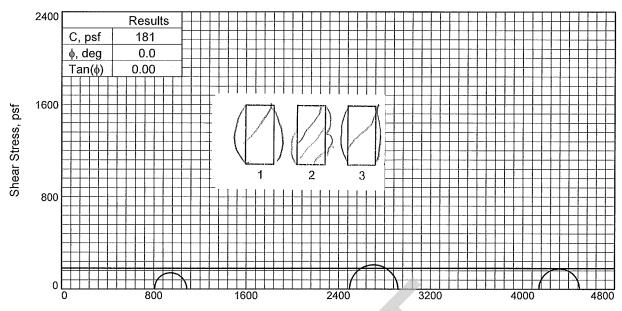
	Sai	mple No.		1	2	3	
		Water Content, %		39.5	38.6	43.8	
,		Dry Density, pcf		82.4	83.8	78.2	
	Initia	Saturation, %		102.8	103.9	102.9	
3	Ë	Void Ratio		1.0299	0.9958	1.1398	
		Diameter, in.		1.41	1.43		
		Height, in.		3.03	2.92	3.10	
		Water Content, %		39.5	38.6	43.8	
	est	Dry Density, pcf		82.4	83.8	78.2	
	á	Saturation, %		102.8	103.9	102.9	
	At-	Void Ratio		1.0299	0.9958	1.1398	
	1	Diameter, in.		1.41	1.43	1.41	
		Height, in.		3.03	2.92	3.10	
	Stra	ain rate, in./min.		1.00	1.00	1.00	
	Bad	ck Pressure, psi		0.00	0.00	0.00	
	Cel	l Pressure, psi		3.23	15.27	26.70	
	Fai	l. Stress, psf		667	710	633	
	S	Strain, %		14.8	14.0	13.3	
	Ult.	Stress, psf		667	710	633	
	8	Strain, %		14.8	14.0	13.3	
_	σ_1	Failure, psf		1132	2909	4478	
	σ_3	Failure, psf		465	2199	3845	

Client: GeoEngineers

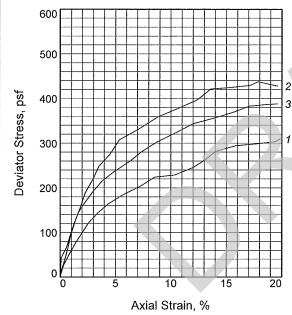
Project: Mid Barataria Diversion

Source of Sample: NL-8A Depth: 11


Sample Number: NA


Proj. No.: 04.55124092

Date Sampled: 6/27/13


TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

Normal Stress, psf

Type	of	Te	st:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: VSO GR CH2 W/LYS ML

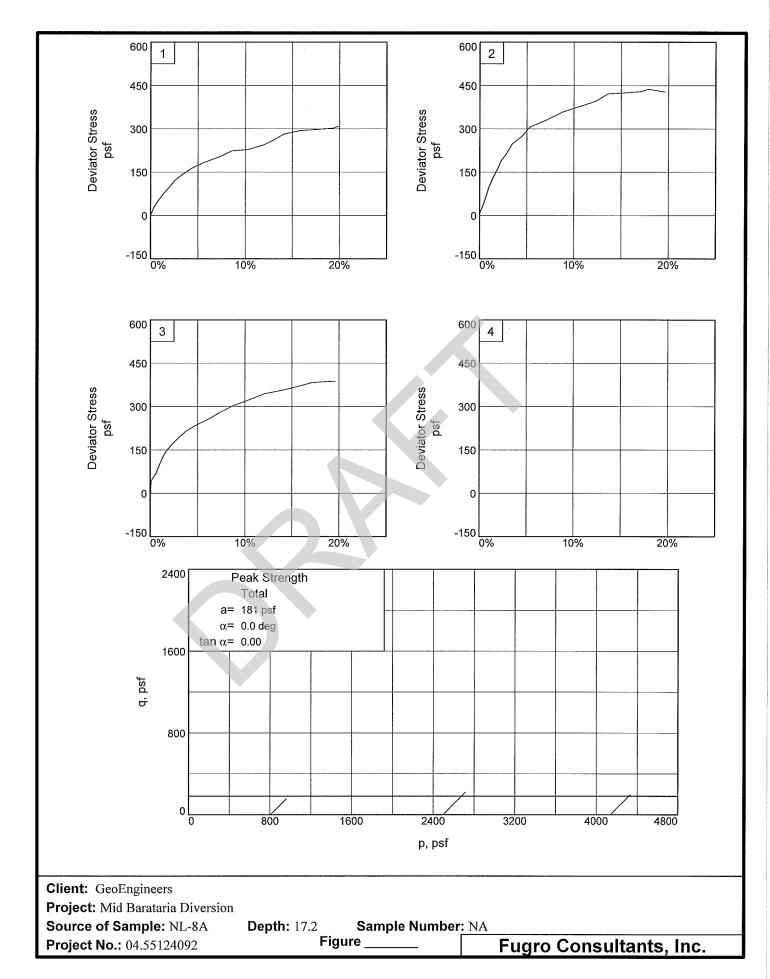
Assumed Specific Gravity= 2.68

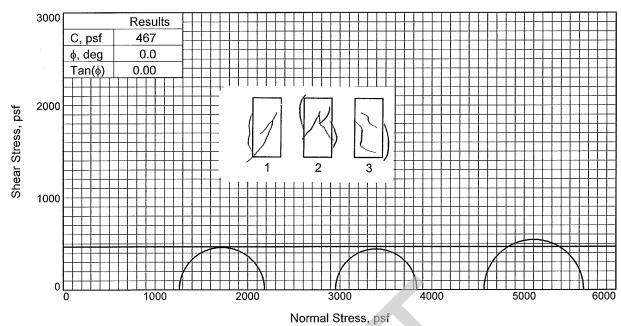
Remarks: "Confidential Information: Privileged &

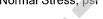
Confidential Work Product"

	Sai	mple No.	1	2	3	
	_	Water Content, % Dry Density, pcf	47.5 71.4	51.8 71.2	52.7 70.5	
1	Initial	Saturation, %	94.8	103.0	103.0	
2	드	Void Ratio	1.3437	1.3492	1.3719	
3		Diameter, in.	1.45	1.43		
		Height, in.	2.90	3.07	3.10	
,		Water Content, %	47.5	51.8	52.7	
Ί	72	Dry Density, pcf	71.4	71.2	70.5	
	Fest	Saturation, %	94.8	103.0	103.0	
	¥	Void Ratio	1.3437	1.3492	1.3719	
	1	Diameter, in.	1.45	1.43	1.42	
		Height, in.	2.90	3.07	3.10	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	5.59	17.33	28.74	
	Fai	I. Stress, psf	282	422	356	
	8	Strain, %	14.1	13.6	13.8	
	Ult.	Stress, psf	282	422	356	
	S	Strain, %	14.1	13.6	13.8	
ᅥ	σ_1	Failure, psf	1087	2917	4494	
	σ_3	Failure, psf	805	2496	4139	

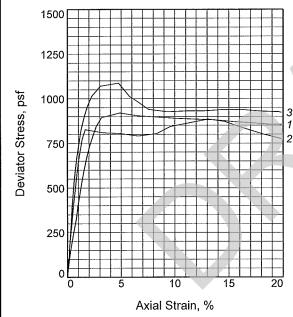
Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-8A Depth: 17.2


Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA


Figure ____

Sample No.

			•	_	-	
3	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	51.6 70.6 100.3 1.3878 1.41 3.01	50.6 70.8 98.9 1.3808 1.42 3.11	48.5 72.7 99.4 1.3181 1.42 3.10	
1 2	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	51.6 70.6 100.3 1.3878 1.41 3.01	50.6 70.8 98.9 1.3808 1.42 3.11	48.5 72.7 99.4 1.3181 1.41 3.10	
	Bac Ce Fai S Ult	ain rate, in./min. ck Pressure, psi II Pressure, psi II. Stress, psf Strain, % . Stress, psf Strain, %	1.00 0.00 8.76 921 4.9 882 13.6	1.00 0.00 20.50 885 13.1 873 14.6	1.00 0.00 31.67 1087 4.8 926 9.3	
		Failure, psf Failure, psf	2182 1261	3837 2952	5648 4560	

1

2

3

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: SO GR CH3 W/LNS ML

LL= 62 **PL=** 19

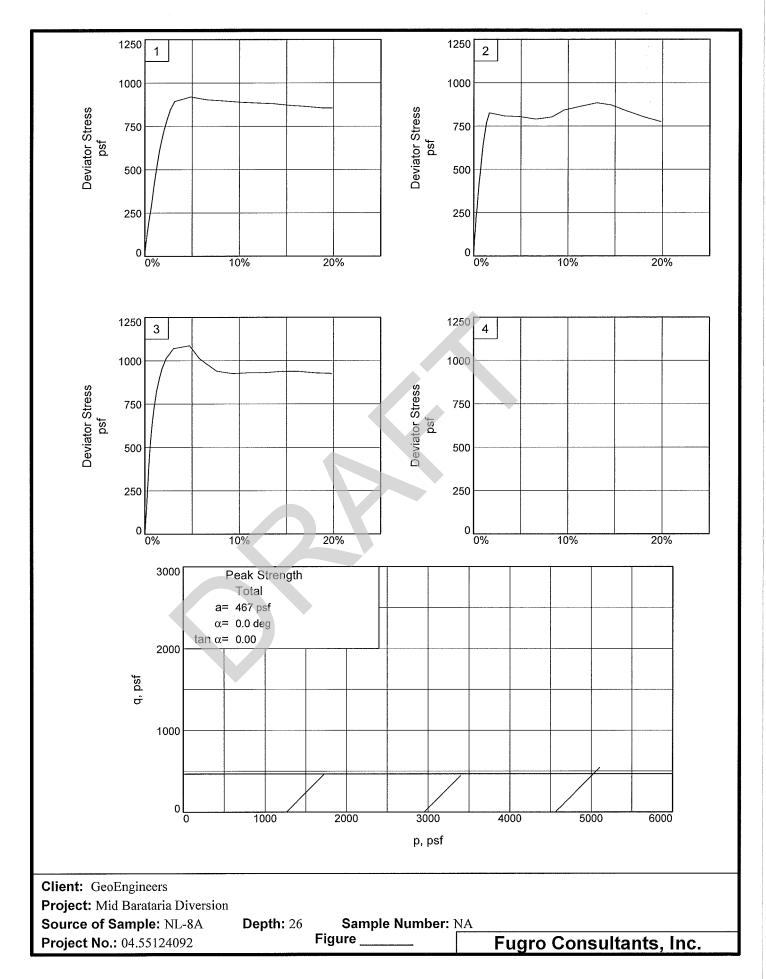
Assumed Specific Gravity= 2.70

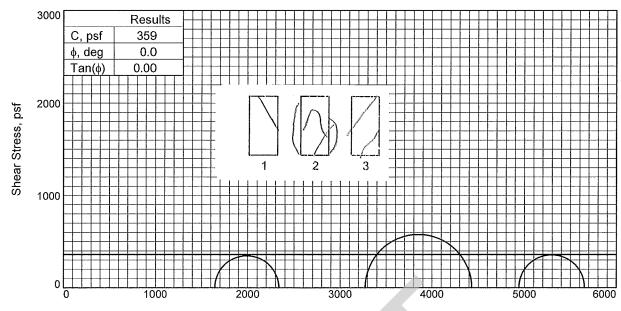
Remarks: "Confidential Information: Privileged &

Confidential Work Product"

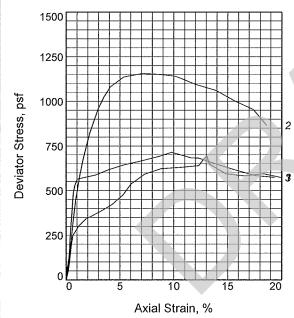
Client: GeoEngineers

Project: Mid Barataria Diversion


Source of Sample: NL-8A Depth: 26


Sample Number: NA

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA


Figure

PI= 43

Normal Stress, psf

Tvp	е	of	Test:
	_		

Unconsolidated Undrained **Sample Type:** UNDISTURBED

Description: SO BR & GR CH4 W/ LYS ML

LL= 73

PL= 20

PI= 53

Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

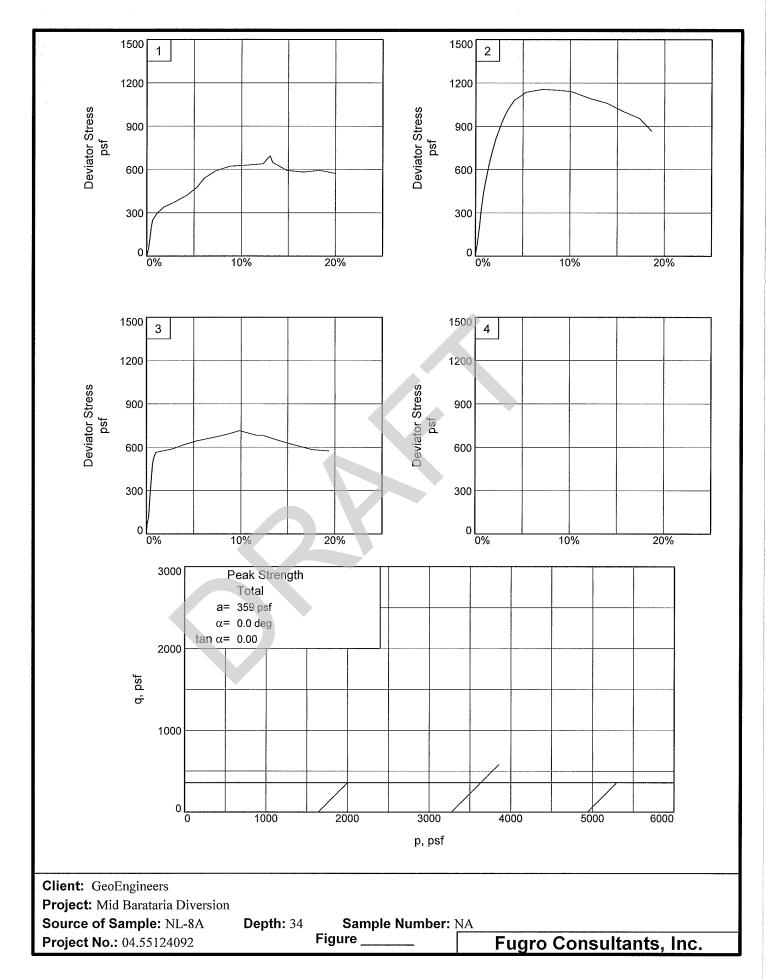
Confidential Work Product"

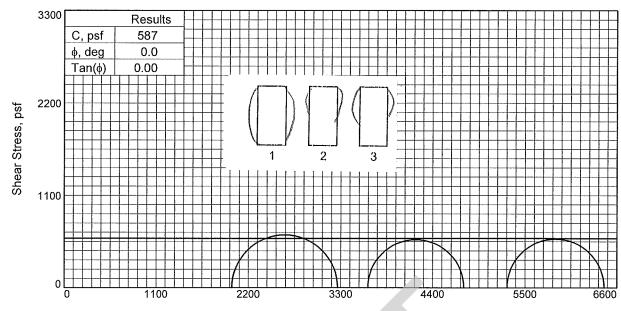
	Sai	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	69.6 58.4	41.9 78.7	65.4 61.8	
4	0	Saturation, %	99.5	98.8	102.2	
V	Initia	Void Ratio	1.8955	1.1488	1.7359	
		Diameter, in.	1.42	1.40	1.41	
		Height, in.	3.03	3.04	3.02	
		Water Content, %	69.6	41.9	65.4	
	뇄	Dry Density, pcf	58.4	78.7	61.8	
	Test	Saturation, %	99.5	98.8	102.2	
	Αŧ	Void Ratio	1.8955	1.1488	1.7359	
	1	Diameter, in.	1.42	1.40	1.41	
		Height, in.	 3.03	3.04	3.02	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	11.41	22.73	34.30	
	Fai	I. Stress, psf	694	1157	715	
	5	Strain, %	13.1	7.1	9.8	
	Ult.	Stress, psf	595	1062	647	
	8	Strain, %	14.8	13.9	14.1	
	σ_1	Failure, psf	2337	4430	5654	
	σ_3	Failure, psf	1643	3273	4939	

Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-8A Depth: 34


Sample Number: NA


Proj. No.: 04.55124092

Date Sampled: 6/30/13

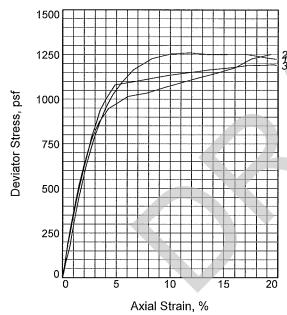

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Normal Stress, psf

Type	of	T	est:
------	----	---	------

Unconsolidated Undrained **Sample Type:** UNDISTURBED

Description: M BR CL6 W/ LNS & ARS SP

LL= 43

PL= 17

PI= 26

Assumed Specific Gravity= 2.68

Remarks: "Confidential Information: Privileged &

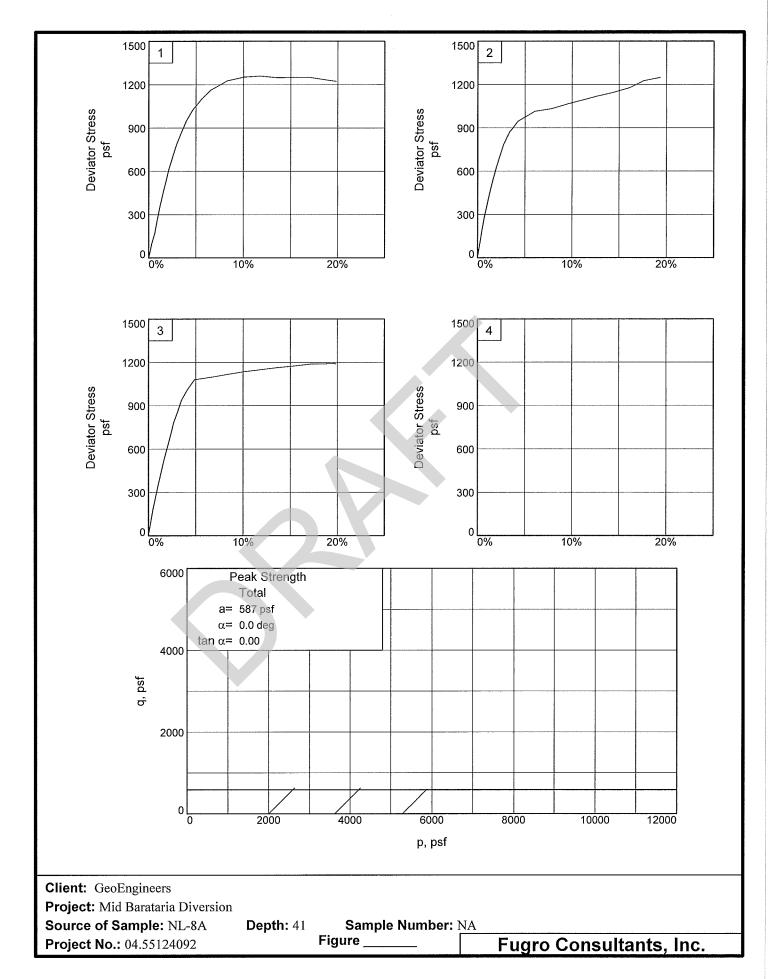
Confidential Work Product"

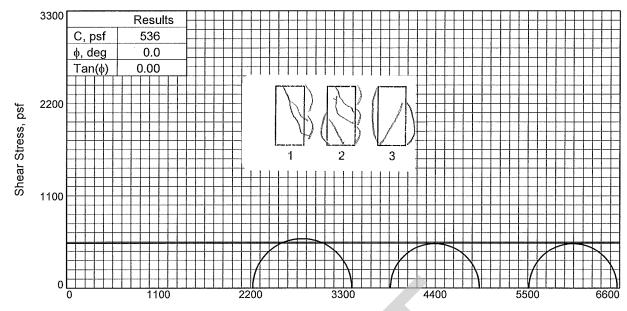
	Sai	mple No.	1	2	3	
2		Water Content, % Dry Density, pcf	33.3 90.3	32.5 90.0	38.1 84.6	
3	in in	Saturation, %	104.6	101.3	104.2	
V	Initial	Void Ratio	0.8531	0.8593	0.9785	
		Diameter, in.	1.39	1.41	1.41	
		Height, in.	3.05	3.12	3.06	
		Water Content, %	33.3	32.5	38.1	
	est	Dry Density, pcf	90.3	90.0	84.6	
	⊢ aj	Saturation, %	104.6	101.3	104.2	
	¥	Void Ratio	0.8531	0.8593	0.9785	
	_	Diameter, in.	1.39	1.41	1.41	
		Height, in.	3.05	3.12	3.06	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	13.90	25.18	36.69	
	Fai	I. Stress, psf	1260	1146	1164	
	5	Strain, %	11.8	14.3	13.6	
	Ult.	Stress, psf	1250	1146	1164	
	5	Strain, %	13.6	14.3	13.6	
	σ_1	Failure, psf	3262	4772	6447	
	σ_3	Failure, psf	2002	3626	5283	

Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-8A Depth: 41


Sample Number: NA


Proj. No.: 04.55124092

Date Sampled: 7/5/13

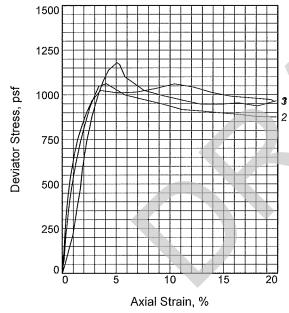

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure ____

Normal Stress, psf

	Sa	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	55.3 67.6	55.8 68.3	54.9 67.6	
	Initial	Saturation, %	100.1	102.6	99.3	
N	<u>=</u>	Void Ratio	1.4929	1.4687	1.4927	
,		Diameter, in.	1.42	1.42	1.41	
2		Height, in.	3.09	3.07	3.12	
•		Water Content, %	55.3	55.8	54.9	
	est	Dry Density, pcf	67.6	68.3	67.6	
	(i)	Saturation, %	100.1	102.6	99.3	
	¥	Void Ratio	1.4929	1.4687		
	_	Diameter, in.	1.42	1.42	1.41	
		Height, in.	3.09	3.07	3.12	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	ll Pressure, psi	15.43	26.83	38.27	
	Fai	I. Stress, psf	1180	1063	1061	
	5	Strain, %	5.1	4.1	10.4	
	Ult.	. Stress, psf	946	900	1013	
	9	Strain, %	14.6	14.6	13.9	
1	σ_1	Failure, psf	3402	4927	6572	
	σ_3	Failure, psf	2222	3864	5511	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

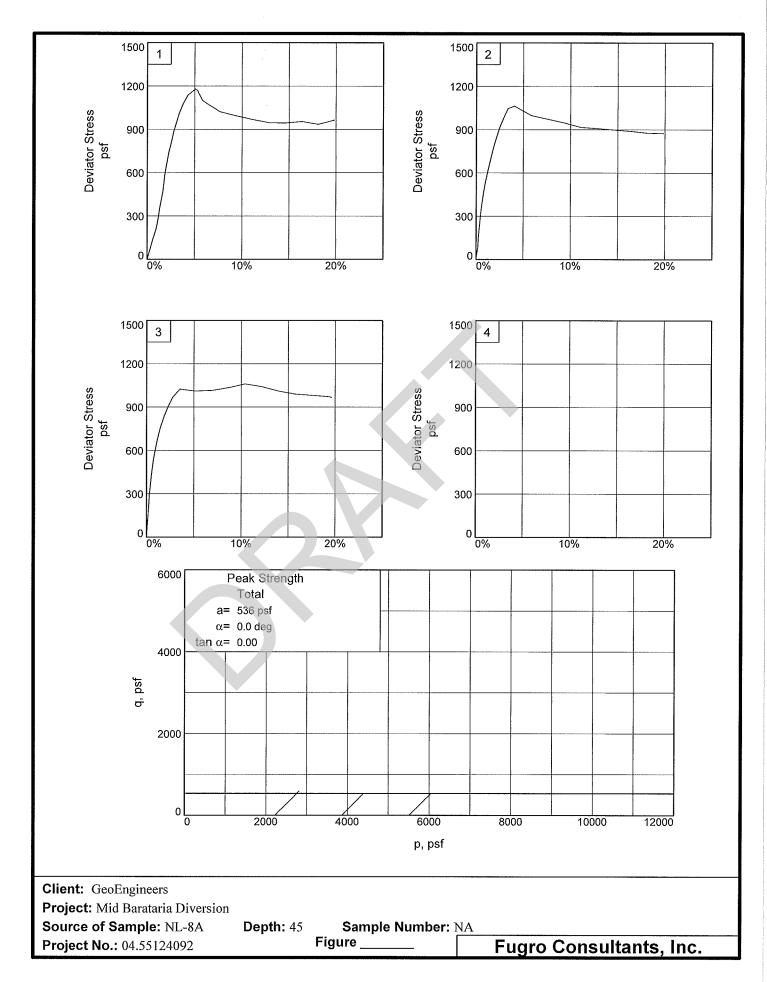
Description: M GR CH3 W/ LNS ML

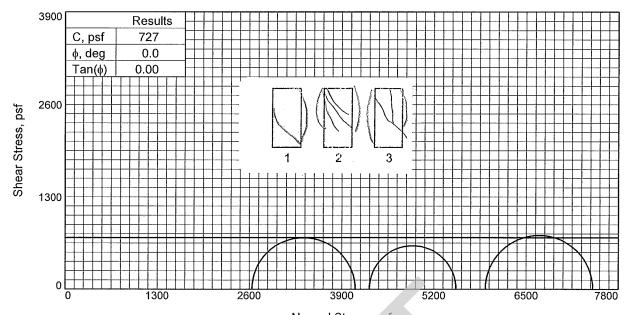
Assumed Specific Gravity= 2.70

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Project: Mid Barataria Diversion


Source of Sample: NL-8A Depth: 45


Sample Number: NA

Client: GeoEngineers

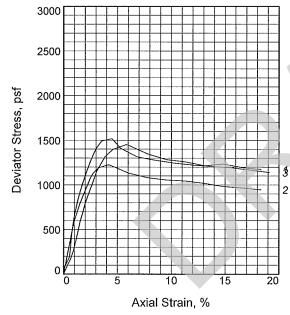

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

Normal Stress, psf

	Sai	mple No.	1	2	3	
		Water Content, %	49.3	50.6	49.2	
		Dry Density, pcf	72.2	71.3	72.7	
	nitia	Saturation, %	99.8	100.2	100.5	
- 1	三	Void Ratio	1.3343	1.3648	1.3200	
		Diameter, in.	1.42	1.43	1.42	
		Height, in.	3.05	3.09	3.09	
		Water Content, %	49.3	50.6	49.2	
	#	Dry Density, pcf	72.2	71.3	72.7	
	Fest	Saturation, %	99.8	100.2	100.5	
3	¥	Void Ratio	1.3343	1.3648	1.3200	
2	1	Diameter, in.	1.42	1.43	1.42	
_		Height, in.	3.05	3.09	3.09	
	Stra	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	18.31	29.77	41.14	
	Fai	I. Stress, psf	1452	1226	1517	
	S	Strain, %	5.8	4.2	4.5	
	Ult.	Stress, psf	1215	984	1206	
	8	Strain, %	13.1	14.8	13.8	
-	σ_1	Failure, psf	4089	5513	7441	
	σ_3	Failure, psf	2637	4287	5924	

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CH3 W/ LYS ML

LL= 64

PL= 23

PI= 41

Assumed Specific Gravity= 2.70

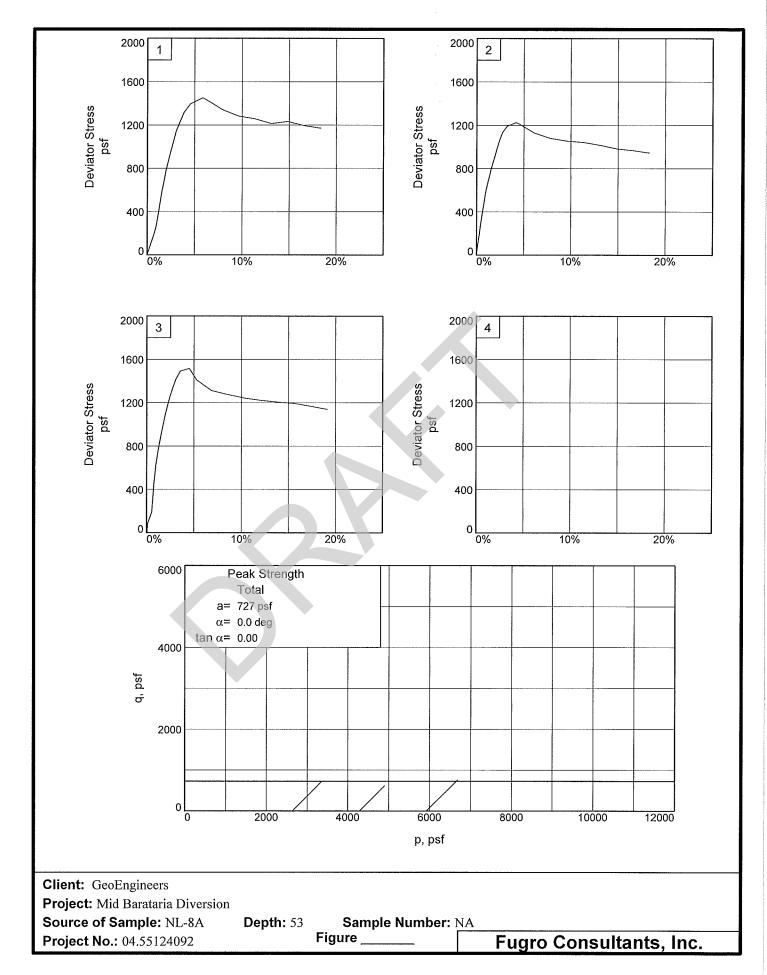
Remarks: "Confidential Information: Privileged &

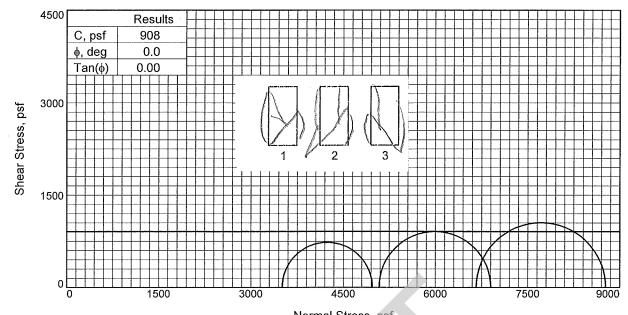
Confidential Work Product"

Client: GeoEngineers

Project: Mid Barataria Diversion

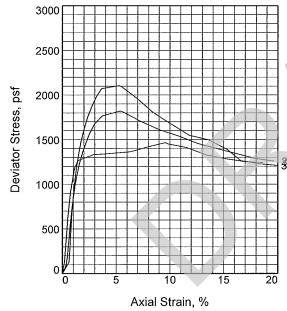
Source of Sample: NL-8A


Depth: 53


Sample Number: NA

Proj. No.: 04.55124092

Date Sampled: 6/30/13


TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Sample No.

		Water Content, %	58.6	58.3	58.7	
		Dry Density, pcf	65.3	65.6	64.1	
	Initial	Saturation, %	99.7	99.9	97.1	
1	Ē	Void Ratio	1.5917	1.5801	1.6394	
		Diameter, in.	1.43	1.43	1.43	
		Height, in.	3.00	3.05	3.03	
		Water Content, %	58.6	58.3	58.7	
	7,5	Dry Density, pcf	65.3	65.6	64.1	
265	Fest	Saturation, %	99.7	99.9	97.1	
3	Αŧ	Void Ratio	1.5917	1.5801	1.6394	
	~	Diameter, in.	1.43	1.43	1.43	
		Height, in.	3.00	3.05	3.03	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Се	II Pressure, psi	24.34	35.29	46.27	
	Fai	l. Stress, psf	1468	1820	2106	
	5	Strain, %	9.6	5.4	5.3	
	Ult.	. Stress, psf	1331	1401	1499	
	5	Strain, %	13.3	14.4	13.6	
	σ_1	Failure, psf	4973	6902	8769	
	σ_3	Failure, psf	3505	5082	6663	

1

2

3

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED **Description: M GR CH4**

LL= 89

PL= 31

PI= 58

Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

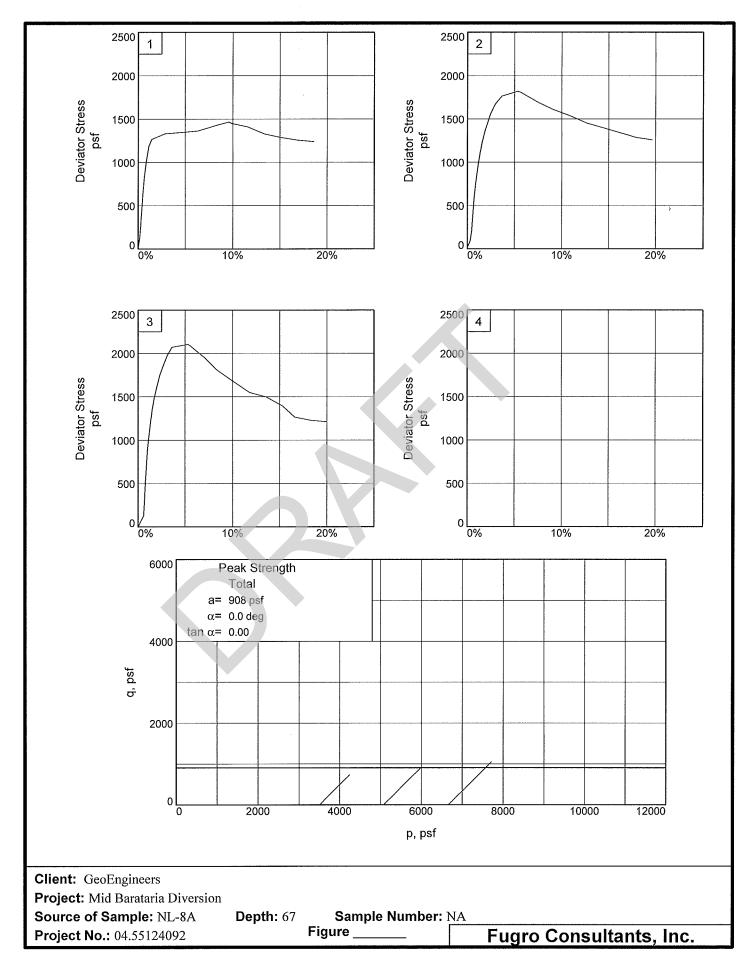
Confidential Work Product"

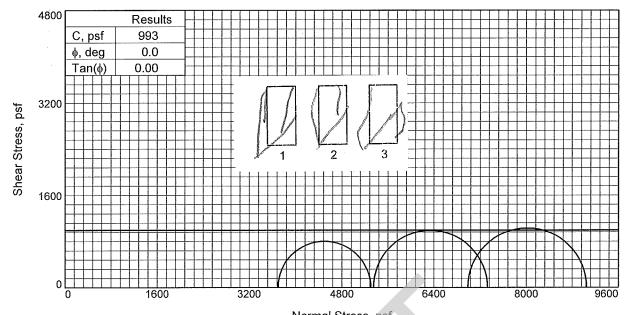
Project: Mid Barataria Diversion

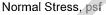
Source of Sample: NL-8A

Depth: 67

Sample Number: NA

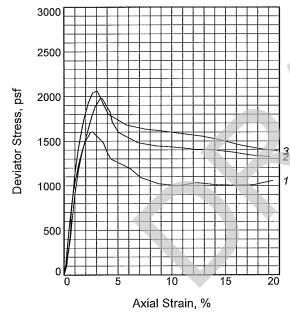

Client: GeoEngineers


Proj. No.: 04.55124092


Date Sampled: 7/1/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure



Water Content, % Dry Density, pcf

Sample No.

1	nitia	Saturation, %	101.7	101.4	98.8	
V	n.	Void Ratio	1.5046	1.4129	1.4444	
		Diameter, in.	1.43	1.42	1.42	
		Height, in.	3.08	3.00	3.09	
		Water Content, %	56.5	52.9	52.7	
	7,7	Dry Density, pcf	67.5	70.1	69.2	
2	Fest	Saturation, %	101.7	101.4	98.8	
	At	Void Ratio	1.5046	1.4129	1.4444	
'	1	Diameter, in.	1.43	1.42	1.42	
		Height, in.	3.08	3.00	3.09	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	II Pressure, psi	25.66	37.12	48.52	
	Fai	I. Stress, psf	1606	1982	2063	
	5	Strain, %	2.7	3.5	3.0	
	Ult.	Stress, psf	1000	1400	1511	
	5	Strain, %	10.6	13.8	14.6	
_	σ_1	Failure, psf	5301	7327	9049	
	σ_3	Failure, psf	3695	5345	6987	

1

56.5

67.5

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: M GR CH4

LL= 85

PL= 31

PI= 54

Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

Project: Mid Barataria Diversion

Source of Sample: NL-8A

Depth: 73

Sample Number: NA

Client: GeoEngineers

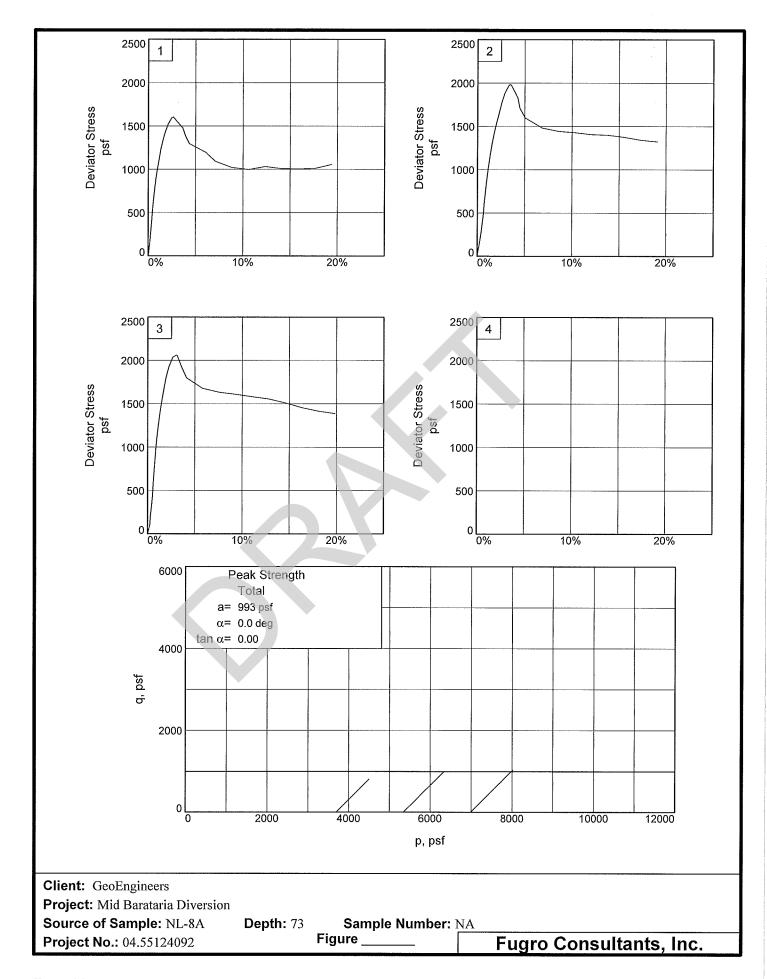
Proj. No.: 04.55124092

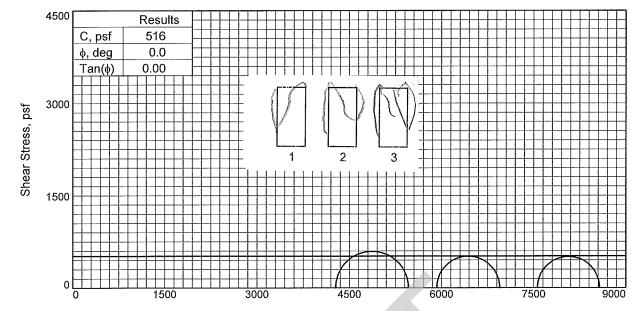
Date Sampled: 7/1/13

3

52.7

69.2


2


52.9

70.1

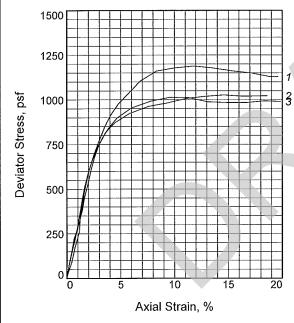

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

Normal Stress, psf

	Sai	mple No.	1	2	3	
		Water Content, %	59.1	59.9	61.2	
		Dry Density, pcf	63.3	63.8	62.2	
1	Initial	Saturation, %	95.9	98.3	96.4	
1	三	Void Ratio	1.6707	1.6516	1.7206	
3		Diameter, in.	1.42	1.41	1.41	
		Height, in.	2.95	2.92	2.93	
		Water Content, %	59.1	59.9	61.2	
	t,	Dry Density, pcf	63.3	63.8	62.2	
	Test	Saturation, %	95.9	98.3	96.4	
	At	Void Ratio	1.6707			
	1	Diameter, in.	1.42	1.41	1.41	
		Height, in.	2.95	2.92	2.93	
	Str	ain rate, in./min.	1.00	1.00	1.00	
	Ba	ck Pressure, psi	0.00	0.00	0.00	
	Ce	ll Pressure, psi	29.68	41.12	52.50	
	Fai	I. Stress, psf	1189	1028	1014	
	5	Strain, %	11.8	14.6	9.6	
	Ult	. Stress, psf	1178	1028	985	
	5	Strain, %	13.6	14.6	14.8	
	σ_1	Failure, psf	5462	6949	8574	
	σ_3	Failure, psf	4274	5921	7560	

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED Description: M GR CH4 W/ SHELLS

Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

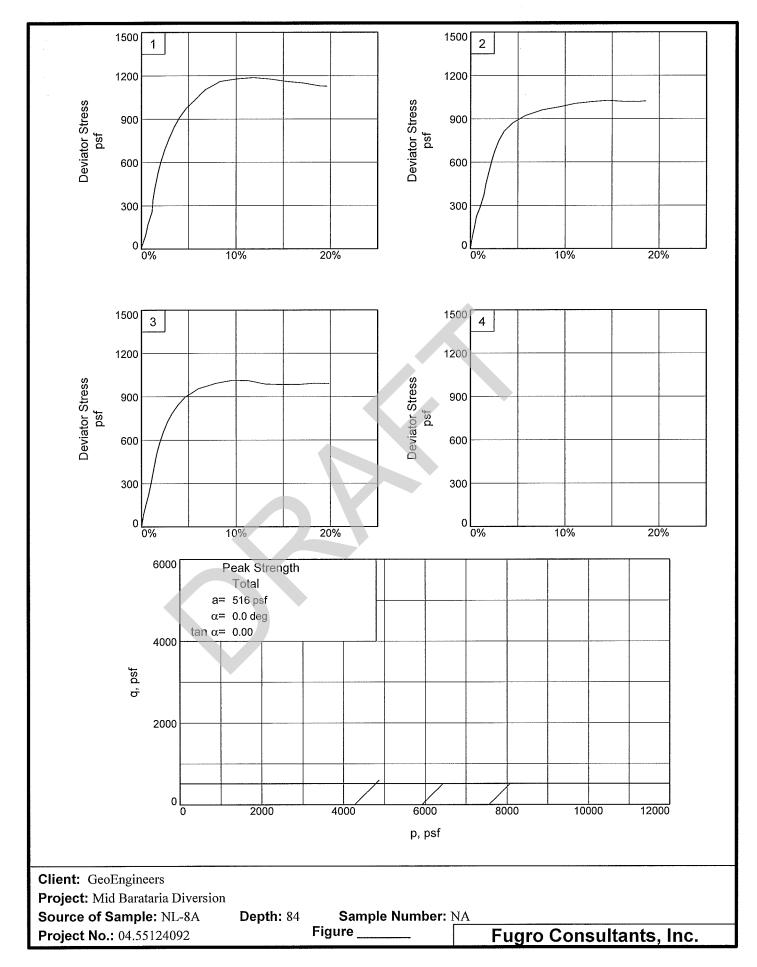
Confidential Work Product"

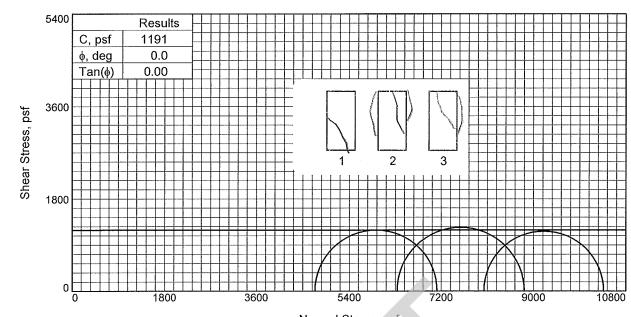
Client: GeoEngineers

Project: Mid Barataria Diversion

Depth: 84 **Source of Sample: NL-8A**

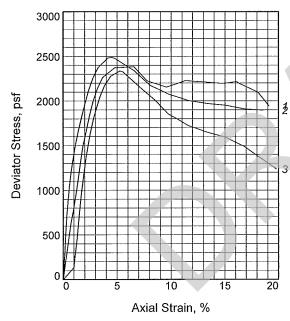
Sample Number: NA


Proj. No.: 04.55124092


Date Sampled: 7/8/13

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc.

Baton Rouge, LA


Figure

Normal Stress, psf

Sample No.

	Oa:	ripic No.	•	-	U	
5.	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	50.5 71.7 100.6 1.3596 1.42 3.01	50.3 70.8 98.2 1.3892 1.42 3.02	54.3 68.8 100.9 1.4574 1.42 3.04	
3	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	50.5 71.7 100.6 1.3596 1.42 3.01	50.3 70.8 98.2 1.3892 1.42 3.02	54.3 68.8 100.9 1.4574 1.42 3.04	
	Bad Cel Fai S Ult.	ain rate, in./min. ck Pressure, psi Il Pressure, psi I. Stress, psf Strain, % . Stress, psf Strain, % Failure, psf	1.00 0.00 32.88 2383 6.6 2155 9.6 7118	1.00 0.00 43.98 2489 4.5 1972 13.3 8822	1.00 0.00 55.77 2337 5.3 1652 13.3 10368	
	σ_3	Failure, psf	4735	6333	8031	

2

3

1

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: ST GR CH4 W/ LYS ML

Assumed Specific Gravity= 2.71

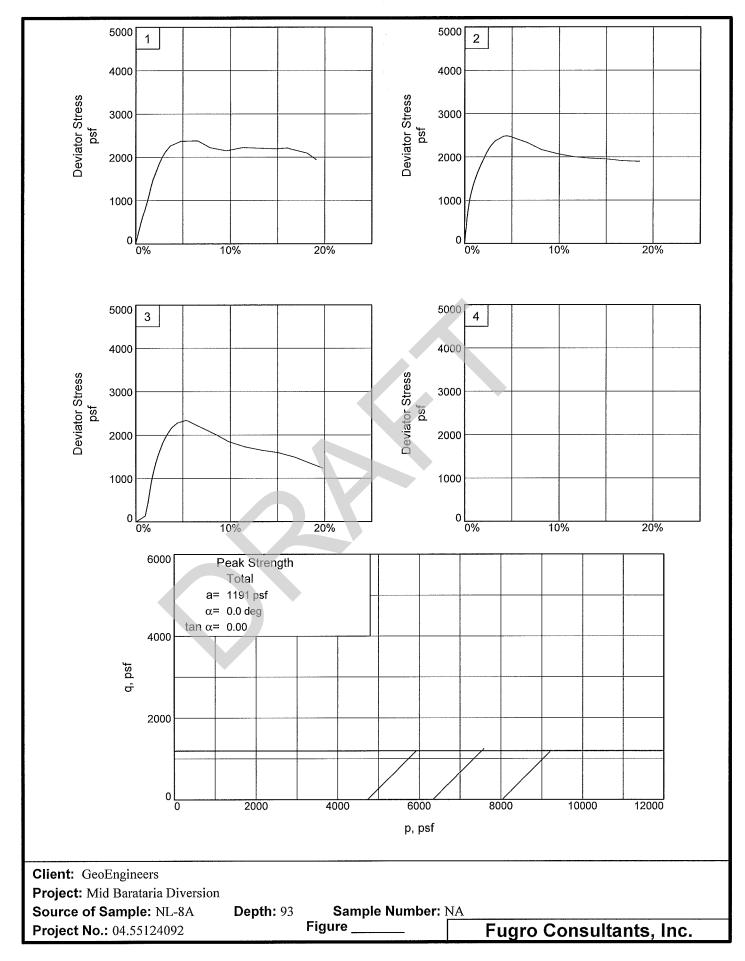
Remarks: "Confidential Information: Privileged &

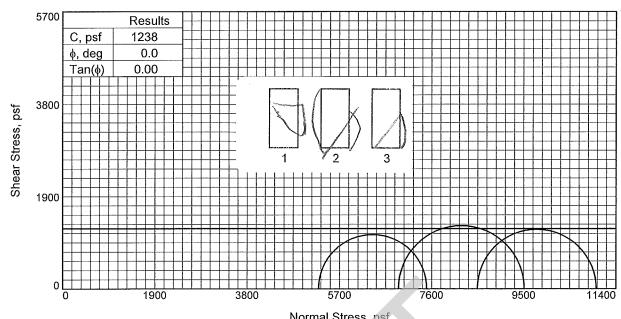
Confidential Work Product"

Project: Mid Barataria Diversion

-

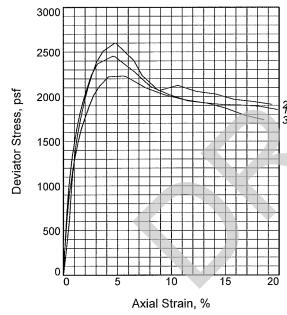
Source of Sample: NL-8A Depth: 93


Sample Number: NA


Client: GeoEngineers

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc.
Baton Rouge, LA

Figure


Tested By: PN

Sample No.

	Water Content, %	53.4	54.1	54.4	
	Dry Density, pcf	68.1	69.0	67.3	
loition I	Saturation, %	97.4	101.0	97.5	
2	Void Ratio	1.4854	1.4509	1.5121	
	Diameter, in.	1.43	1.42	1.43	
7	Height, in.	3.02	3.05	3.02	
3	Water Content, %	53.4	54.1	54.4	
+6	Dry Density, pcf	68.1	69.0	67.3	
	Saturation, %	97.4	101.0	97.5	
ż	⊱ Void Ratio	1.4854	1.4509	1.5121	
`	Diameter, in.	1.43	1.42	1.43	
	Height, in.	3.02	3.05	3.02	
s	train rate, in./min.	1.00	1.00	1.00	
В	ack Pressure, psi	0.00	0.00	0.00	
C	ell Pressure, psi	36.57	48.00	59.32	
F	ail. Stress, psf	2232	2602	2454	
	Strain, %	5.6	4.8	4.5	
Įυ	It. Stress, psf	1913	2030	1928	
	Strain, %	14.6	14.1	13.3	
⊣ σ	₁ Failure, psf	7498	9514	10996	
σ	₃ Failure, psf	5266	6912	8542	

1

2

3

Type of Test:

Unconsolidated Undrained

Sample Type: UNDISTURBED

Description: ST GR CH4 W/LNS ML

LL= 84

PL= 30

PI= 54

Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

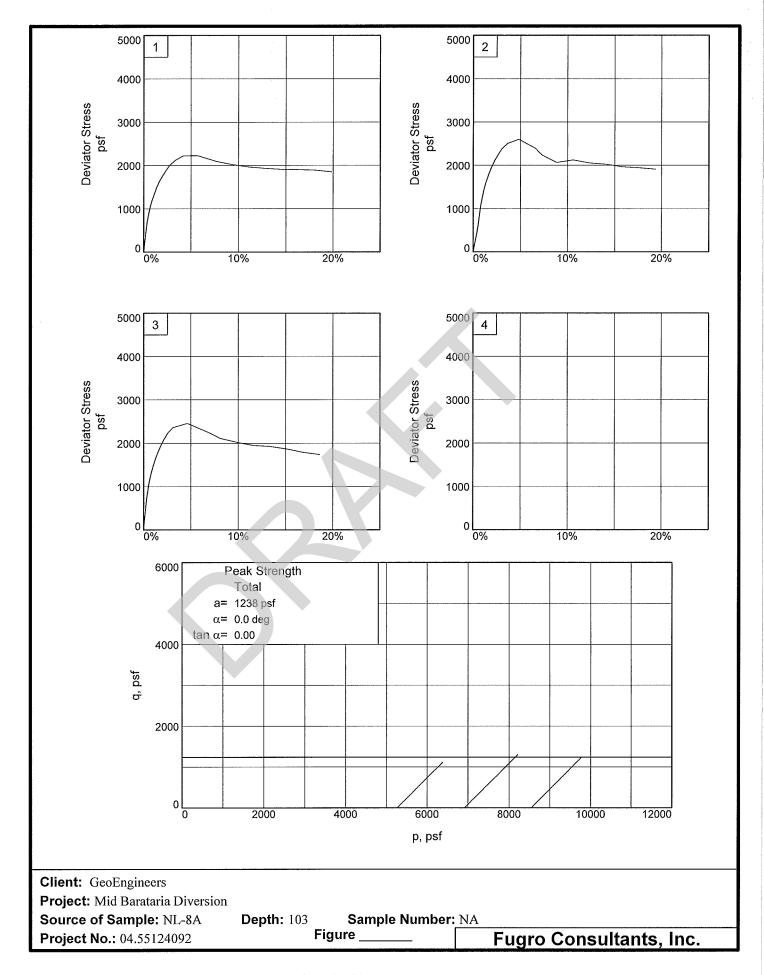
Confidential Work Product"

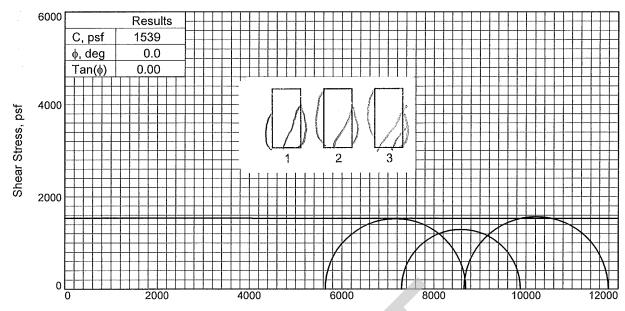
Project: Mid Barataria Diversion

Source of Sample: NL-8A

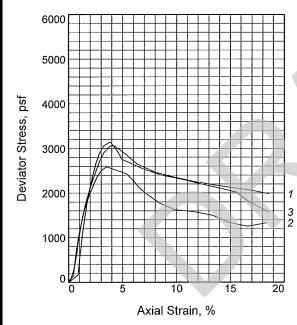
Depth: 103

Sample Number: NA


Client: GeoEngineers


Proj. No.: 04.55124092

Date Sampled: 7/3/13


TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Tested By: PN

Normal Stress, psf

Type	of	Test:
------	----	-------

Unconsolidated Undrained **Sample Type:** UNDISTURBED

Description: ST GR CH4 W/ LNS ML

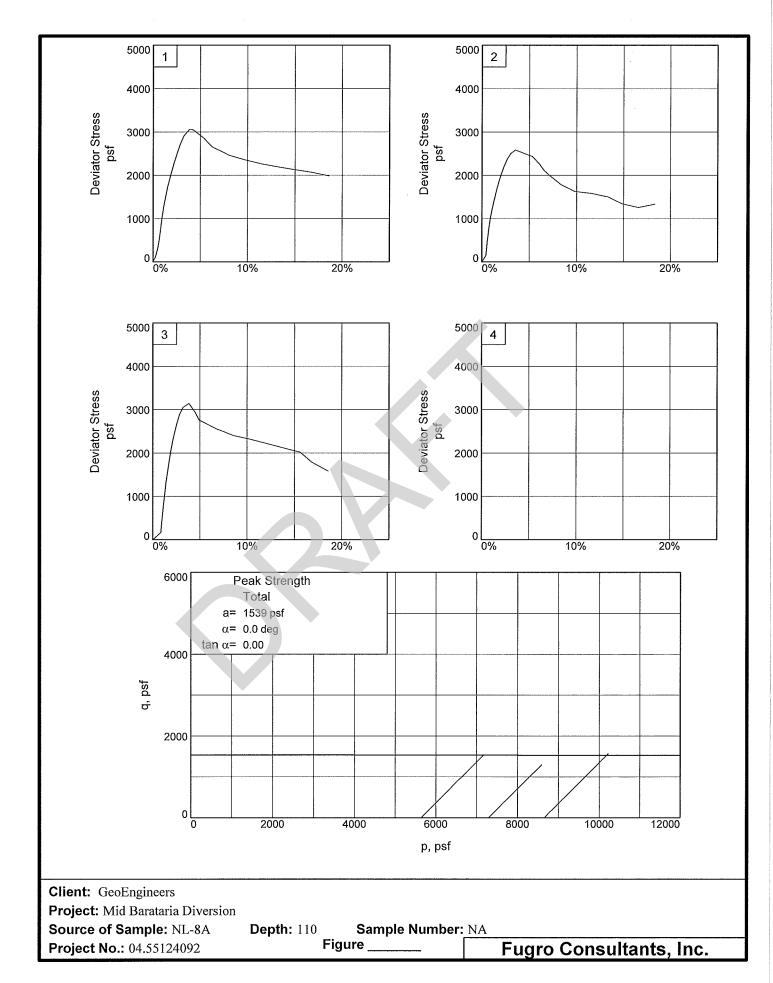
Assumed Specific Gravity= 2.71

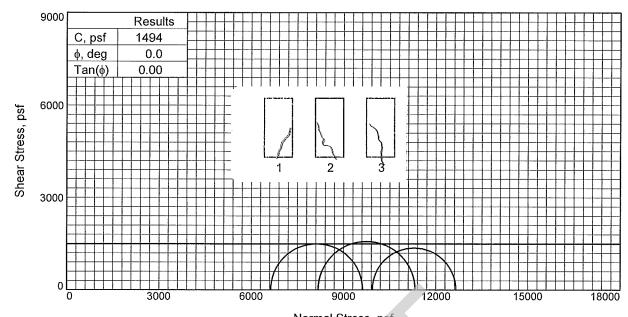
Remarks: "Confidential Information: Privileged &

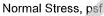
Confidential Work Product"

	Saı	mple No.	1	2	3	
		Water Content, %	55.2	57.6	53.9	
		Dry Density, pcf	69.0	67.0	67.3	
d	Initia	Saturation, %	103.1	102.3	96.4	
V	Ξ	Void Ratio	1.4509	1.5254		
		Diameter, in.	1.43	1.42		
		Height, in.	3.16	3.04	3.00	
		Water Content, %	55.2	57.6	53.9	
	st	Dry Density, pcf	69.0	67.0	67.3	
	Test	Saturation, %	103.1	102.3		
	¥	Void Ratio	1.4509			
	_	Diameter, in.	1.43	1.42		
:		Height, in.	3.16	3.04	3.00	
•	Str	ain rate, in./min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	l Pressure, psi	39.14	50.63	60.07	
	Fai	I. Stress, psf	3057	2588	3139	
	9	Strain, %	4.2	3.5	3.8	
	Ult.	Stress, psf	2191	1344	2122	
	9	Strain, %	13.3	14.9	13.8	
	σ_1	Failure, psf	8693	9879	11789	
	σ_3	Failure, psf	 5636	7291	8650	

Client: GeoEngineers


Project: Mid Barataria Diversion


Source of Sample: NL-8A Depth: 110


Sample Number: NA

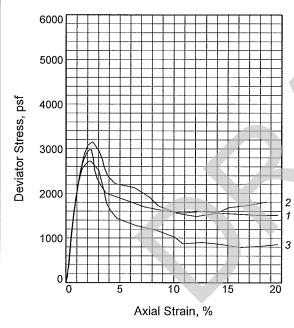

> TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure _

Type of Test:

Unconsolidated Undrained Sample Type: UNDISTURBED

Description: ST GR CH4 W/ LNS ML

Assumed Specific Gravity= 2.71

Remarks: "Confidential Information: Privileged &

Confidential Work Product"

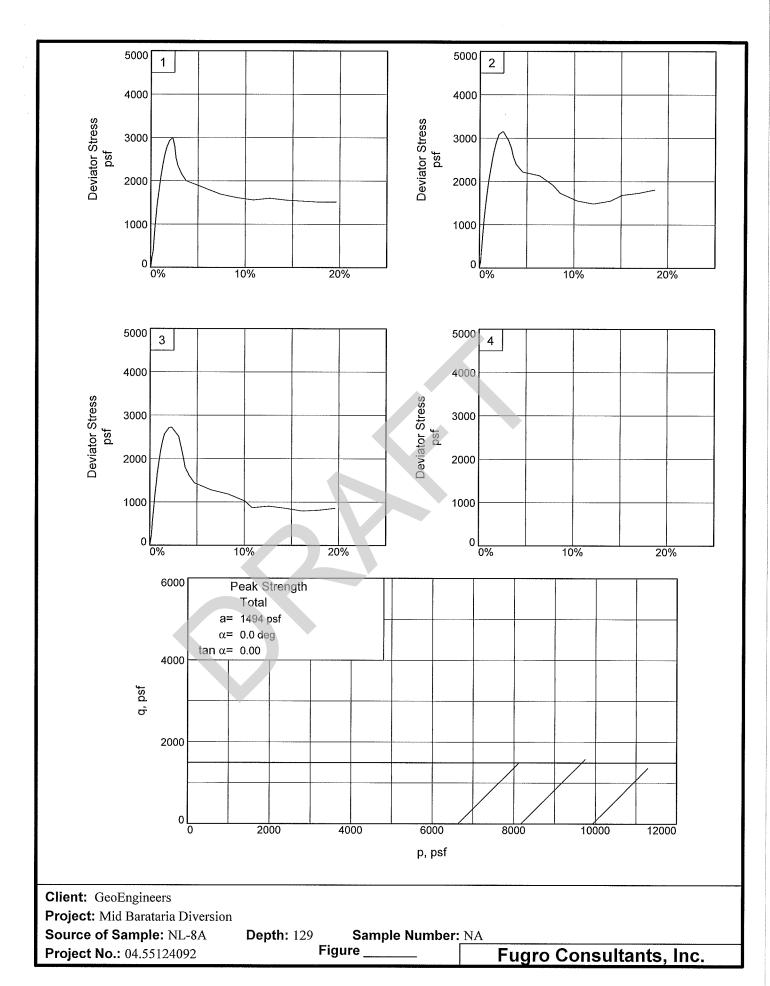
Sa	mple No.	1	2	3	
	Water Content, %	67.0	69.9	69.3	
	Dry Density, pcf	60.5	59.5	59.9	
Initial	Saturation, %	101.1	102.7	103.1	
三	Void Ratio	1.7955	1.8450	1.8224	
	Diameter, in.	1.43	1.43	1.42	
	Height, in.	3.09	3.10	3.02	
	Water Content, %	67.0	69.9	69.3	
1 7	Dry Density, pcf	60.5	59.5	59.9	
Test	Saturation, %	101.1	102.7	103.1	
¥	Void Ratio	1.7955	1.8450	1.8224	
`	Diameter, in.	1.43	1.43	1.42	
	Height, in.	3.09	3.10	3.02	
Str	ain rate, in./min.	1.00	1.00	1.00	
Ba	ck Pressure, psi	0.00	0.00	0.00	
Ce	ll Pressure, psi	46.04	56.74	68.96	
Fai	I. Stress, psf	2994	3153	2724	
8	Strain, %	2.2	2.4	2.2	
Ult	Stress, psf	1559	1485	860	
5	Strain, %	14.4	12.1	14.3	
σ_1	Failure, psf	9624	11323	12655	
σ_3	Failure, psf	6630	8171	9930	

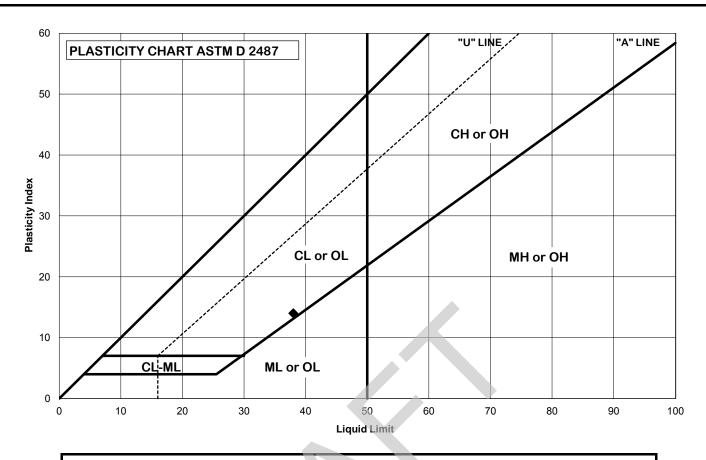
Client: GeoEngineers

Project: Mid Barataria Diversion

Source of Sample: NL-8A

Sample Number: NA


Proj. No.: 04.55124092


Date Sampled: 7/3/13

Depth: 129

TRIAXIAL SHEAR TEST REPORT Fugro Consultants, Inc. Baton Rouge, LA

Figure

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	<mark>18274-0</mark> 01	-00						
Boring No.	NL-9A				Natural WC:	#DIV/0!		
Depth, ft.	22.5 - 24				Preparation:	Wet (as-received)		
Cup No.	Cup No. 1028				No. Points:			
Percent Retained	0		Estimated or Tested 0.0		0.0			
Original sample d	Very soft gray	y clay (CL4)						

Classification (fraction passing No. 40 sieve) Liquid Limit = 38

Plastic Limit = 24

Plasticity Index = 14

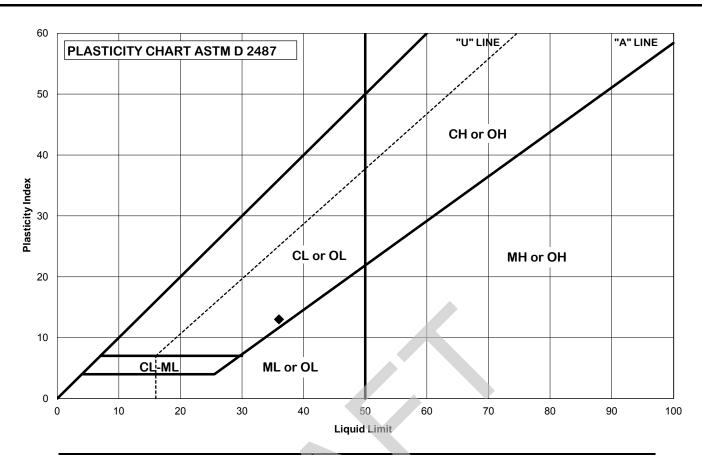
 Date:
 7/1/2013

 Tested By:
 sc

 Checked By:
 SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA									
Project No.	no. 18274-001-00								
Boring No.	NL-9A				Natural WC:	#DIV/0!			
Depth, ft.	30 - 31.5				Preparation:	Wet (as-received)			
Cup No.	1028				No. Points:				
Percent Retained	on No. 40	0		Estimated or Tested		0.0			
Original sample o	Very soft gray clay (CL4)								

Classification
(fraction passing No. 40
sieve)
CL

Liquid Limit = 36

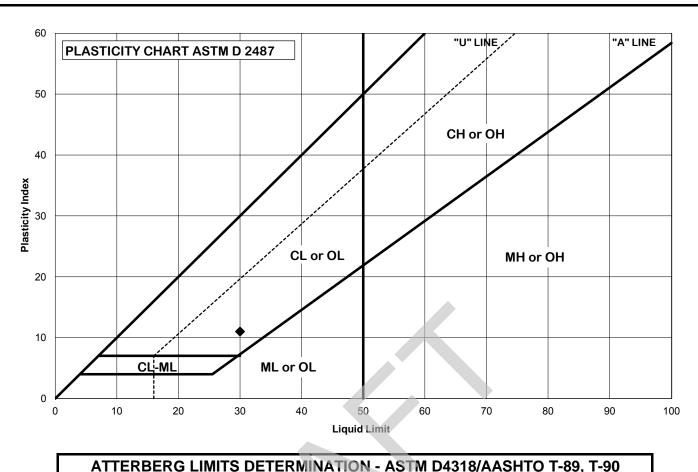
Plastic Limit = 23

Plasticity Index = 13

Date:	7/1/2013		
Tested By:	sc		
Checked By:	SC		

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	Project No. 18274-001-00							
Boring No.	NL-9A				Natural WC:	#DIV/0!		
Depth, ft.	51 - 52.5				Preparation:	Wet (as-received)		
Cup No. 1077				No. Points:				
Percent Retained o	0		Estimated or Tested		0.0			
Original sample des	scription:	Soft gray clay with sand (CL4)						

Classification
(fraction passing No. 40 sieve)

Liquid Limit = 30
Plastic Limit = 19
Plasticity Index = 11

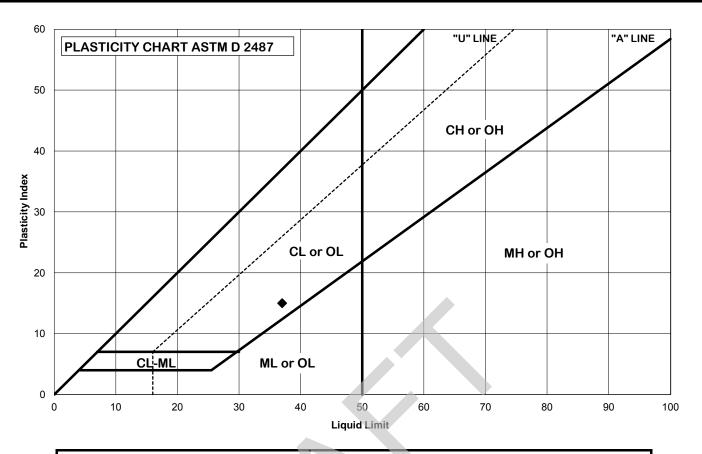
 Date:
 7/25/2013

 Tested By:
 BH

 Checked By:
 RW

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	18274-001-00							
Boring No.	NL-9A				Natural WC:	#DIV/0!		
Depth, ft.	83.5 - 85				Preparation:	Wet (as-received)		
Cup No.	up No. 1077				No. Points:			
Percent Retained on No. 40		0		Estimated or Tested		0.0		
Original sample descr	Stiff gray sandy clay (CL4)							

Classification (fraction passing No. 40	Liquid Limit =	37	
sieve)	Plastic Limit =	22	
CL	Plasticity Index =	15	

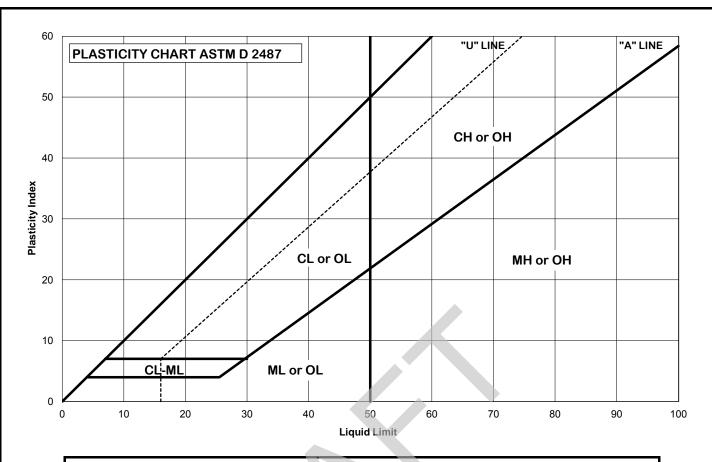
Date: 7/1/2013

Tested By: BH

Checked By: SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-0</mark> 01	1-00				
Boring No.	NL-9A				Natural WC:	#DIV/0!
Depth, ft.	111 - 112.	5			Preparation:	Wet (as-received)
Cup No.	1028					
Percent Retained on No. 40		0	Estimated or Tested		0.0	
Original sample description: Very stiff brown and gray clay with 3" sand layer (CH4)						

Classification (fraction passing No. 40 sieve) Liquid Limit = 89
Plastic Limit = 28
Plasticity Index = 61

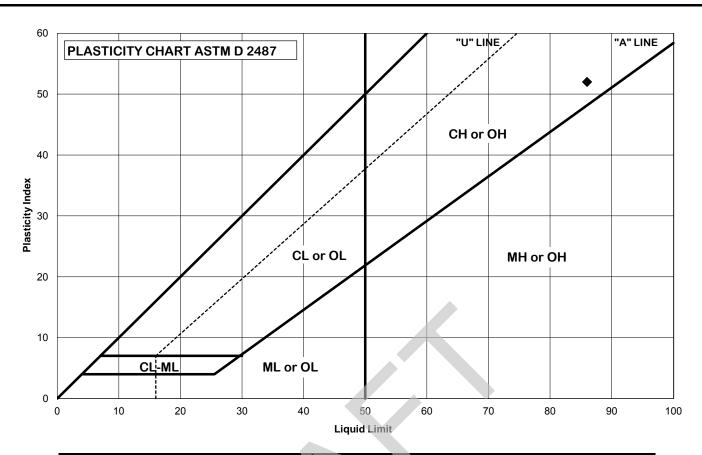
 Date:
 7/1/2013

 Tested By:
 sc

 Checked By:
 SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

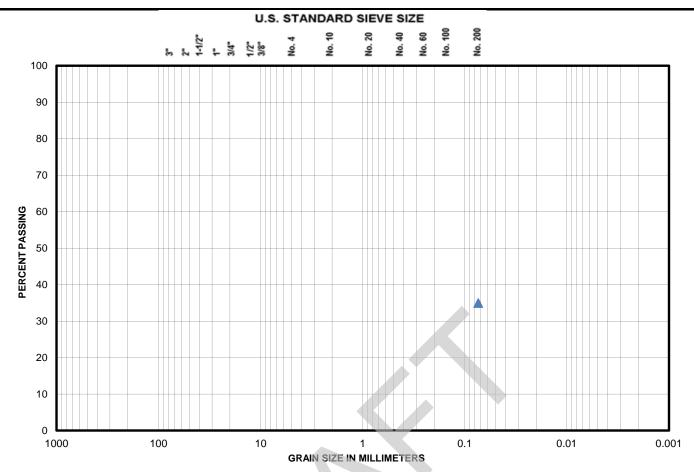
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	18274-00	18274-001-00				
Boring No.	NL-9A				Natural WC:	#DIV/0!
Depth, ft.	<mark>126 - 127</mark>	.5			Preparation:	Air Dried
Cup No.	1077				No. Points:	
Percent Retained	on No. 40	0		Estimated or	Tested	0.0
Original sample d	Stiff gray cla	Stiff gray clay with shells (CH4)				

Classification (fraction passing No. 40	Liquid Limit =	86
sieve)	Plastic Limit =	34
СН	Plasticity Index =	52

Date:	7/1/2013
Tested By:	ВН
Checked By:	SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

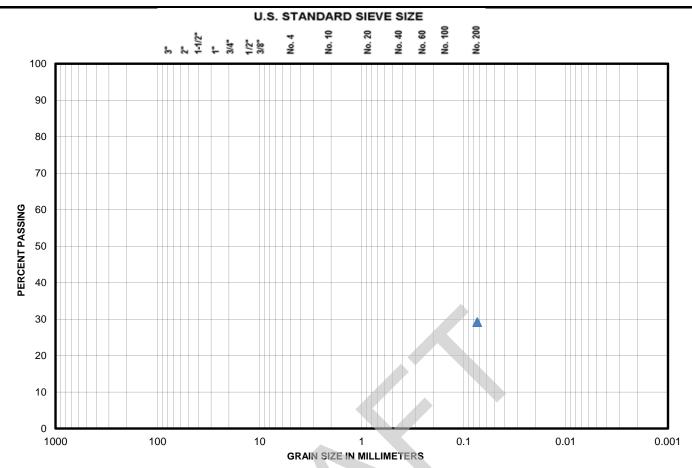
COBBLES	GRA	VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand %		0.0	
Fine Gravel %		0.0	Fine Sand %		65.0	
Coarse Sand %		0.0	Fines (Silt & Clay) %		35.0	
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty sand					

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	#N/A			
1 1/2"	#N/A	No. 20	#N/A			
1"	#N/A	No. 40	#N/A			
3/4"	#N/A	No. 60	#N/A			
1/2"	#N/A	No. 100	#N/A			
3/8"	#N/A	No. 200	35.0			

Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), I	Plaquem Date Tested	7/10/2013
Project No.	18274-001-00		Tested By	GOM
Boring No.	NL-9A		Checked By	SC
Source/Dept	th (feet)	41 - 42.5	Sieve Type	200 Wash

Method B was used for the 200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

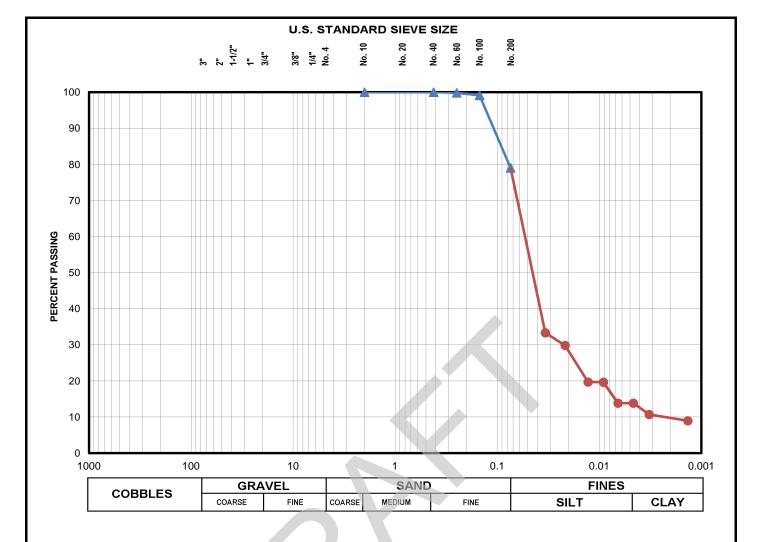
CORRI ES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	Medium Sand %		0.0	
Fine Gravel %		0.0	Fine Sand %	Fine Sand %		70.8	
Coarse Sand %		0.0	Fines (Silt & C	Fines (Silt & Clay) %		29.2	
USC Classification		SM	Cu	na	C _c	na	
Description (D 2488)	Silty sa	nd					

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	#N/A			
1 1/2"	#N/A	No. 20	#N/A			
1"	#N/A	No. 40	#N/A			
3/4"	#N/A	No. 60	#N/A			
1/2"	#N/A	No. 100	#N/A			
3/8"	#N/A	No. 200	29.2			

Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaque	Date Tested	7/10/2013
Project No.	18274-001-00		Tested By	TC
Boring No.	NL-9A		Checked By	RW
Source/Dept	th (feet)	43.5 - 45	Sieve Type	200 Wash

Method A was used for the 200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

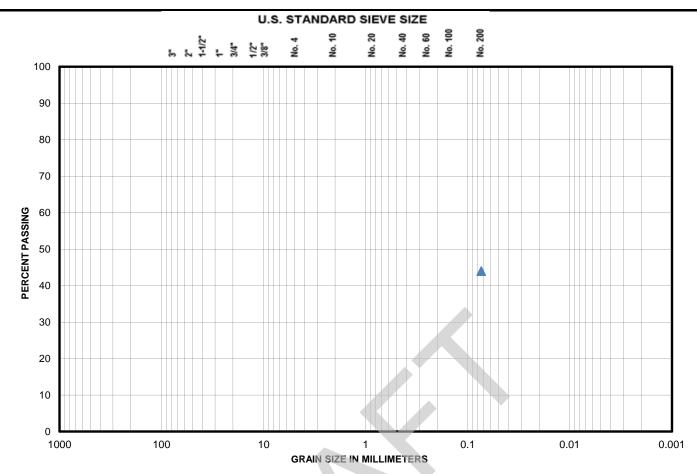
Description (D 2488)	Very loose gray sandy silt with clay (ML)
= 000: p.:o:: (= = :00)	very roose gray sairly six with early (will)

Individual Sieve Data - % Passing					
3"	100.0	No. 4	100.0		
2"	100.0	No. 10	100.0		
1 1/2"	100.0	No. 20	100.0		
1"	100.0	No. 40	100.0		
3/4"	100.0	No. 60	99.8		
3/8"	100.0	No. 100	99.1		
1/4"	100.0	No. 200	79.0		

2.65
Type A
1 min.
$(NaPO_3)_6$
ASTM 152 H
1148
1159

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	7/2/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	NL-9A	Checked By	RW
Source/Depth (feet)	46 - 47.5		


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

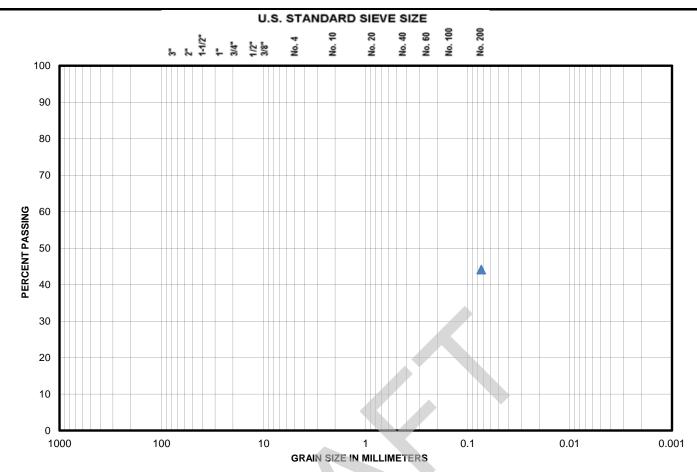
CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

CORRI ES	GRAVEL			SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %	0.0	Medium Sand	%		0.0
Fine Gravel %	0.0	Fine Sand %		56.0	
Coarse Sand %	0.0	Fines (Silt & Clay) %		44.0	
USC Classification	SC	Cu	na	C _c	na
Description (D 2488)	Clavev sand				

Inc	Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A				
2"	#N/A	No. 10	#N/A				
1 1/2"	#N/A	No. 20	#N/A				
1"	#N/A	No. 40	#N/A				
3/4"	#N/A	No. 60	#N/A				
1/2"	#N/A	No. 100	#N/A				
3/8"	#N/A	No. 200	44.0				


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), F	<mark>laquerr</mark> Date Tested	7/2/2013
Project No.	18274-001-00		Tested By	JB
Boring No.	NL-9A	NL-9A		GOM
Source/Dept	th (feet)	51 - 52.5	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

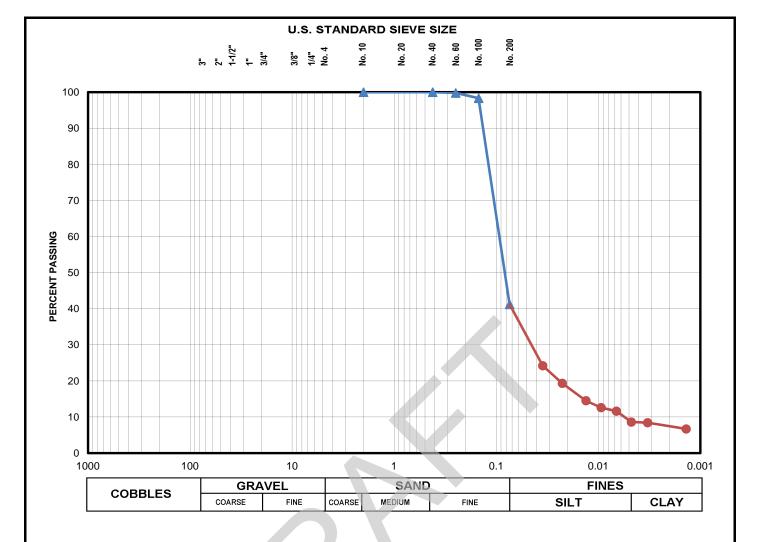
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

COBBLES	GRA	GRAVEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	%		0.0	
Fine Gravel %		0.0	Fine Sand %	Fine Sand %		55.9	
Coarse Sand %		0.0	Fines (Silt & Cl	Fines (Silt & Clay) %		44.1	
USC Classification		SM	Cu	na	C _c	na	
Description (D 2488)	Silty sa	and					

Inc	Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A				
2"	#N/A	No. 10	#N/A				
1 1/2"	#N/A	No. 20	#N/A				
1"	#N/A	No. 40	#N/A				
3/4"	#N/A	No. 60	#N/A				
1/2"	#N/A	No. 100	#N/A				
3/8"	#N/A	No. 200	44.1				


Project	LA CPRA - M	Iid-Barataria Diversion (BA-15	3), Plaquem Date Tested	7/2/2013
Project No.	18274-001-00		Tested By	JB
Boring No.	NL-9A		Checked By	GOM
Source/Dept	th (feet)	53.5 - 55	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

Description (D 2488)	Very loose gray sandy silt with clay (ML)
= 000: p.:o:: (= = :00)	very roose gray sairly six with early (will)

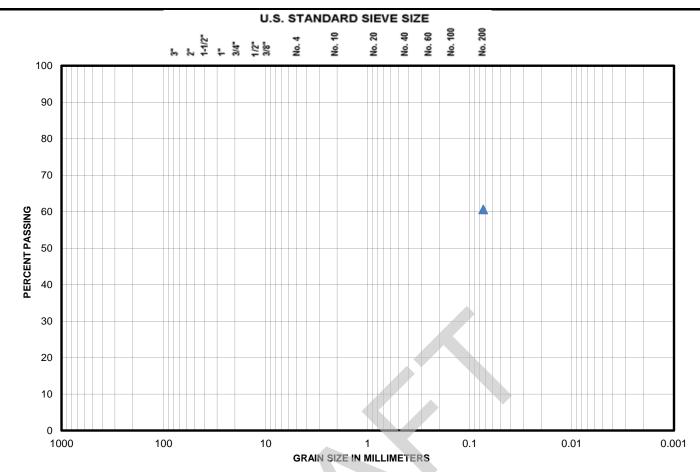
Inc	Individual Sieve Data - % Passing					
3"	100.0	No. 4	100.0			
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	99.8			
3/8"	100.0	No. 100	98.3			
1/4"	100.0	No. 200	64.2			

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1157
*assumed unless noted	

Project
 LA CPRA - Mid-Barataria Diversion (BA-15)
 Date Tested
 7/2/2013

 Project No.
 18274-001-00
 Tested By
 RW

 Sample ID.
 NL-9A
 Checked By
 RW


Source/Depth (feet) 56 - 57.5

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

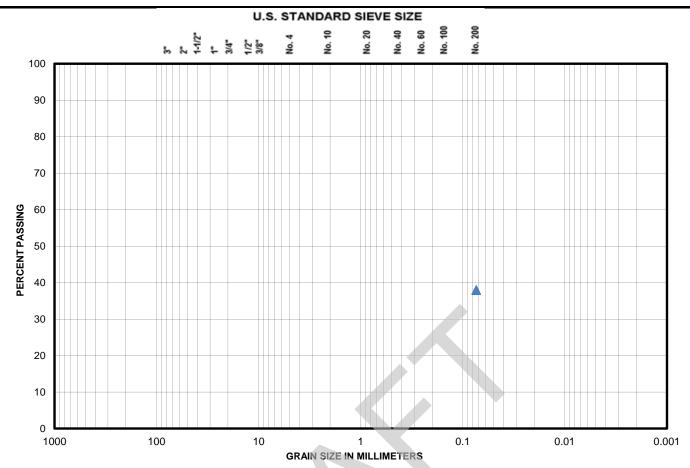
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

COBBLES	GRA	GRAVEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0		Medium Sand	%		0.0
Fine Gravel %		0.0		Fine Sand % 39.4		39.4	
Coarse Sand %		0.0		Fines (Silt & Clay) %		60.6	
USC Classification		X		Cυ	na	C _c	na
Description (D 2488)	Firm s	erav sand	v silt (SP-SM)				

Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	#N/A					
3/4"	#N/A	No. 60	#N/A					
1/2"	#N/A	No. 100	#N/A					
3/8"	#N/A	No. 200	60.6					


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), Plaqu	uen Date Tested	7/2/2013
Project No.	18274-001-00		Tested By	tc
Boring No.	NL-9A		Checked By	clp
Source/Dept	th (feet)	63.5 - 65	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

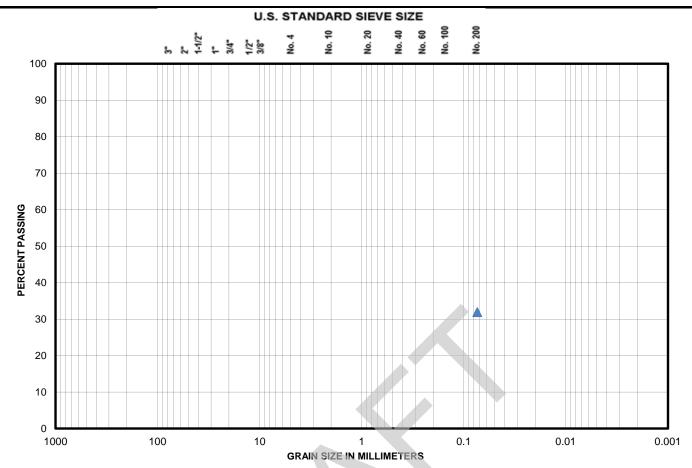
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

CORRIES	GRAVEL GRAVEL			SAND		FINES		
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY	

Coarse Gravel %		0.0	Medium Sand	Medium Sand %		0.0
Fine Gravel %		0.0	Fine Sand %	Fine Sand % 62.0		62.0
Coarse Sand %		0.0	Fines (Silt & C	Fines (Silt & Clay) % 38.0		38.0
USC Classification		SM	Cu	na	C _c	na
Description (D 2488)	Silty s	and				

Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	#N/A					
3/4"	#N/A	No. 60	#N/A					
1/2"	#N/A	No. 100	#N/A					
3/8"	#N/A	No. 200	38.0					


Project	LA CPRA - M	Iid-Barataria Diversion (BA-153), P	Date Tested	7/2/2013	
Project No.	18274-001-00		-	Tested By	JB
Boring No.	NL-9A		(Checked By	GOM
Source/Dept	th (feet)	68.5 - 70		Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

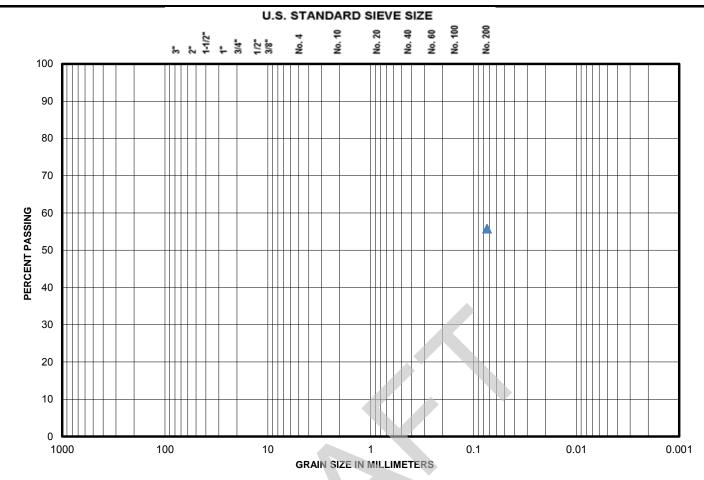
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

CORRIES	GRAVEL GRAVEL			SAND		FINES		
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY	

Coarse Gravel %		0.0	Medium Sand	Medium Sand %		0.0
Fine Gravel %		0.0	Fine Sand % 68.1		68.1	
Coarse Sand %		0.0	Fines (Silt & Clay) % 31.9		31.9	
USC Classification		SM	C _U	na	C _c	na
Description (D 2488)	Silty sa	nd				

Individual Sieve Data - % Passing								
3"	#N/A	No. 4	#N/A					
2"	#N/A	No. 10	#N/A					
1 1/2"	#N/A	No. 20	#N/A					
1"	#N/A	No. 40	#N/A					
3/4"	#N/A	No. 60	#N/A					
1/2"	#N/A	No. 100	#N/A					
3/8"	#N/A	No. 200	31.9					


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaque	Date Tested	7/2/2013
Project No.	18274-001-00	Tested By	JВ
Boring No.	NL-9A	Checked By	GOM
Source/Dept	h (feet) 73.5 - 75	Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

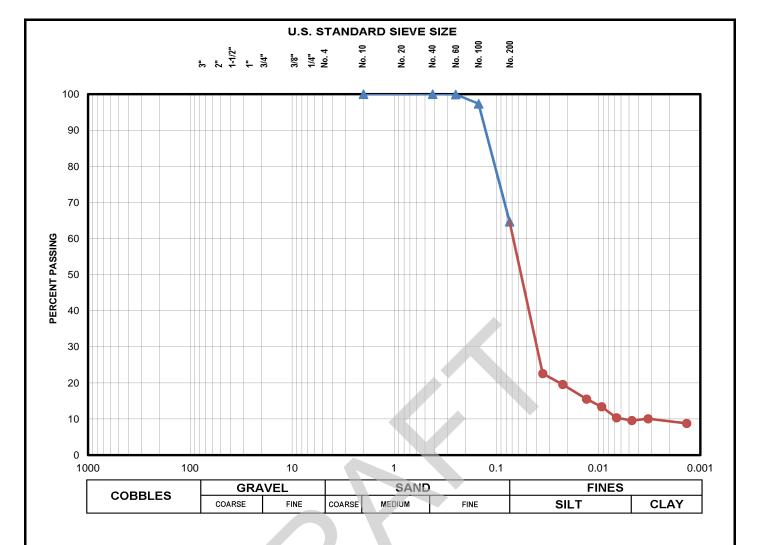
PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

COBBLES	GRA	VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %	44.2	Fines (Silt & Clay) %		55.8		
USC Classification	ML	Cu	na	C _c	na	
Description (D 2488)	Medium dense gray sandy silt	Medium dense gray sandy silt with 6" clayey silt laver (ML)				

Individual Sieve Data - % Passing						
3"	#N/A	No. 4	#N/A			
2"	#N/A	No. 10	#N/A			
1 1/2"	#N/A	No. 20	#N/A			
1"	#N/A	No. 40	#N/A			
3/4"	#N/A	No. 60	#N/A			
1/2"	#N/A	No. 100	#N/A			
3/8"	#N/A	No. 200	55.8			

Project	LA CPRA - M	Mid-Barataria Diversion (BA-1	<mark>53), Plaquen</mark> Date Tested	<mark>7/2/2013</mark>
Project No.	18274-001-00)	Tested By	JB
Boring No.	NL-9A		Checked By	GOM
Source/Dept	th (feet)	86 - 87.5	Sieve Type	200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

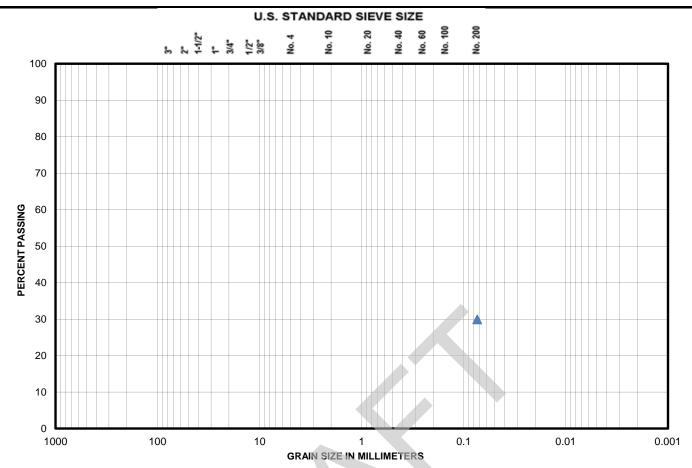
ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge. La 70809 Confidential Information; Privileged & Confidential W**1827/4-001-00**

Description (D 2488)	Loose gray early eith with alay (ML)
Description (D 2466)	Loose gray sandy silt with clay (ML)

Individual Sieve Data - % Passing					
3"	100.0	No. 4	100.0		
2"	100.0	No. 10	100.0		
1 1/2"	100.0	No. 20	100.0		
1"	100.0	No. 40	100.0		
3/4"	100.0	No. 60	99.9		
3/8"	100.0	No. 100	97.3		
1/4"	100.0	No. 200	64.7		


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	388172
Hydro jar ID:	1158
*assumed unless noted	•

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	7/23/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	NL-9A	Checked By	RW
Source/Depth (feet)	93.5 - 95		

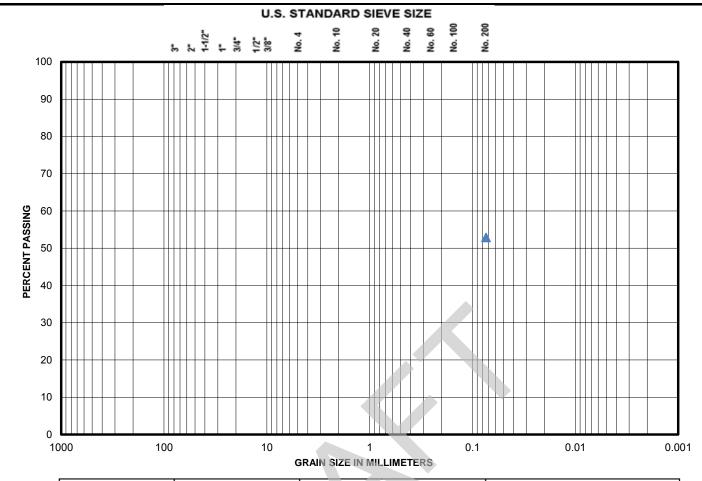
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

CORRI ES	GRAVEL		SAND			FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Coarse Gravel %		0.0	Medium Sand	%		0.0	
Fine Gravel %		0.0	Fine Sand %			70.1	
Coarse Sand %		0.0	Fines (Silt & C	Fines (Silt & Clay) %		29.9	
USC Classification		SM	Cu	na	C _c	na	
Description (D 2488)	Silty sa	ınd					

Individual Sieve Data - % Passing					
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	#N/A		
1"	#N/A	No. 40	#N/A		
3/4"	#N/A	No. 60	#N/A		
1/2"	#N/A	No. 100	#N/A		
3/8"	#N/A	No. 200	29.9		


Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquem			Date Tested	7/2/2013
Project No.	18274-001-00			Tested By	JB
Boring No.	NL-9A			Checked By	GOM
Source/Dept	Source/Depth (feet) 98.5 - 100			Sieve Type	200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

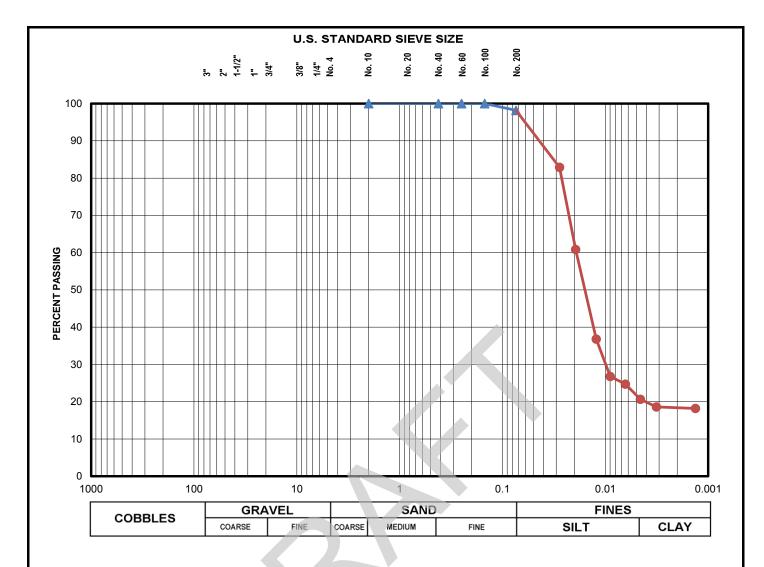
PRA - Mid-Barataria Diversion (BA-153), Plaquemines Parisl 18274-001-00

COBBLES	GRA	VEL	SAND		FINES		
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %	47.1	Fines (Silt & C	lay) %		52.9
USC Classification	ML	Cu	na	C _c	na
Description (D 2488)	Medium dense gray sandy silt	(ML)			

I	Individual Sieve Data - % Passing		
3"	#N/A	No. 4	#N/A
2"	#N/A	No. 10	#N/A
1 1/2"	#N/A	No. 20	#N/A
1"	#N/A	No. 40	#N/A
3/4"	#N/A	No. 60	#N/A
1/2"	#N/A	No. 100	#N/A
3/8"	#N/A	No. 200	52.9

Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquen		Date Tested	7/2/2013
Project No.	8274-001-00		Tested By	JB
Boring No.	NL-9A		Checked By	GOM
Source/Dept	th (feet)	106 - 107.5	Sieve Type	200 Wash


NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

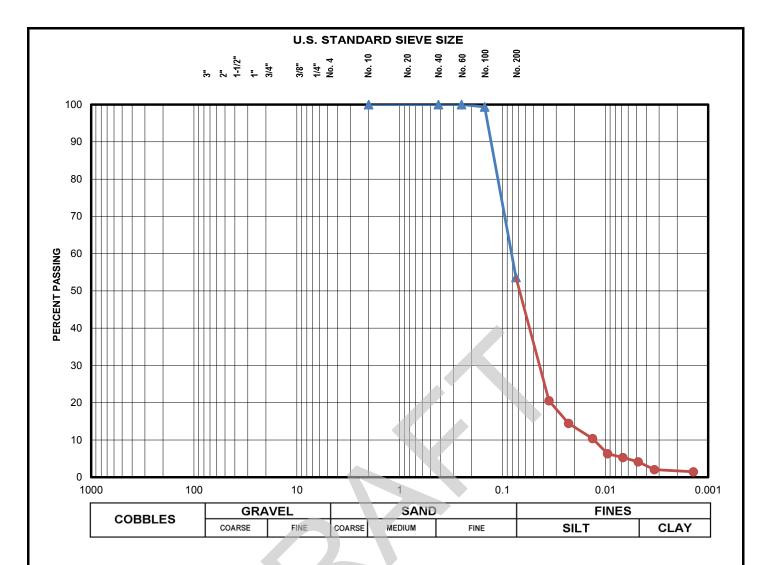
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge. La 70809 Confidential Information; Privileged & Confidential W**1827/4-001-00**

Description (D 2488)	Dense gray claye	ey silt with sand (ML)

In	Individual Sieve Data - % Passing		
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	98.2

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1157


^{*}assumed unless noted

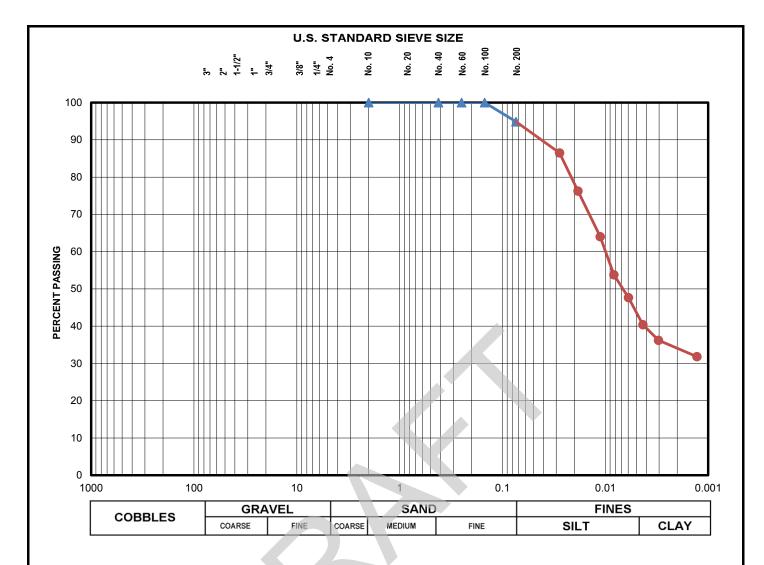
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	ВН
Sample ID.	PT-1 SA	Checked By	SC
Source/Depth (feet)	18 - 20		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488) Me	dium dense g	gray sandy silt with clay (ML)

In	Individual Sieve Data - % Passing		
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.4
1/4"	100.0	No. 200	53.6


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1154

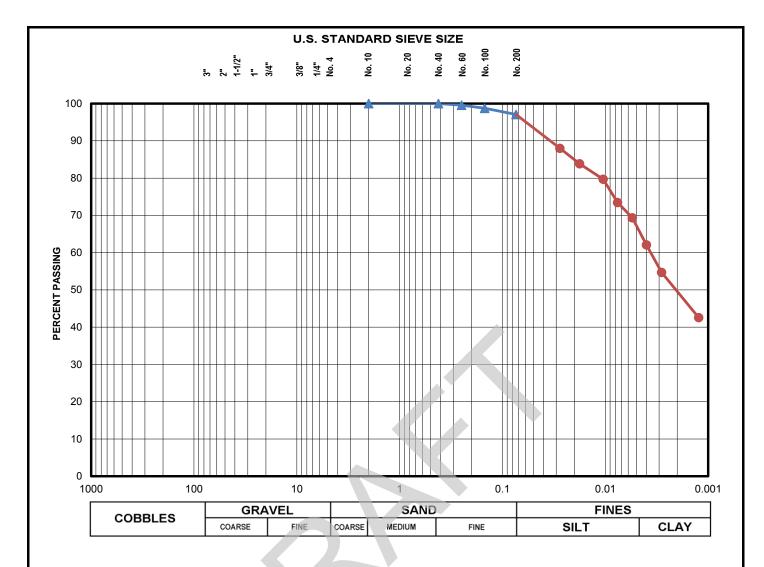
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	ВН
Sample ID.	PT-1 SB	Checked By	SC
Source/Depth (feet)	18 - 20		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Medium dense gra	ay clayey silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	94.9


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1354

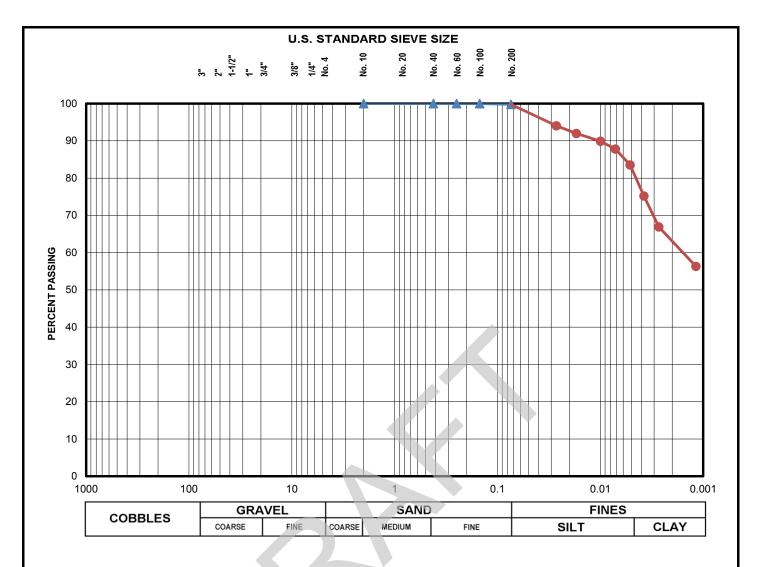
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	bh
Sample ID.	PT-1	Checked By	sc
Source/Depth (feet)	10 - 12		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Soft gray clay with s	and (CL6)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.6
3/8"	100.0	No. 100	98.8
1/4"	100.0	No. 200	97.1


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	68515
Hydro jar ID:	1157

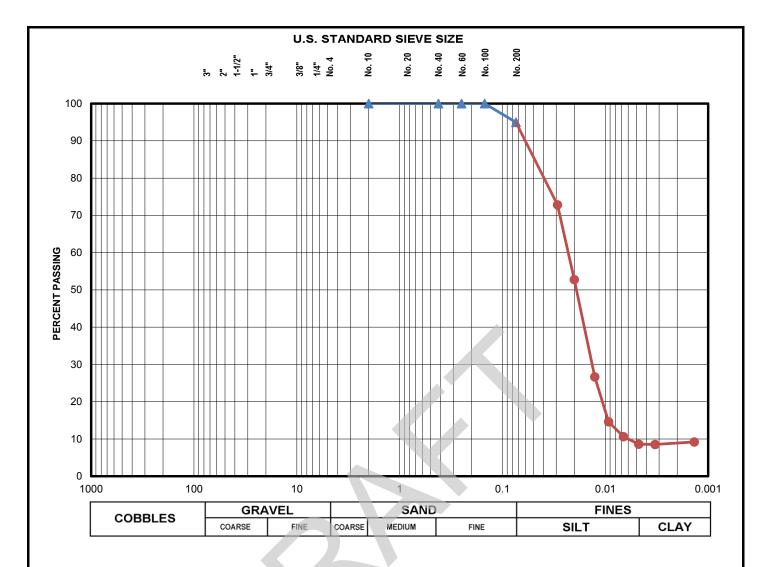
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PT-1	Checked By	sc
Source/Depth (feet)	12 - 14		<u> </u>

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Soft gray clay (CL6)	

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	99.8


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	0

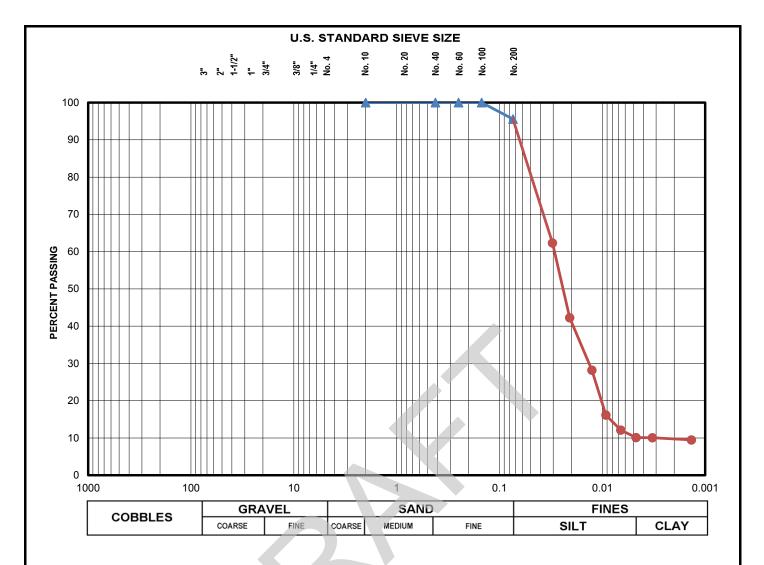
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	bh
Sample ID.	PT-1	Checked By	sc
Source/Depth (feet)	14 - 16		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

		,
Description (D 2488)	Loose gray claye	ey silt with 1.5" sand layer (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	95.0	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1158

^{*}assumed unless noted

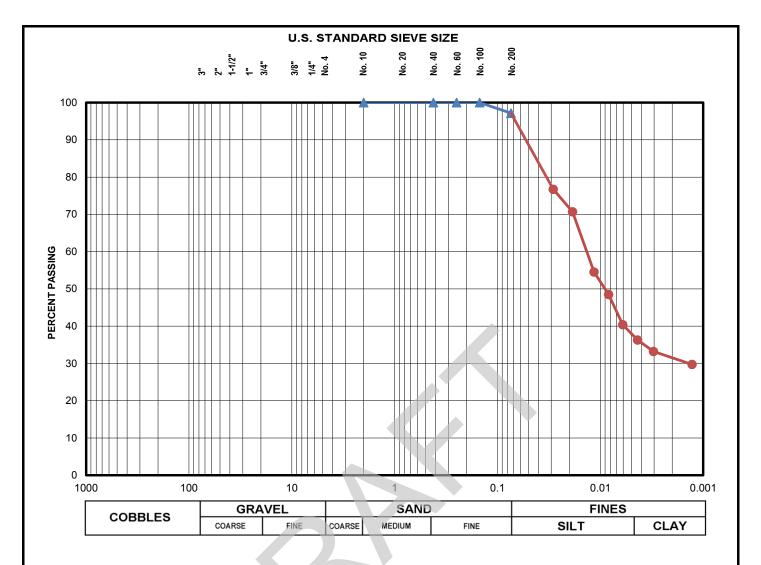
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	ВН
Sample ID.	PT-1	Checked By	SC
Source/Depth (feet)	24 - 26		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Dense gray clay	rey silt with sand pockets (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	95.6	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1143
Hydro jar ID:	1353


^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	ВН
Sample ID.	PT-1	Checked By	SC
Source/Depth (feet)	28 - 30		

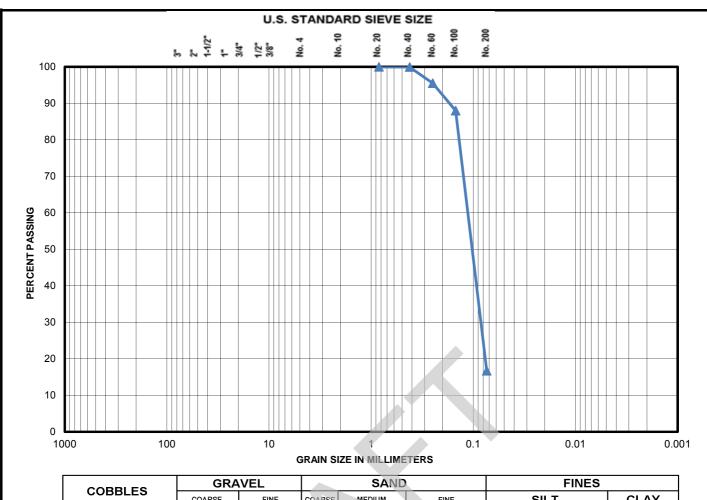
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Medium dense	gray clayey silt with sand (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	97.2	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	0


^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	bh
Sample ID.	PT-1	Checked By	sc
Source/Depth (feet)	32 - 34		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

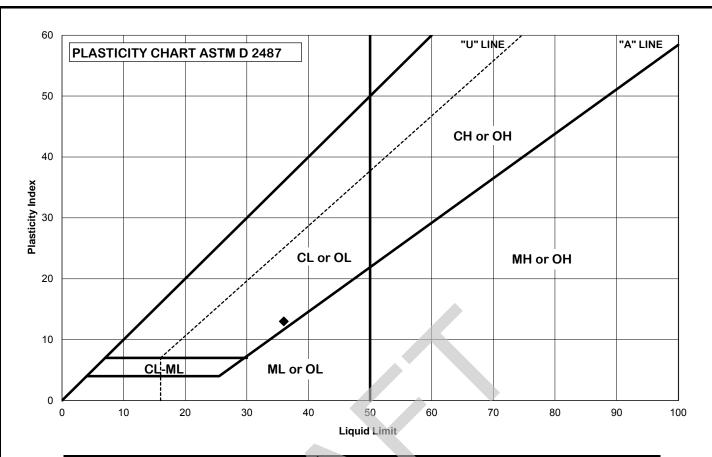
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

CORRIES	GRA	VEL		SAND		FINES	
COBBLES	COARSE	FINE	COARSE	MEDIUM	FINE	SILT	CLAY

Sand %	83.3	Fines (Silt & C	Fines (Silt & Clay) %		16.7	
USC Classification	SM	Cu	na	C _c	na	
Description (D 2488)	Silty sand		•	•		

I	Individual Sieve Data - % Passing				
3"	#N/A	No. 4	#N/A		
2"	#N/A	No. 10	#N/A		
1 1/2"	#N/A	No. 20	100.0		
1"	#N/A	No. 40	99.9		
3/4"	#N/A	No. 60	95.5		
1/2"	#N/A	No. 100	88.0		
3/8"	#N/A	No. 200	16.7		

Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquen	Date Tested	8/29/2013
Project No.	18274-001-00	Tested By	GOM
Boring No.	PT-1	Checked By	GOM
Source/Dept	h (feet) 14 - 16	Sieve Type	Dry Sieve



11955 Lakeland Park Blvd. Suite 100 Baton Rouge, La 70809

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

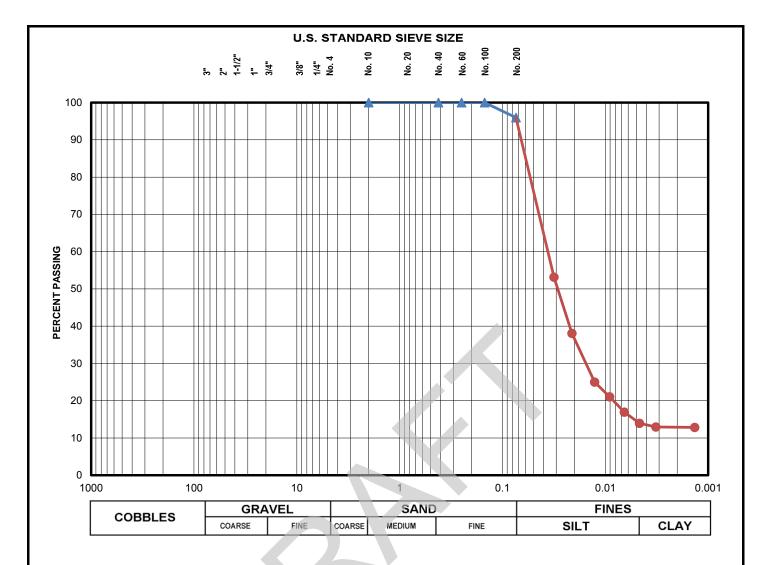
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00				
Boring No.	PT-2	PT-2			Natural WC:	#DIV/0!
Depth, ft.	3 - 5	3 - 5			Preparation:	Wet (as-received)
Cup No.	1356	1356 No. Points:				
Percent Retained	0		Estimated of	or Tested	0.0	
Original sample description: Medium gray clay with silt pockets (CL4)						

Classification	Liquid Limit =	36	Date:	10/18/201
(fraction passing No. 40 sieve)	Plastic Limit =	23	Tested By:	SLC
CL	Plasticity Index =	13	Checked By:	SLC
	•		_	

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

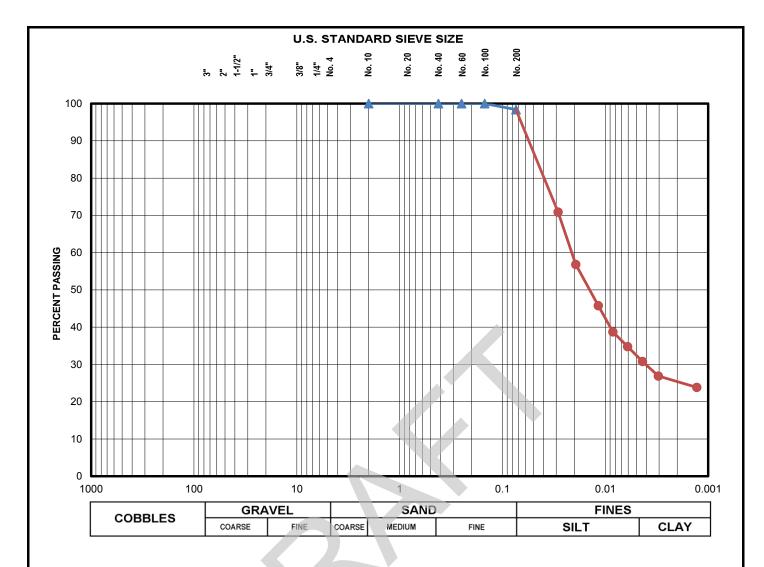
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

18274-001-00

Description (D 2488)	ery loose gray clayey	silt (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	96.0	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1150


^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/16/2013
Project No.	18274-001-00	Tested By	AB
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	8 - 10		

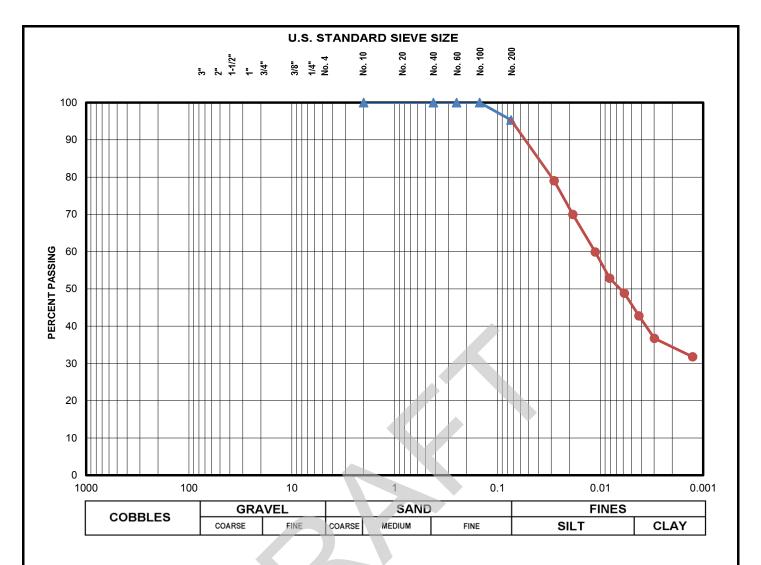
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Firm gray claye	y silt (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	98.4	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1154


^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/16/2013
Project No.	18274-001-00	Tested By	AB
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	13 - 15		

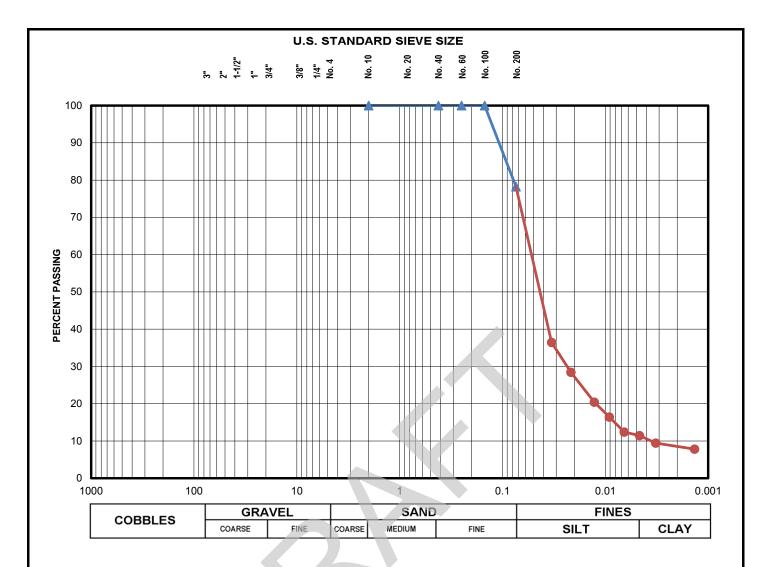
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Very loose brov	wn and gray clayey silt with trace shells (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	95.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	1161


^{*}assumed unless noted

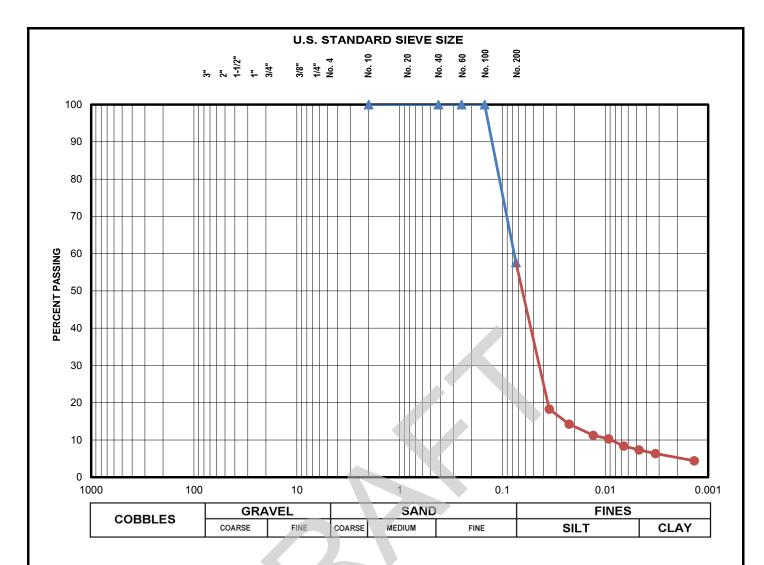
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	18 - 20		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Very loose gray sa	andy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	78.3


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	1154

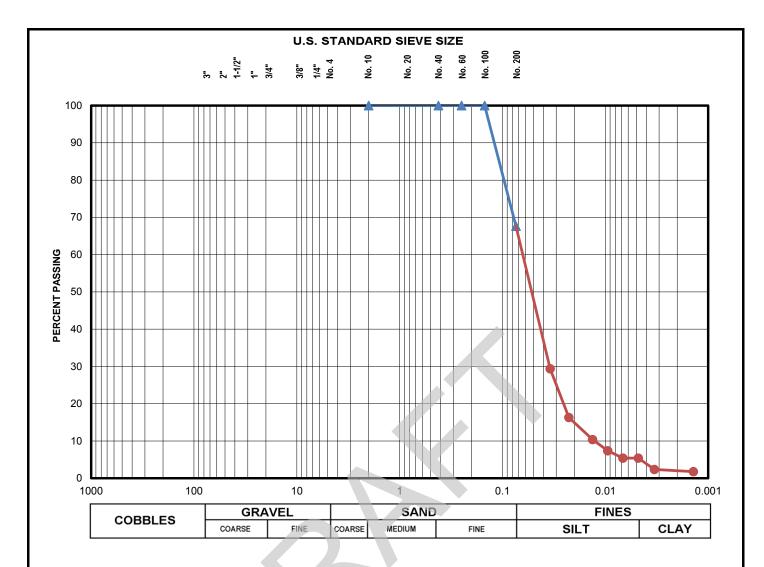
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/16/2013
Project No.	18274-001-00	Tested By	AB
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	23 - 25		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Very loose brown	n and gray sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	57.6


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1163

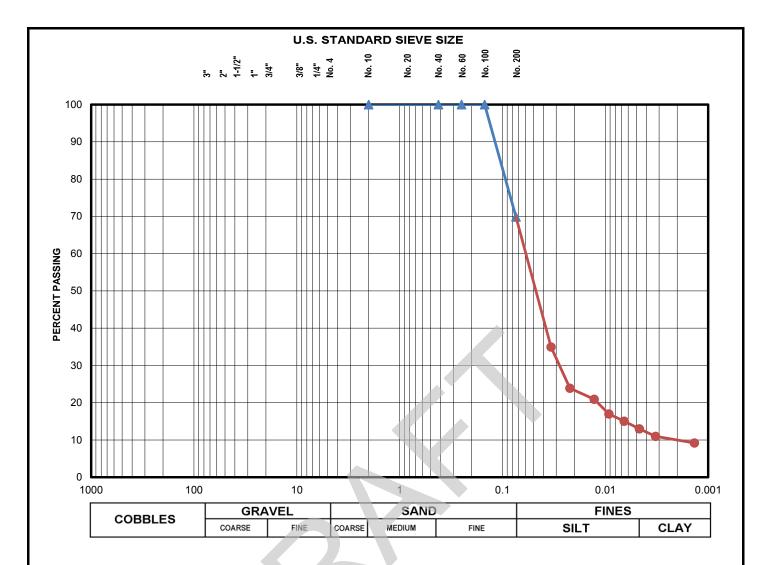
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	28 - 30		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm brown and gra	ay sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	67.7


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1161

^{*}assumed unless noted

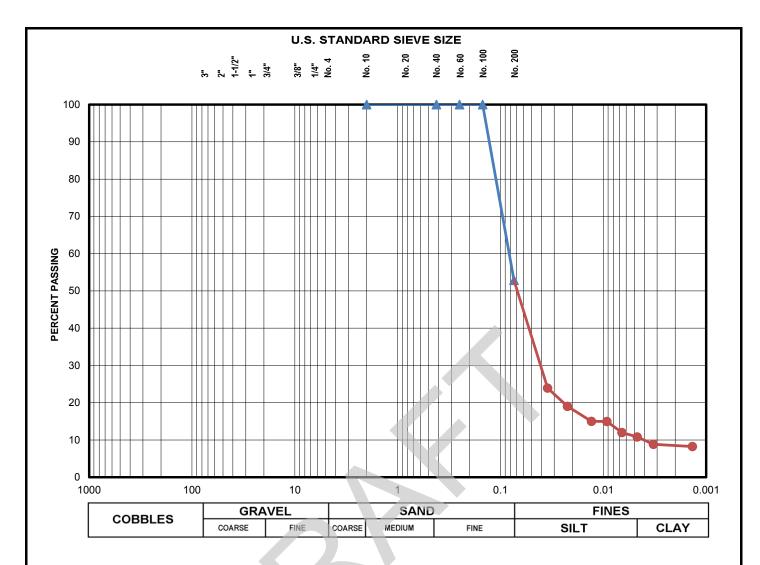
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	32 - 34		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Very loose brown	n and gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	69.9

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1136
Hydro jar ID:	1158


^{*}assumed unless noted

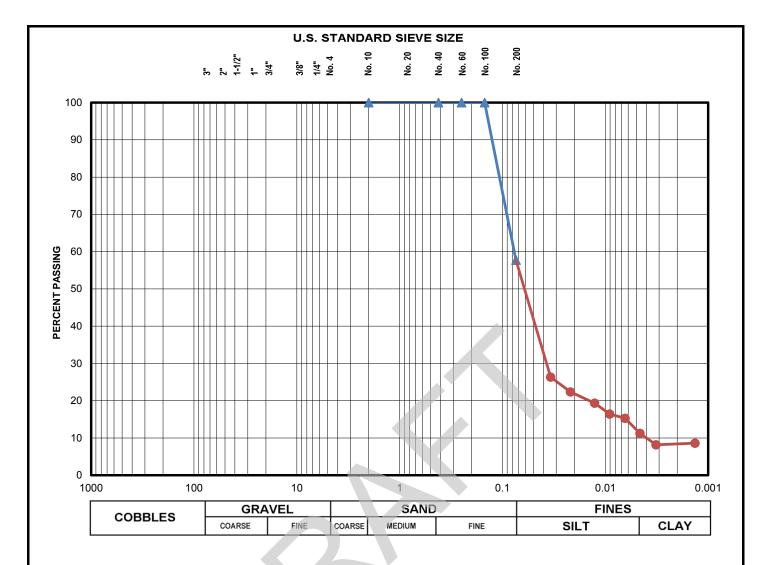
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	36 - 38		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Very loose gray	silty sand with clay and 1" sand layer (SM)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	52.9


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1156

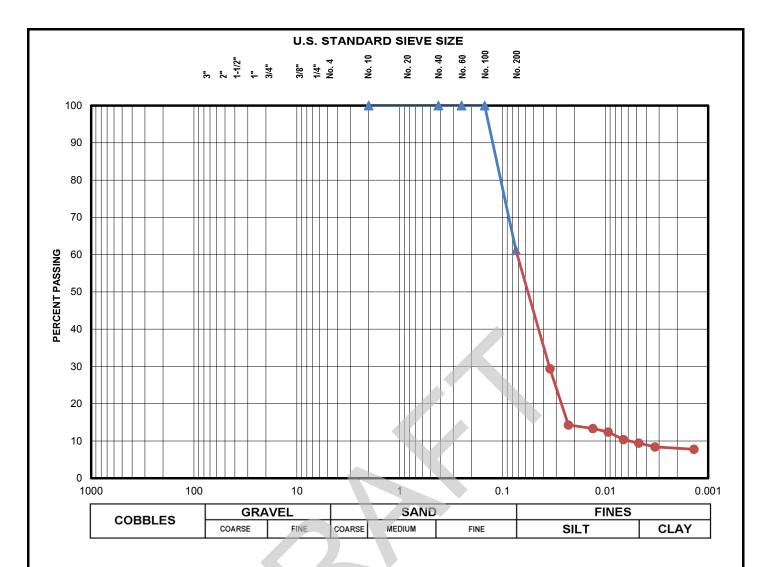
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	40 - 42		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm gray sandy	silt with clay (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	57.8	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1150

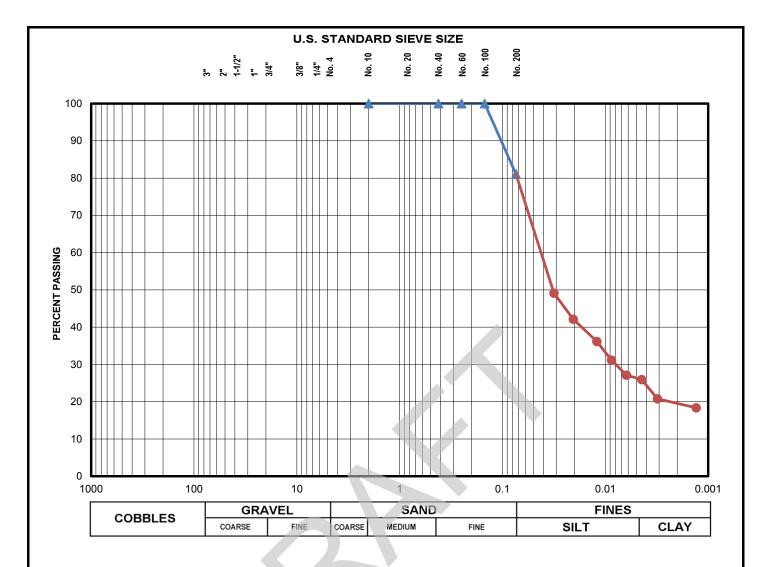
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	44 - 46		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488) Loos	e gray sand	dy silt with clay and 1.5" sand layer (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	61.2	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1357

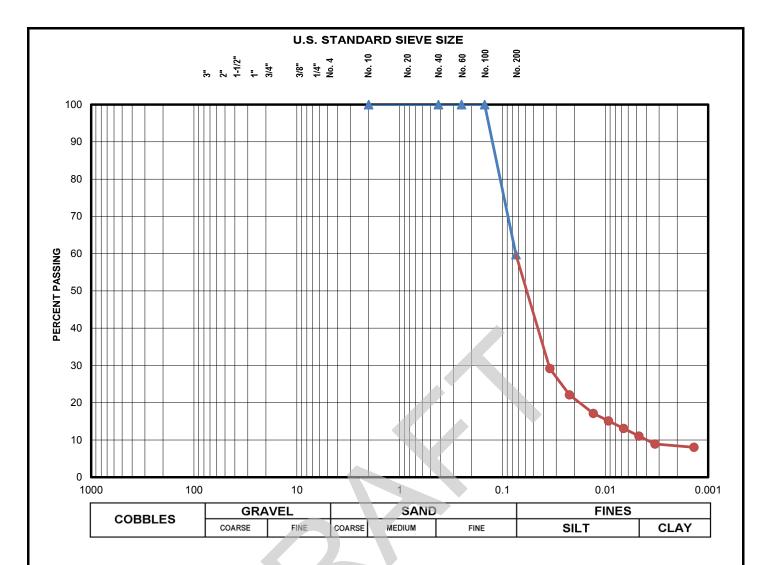
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	48 - 50		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	ose gray claye	y silt with sand (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	81.1


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1154

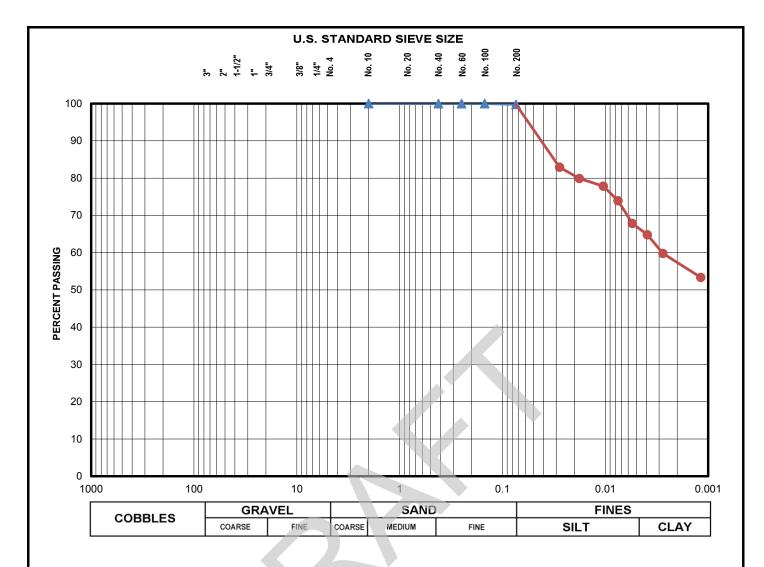
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	52 - 54		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	59.7


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1353

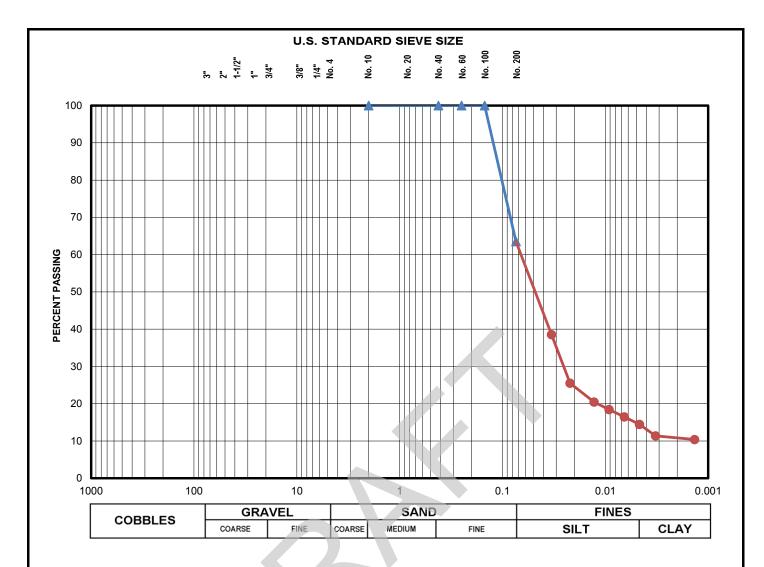
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	56 - 58		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488) Sti	h silt pockets (CL6)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	99.8


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1136
Hydro jar ID:	1353

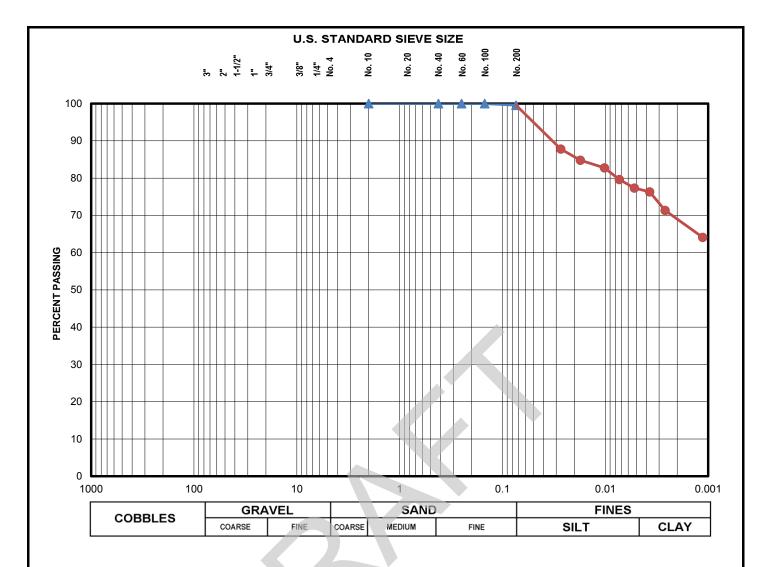
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	AB
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	62 - 64		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm gray sandy	silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	63.5


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1353

^{*}assumed unless noted

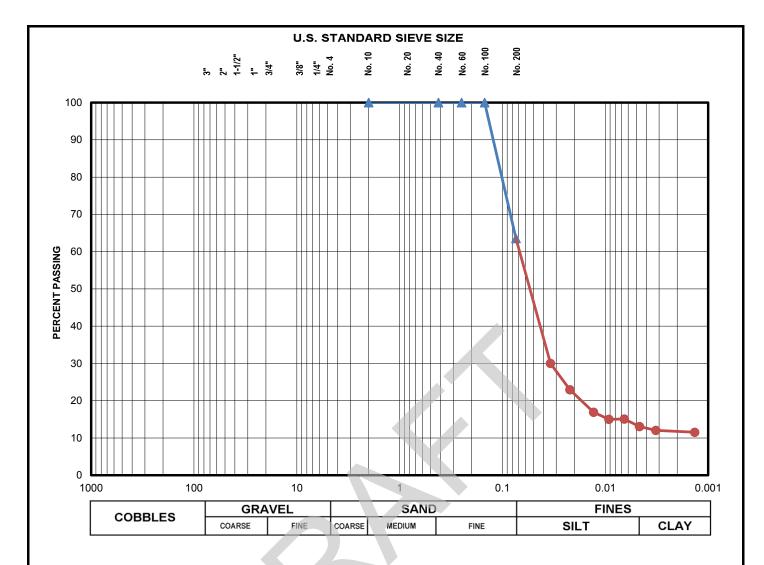
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/18/2013
Project No.	18274-001-00	Tested By	SEF/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	66 - 68		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Medium gray clay (CL4)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	99.6

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1354


^{*}assumed unless noted

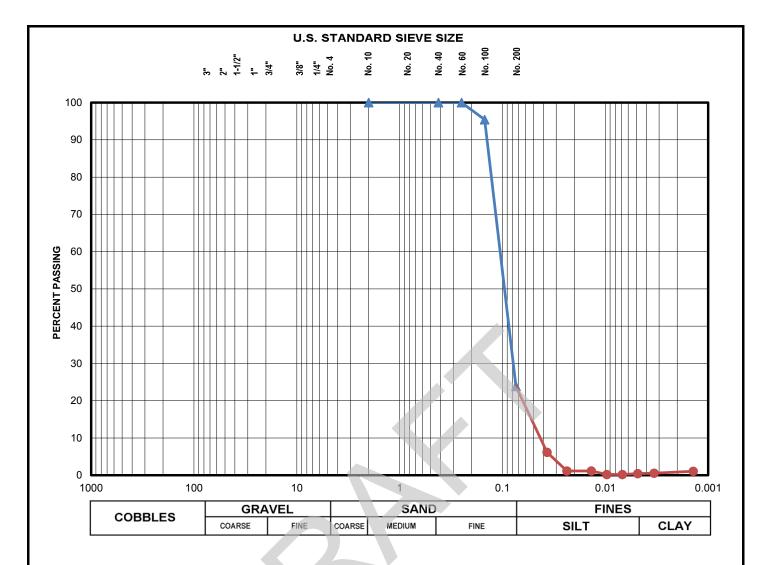
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/19/2013
Project No.	18274-001-00	Tested By	AB/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	70 - 72		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Firm gray sandy	silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	63.6


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1163

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/19/2013
Project No.	18274-001-00	Tested By	AB/TRC
Sample ID.	PT-2	Checked By	SLC
Source/Depth (feet)	74 - 76		

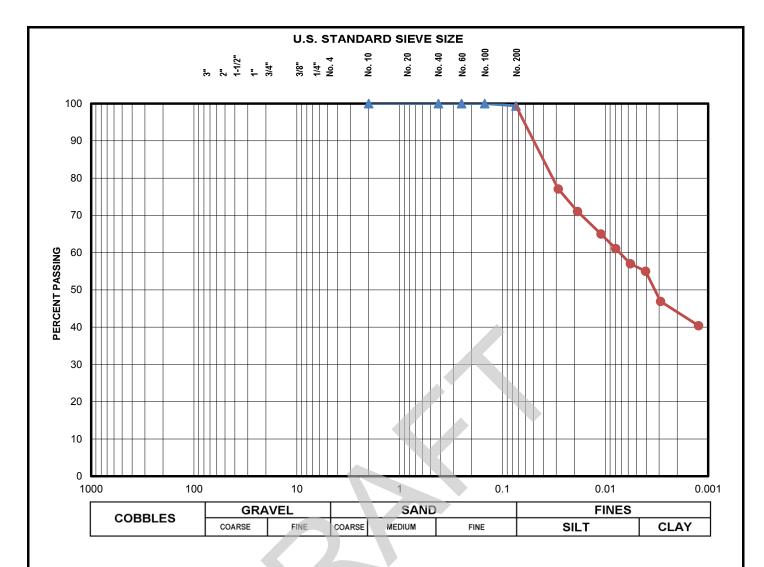
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	ledium dense g	gray silty fine sand (SM)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	95.4
1/4"	100.0	No. 200	23.8

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1353

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/12/2013
Project No.	18274-001-00	Tested By	bh
Sample ID.	PZ-1	Checked By	sc
Source/Depth (feet)	13 - 15		

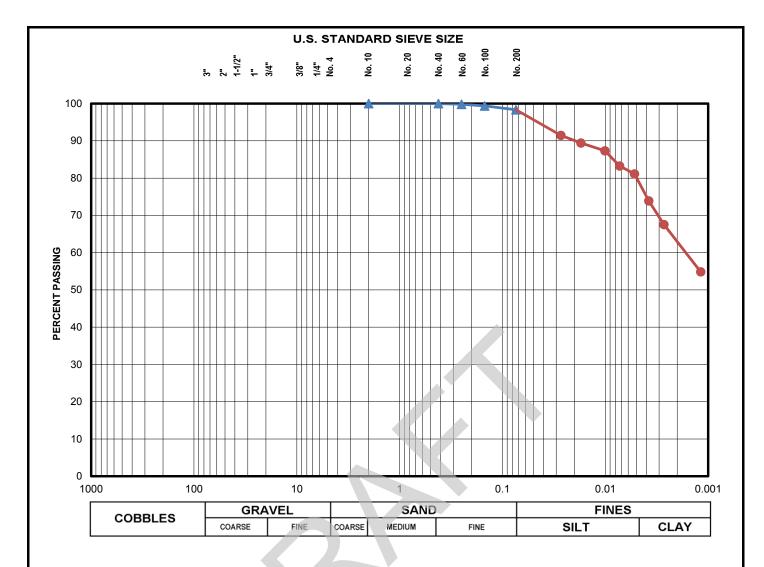
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

Description (D 2488)	Soft gray clay (CL4)	

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	99.4


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	199361
Hydro jar ID:	1154

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-1	Checked By	sc
Source/Depth (feet)	18 - 20		

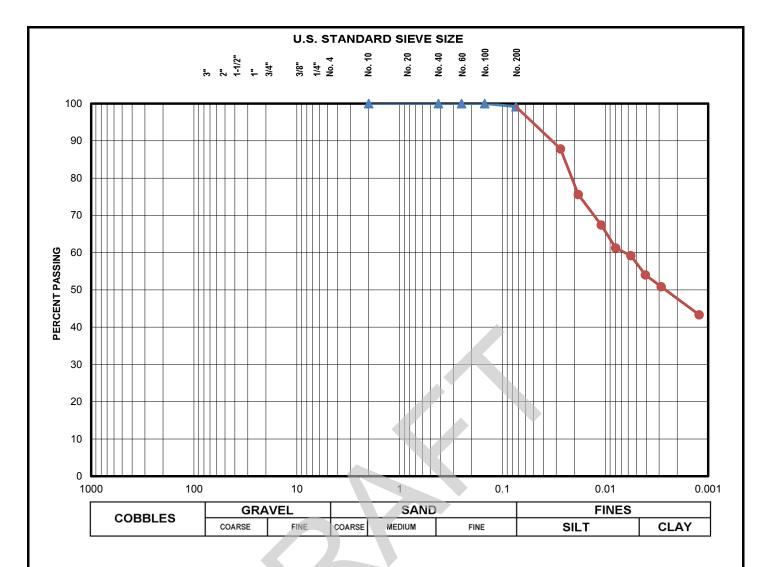
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Soft gray clay w	rith peat and trace sand (CL6)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	99.8
3/8"	100.0	No. 100	99.4
1/4"	100.0	No. 200	98.3

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1357

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-1	Checked By	sc
Source/Depth (feet)	23 - 25		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

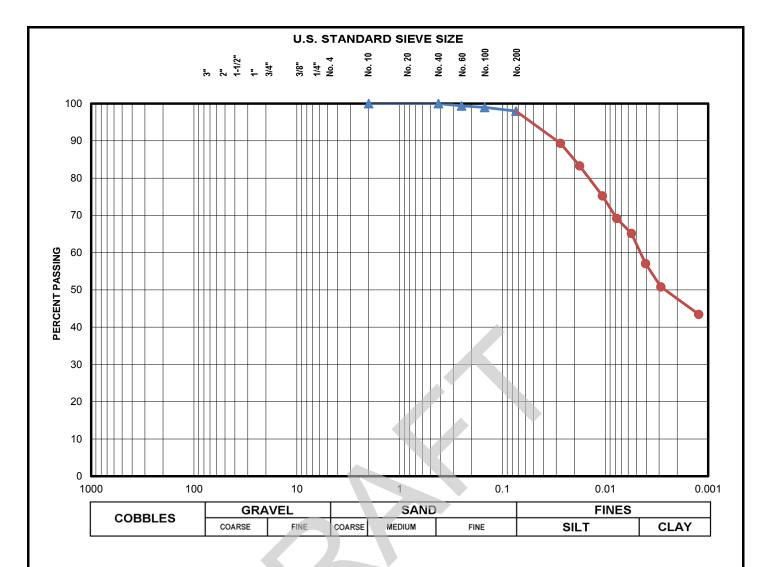
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

Description (D 2488)	Medium dark gra	y clay with silt lenses (CL4)

Individual Sieve Data - % Passing							
3"	100.0	No. 4	100.0				
2"	100.0	No. 10	100.0				
1 1/2"	100.0	No. 20	100.0				
1"	100.0	No. 40	100.0				
3/4"	100.0	No. 60	100.0				
3/8"	100.0	No. 100	100.0				
1/4"	100.0	No. 200	99.2				

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	0

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/4/2013
Project No.	18274-001-00	Tested By	bh
Sample ID.	PZ-1	Checked By	sc
Source/Depth (feet)	33 - 35		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

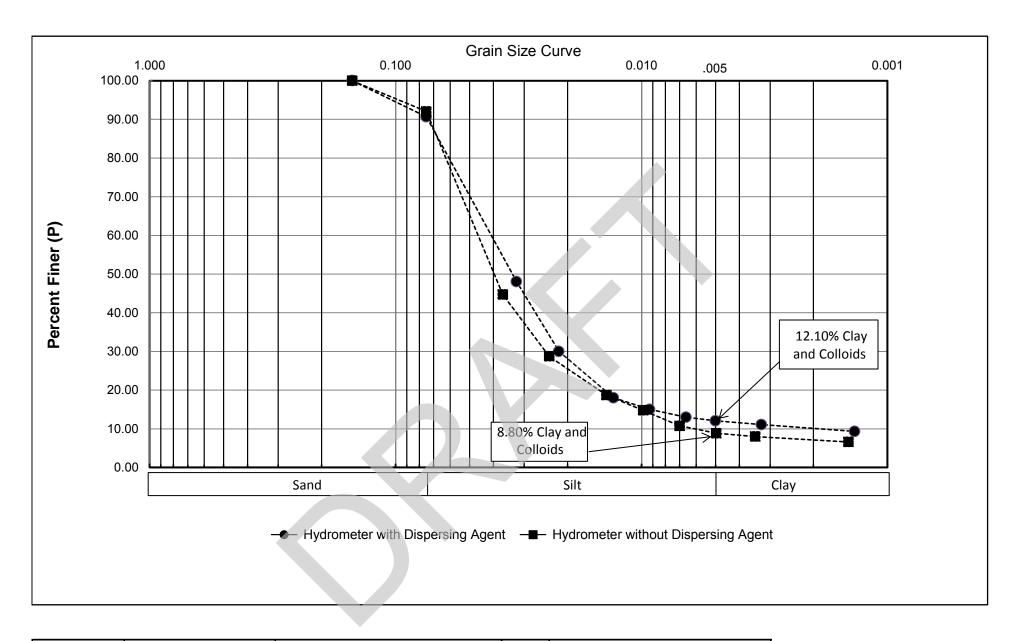
CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential W8274-004-00

Description (D 2488)	Very soft gray clay	CL4)

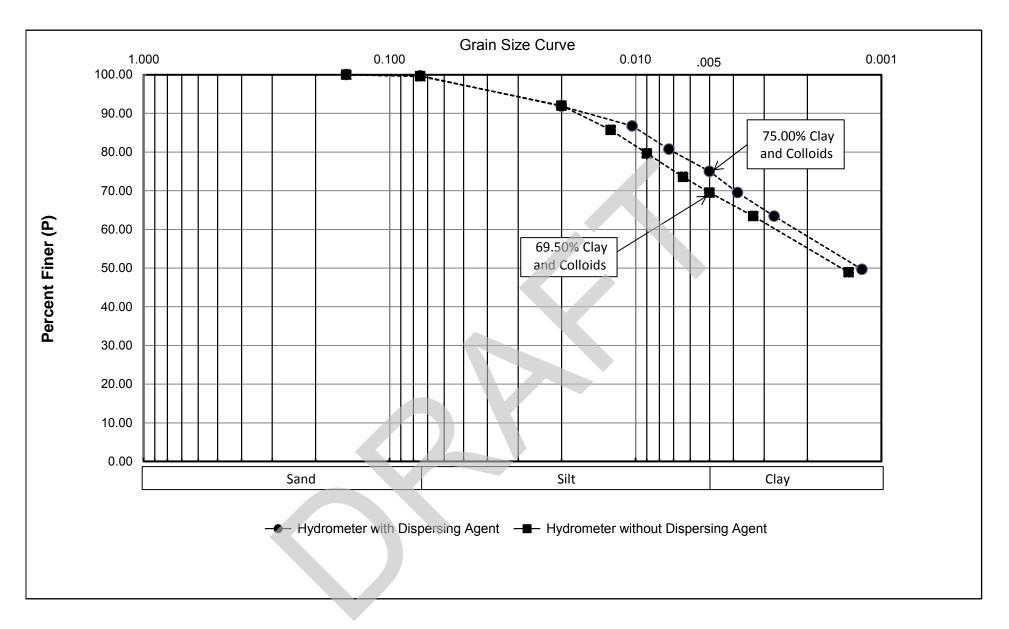
Individual Sieve Data - % Passing						
3"	100.0	No. 4	100.0			
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	99.4			
3/8"	100.0	No. 100	99.0			
1/4"	100.0	No. 200	98.0			

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	54355
Hydro jar ID:	1353

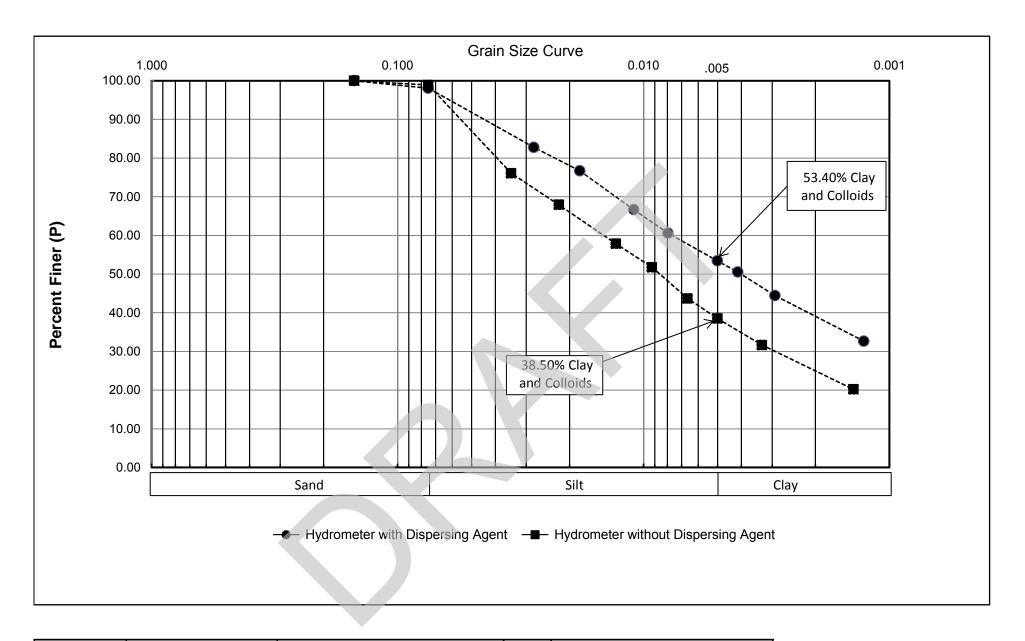

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-1-S4A	Checked By	sc
Source/Depth (feet)	13 - 15		

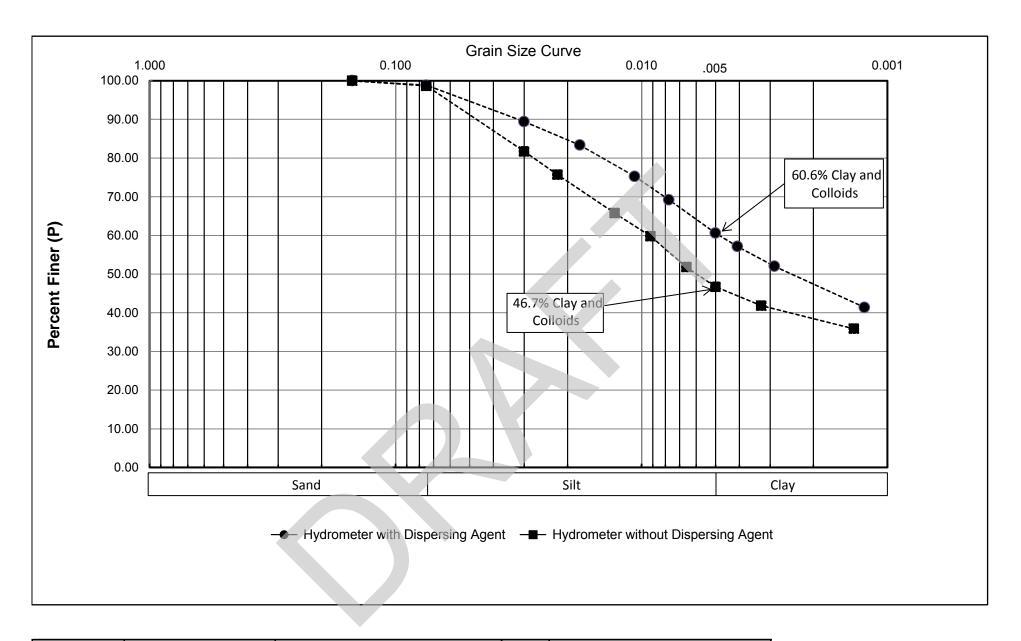
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS


ASTM D4221 - 11 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer

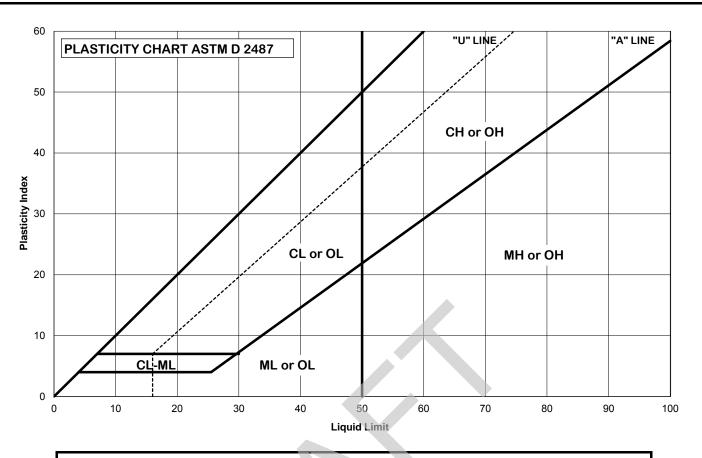
Project Name.	Mid Brataria Div. (BA-152)	Hydrometer with Dispersing Agent			Hydrometer without Disper	sing Agent
Project No	18274-001-00	% Retained Number 40 0			% Retained Number 40	0
Sample Id.	PZ-1 (S-7)	% Retained Number 60	0		% Retained Number 60	0
Depth	28-30	% Retained Number 100	0		% Retained Number 100	0
Date	9-10-13	% Retained Number 200	9.30		% Retained Number 200	7.9
Туре	Grain Size Analysis	% Sand (Total)	9.30		% Sand (Total)	7.9
Material	M de gr sa si w/cl (ML)	% Silt	78.60		% Silt	83.30
Additive:	NA	% Clay and Colloids	12.10		% Clay and Colloids	8.80


GeoEngineers, Inc.

ASTM D4221 - 11 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer


Project Name.	Mid Brataria Div. (BA-152)	Hydrometer with Dispersing Agent			Hydrometer without Disper	rsing Agent
Project No	18274-001-00	% Retained Number 40 0			% Retained Number 40	0
Sample Id.	PZ-2 (S-8)	% Retained Number 60	0		% Retained Number 60	0
Depth	33-35	% Retained Number 100	0		% Retained Number 100	0
Date	9-10-13	% Retained Number 200	.30		% Retained Number 200	.40
Туре	Grain Size Analysis	% Sand (Total)	.30		% Sand (Total)	.40
Material	So gr cl (CH4)	% Silt	24.70		% Silt	30.10
Additive:	NA	% Clay and Colloids	75.00		% Clay and Colloids	69.50

ASTM D4221 - 11 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer



Project Name.	Mid Brataria Div. (BA-152)	Hydrometer with Dispersing Agent		Hydrometer without Disper	sing Agent		
Project No	18274-001-00	% Retained Number 40	0	% Retained Number 40	0		
Sample Id.	PZ-4 (S-3)	% Retained Number 60	0	% Retained Number 60	0		
Depth	8-10	% Retained Number 100	0	% Retained Number 100	0		
Date	9-10-13	% Retained Number 200	1.90	% Retained Number 200	1.10	%D=-	% Clay without Dispersant X 100
Туре	Grain Size Analysis	% Sand (Total)	1.90	% Sand (Total)	1.10	/00_	% Clay with Dispersant
Material	V so gr cl (CL6)	% Silt	44.70	% Silt	60.40	%D=	38.5%/53.4%X100
Additive:	NA	% Clay and Colloids	53.40	% Clay and Colloids	38.50	%D=	72.1 Percent

ASTM D4221 - 11 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer

Project Name.	Mid Brataria Div. (BA-152)	Hydrometer with Dispersing Agent		Hydrometer without Disper	rsing Agent		
Project No	18274-001-00	% Retained Number 40	0	% Retained Number 40	0		
Sample Id.	PZ-5 (S-5A)	% Retained Number 60	0	% Retained Number 60	0		
Depth	18-20	% Retained Number 100	0	% Retained Number 100	0		
Date	9-10-13	% Retained Number 200	1.20	% Retained Number 200	1.30	%D-	% Clay without Dispersant X 100
Туре	Grain Size Analysis	% Sand (Total)	1.20	% Sand (Total)	1.30	/00_	% Clay with Dispersant
Material	V so gr cl (CH4)	% Silt	38.20	% Silt	52.00	%D=	46.7%/60.6%X100
Additive:	NA	% Clay and Colloids	60.60	% Clay and Colloids	46.70	%D=	77.1 Percent

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-0</mark> 01	18274-001-00				
Boring No.	PZ-6	PZ-6			Natural WC:	#DIV/0!
Depth, ft.	13 - 15	13 - 15			Preparation:	Wet (as-received)
Cup No.	<mark>1356</mark>	1356			No. Points:	
Percent Retained on No. 40		0		Estimated or	Tested	0.0
Original sample de	Soft gray clay (CH4)					

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 92
Plastic Limit = 28
Plasticity Index = 64

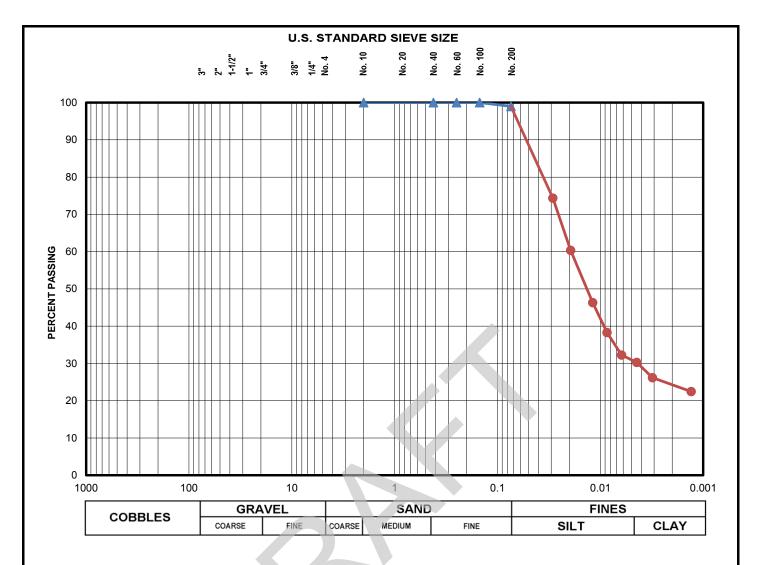
 Date:
 10/15/2013

 Tested By:
 SLC

 Checked By:
 SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

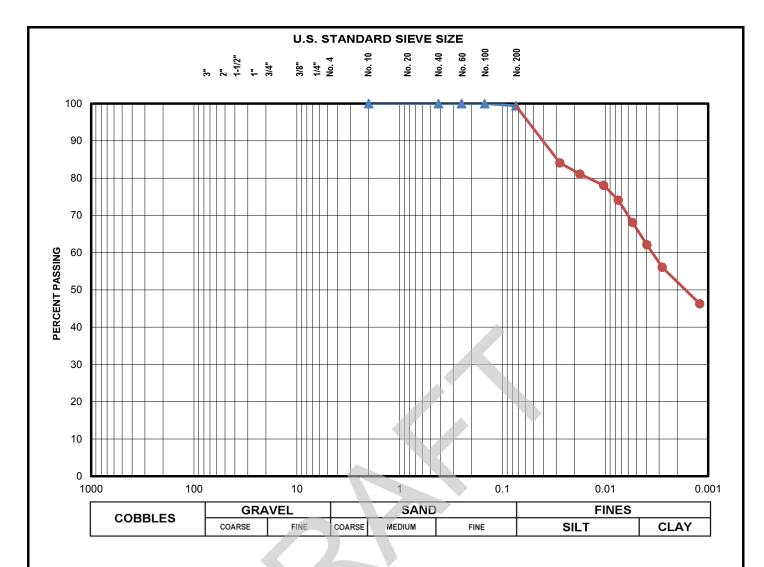
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

Description (D 2488)	Medium dense	gray clayey silt with sand pockets (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	99.0	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1163

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-6-S7C	Checked By	sc
Source/Depth (feet)	28 - 30		

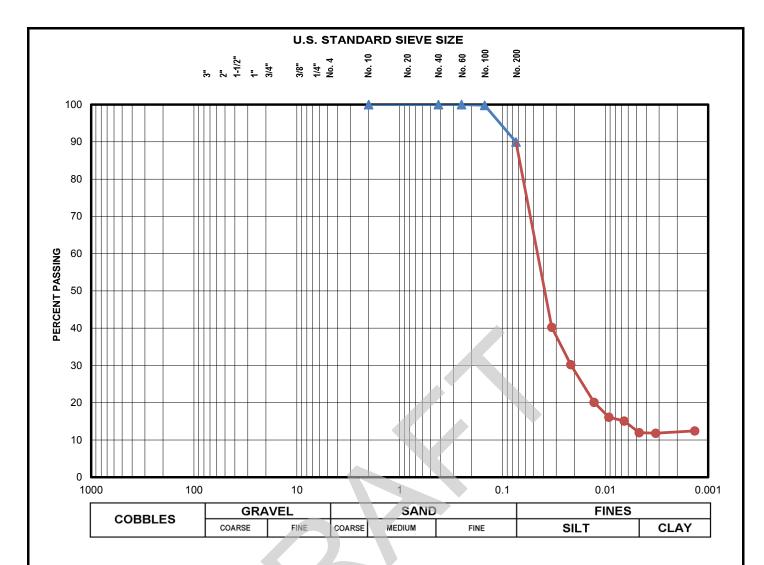
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential **W8274-004**-00

Description (D 2488)	Very soft gray clay	CL4)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	99.4	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1143
Hydro jar ID:	1158

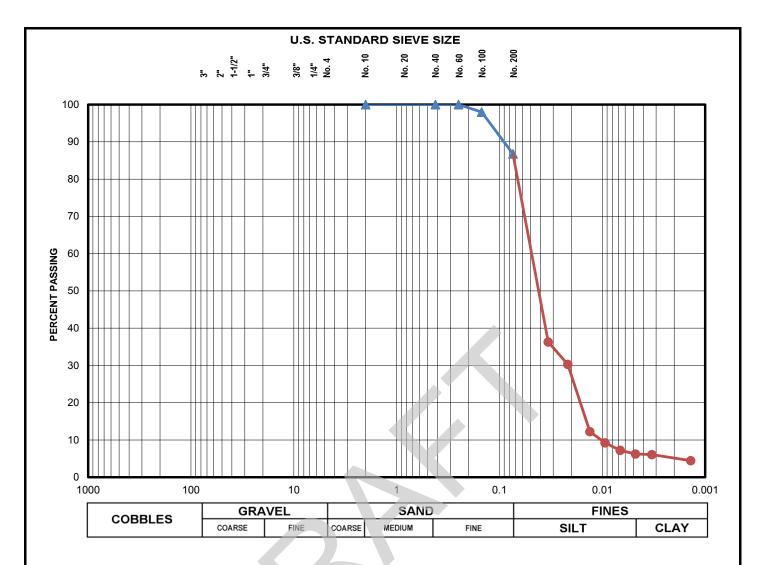
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-6	Checked By	sc
Source/Depth (feet)	18 - 20		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	fedium dense g	gray clayey silt with sand (ML)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	99.8	
1/4"	100.0	No. 200	90.0	


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1150

^{*}assumed unless noted

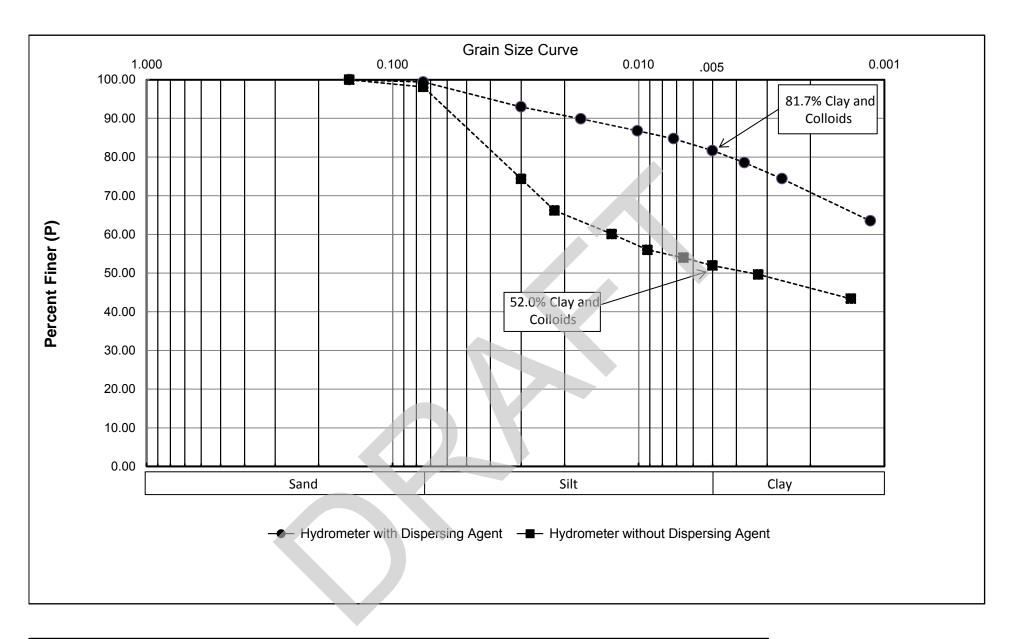
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-6	Checked By	sc
Source/Depth (feet)	28 - 30		<u> </u>

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

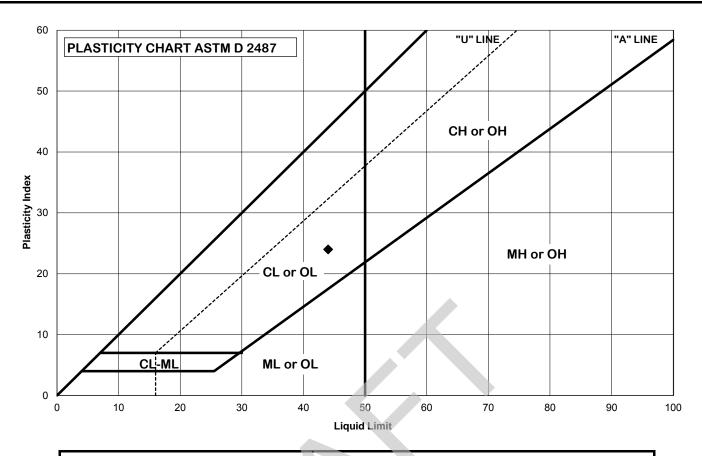
Description (D 2488) Me	dium dense g	gray sandy silt with clay (ML)

Individual Sieve Data - % Passing						
3"	100.0	No. 4	100.0			
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	100.0			
3/8"	100.0	No. 100	98.0			
1/4"	100.0	No. 200	86.8			

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1354


^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/9/2013
Project No.	18274-001-00	Tested By	bh/lc
Sample ID.	PZ-6	Checked By	sc
Source/Depth (feet)	33 - 35		



ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

ASTM D4221 - 11 Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer

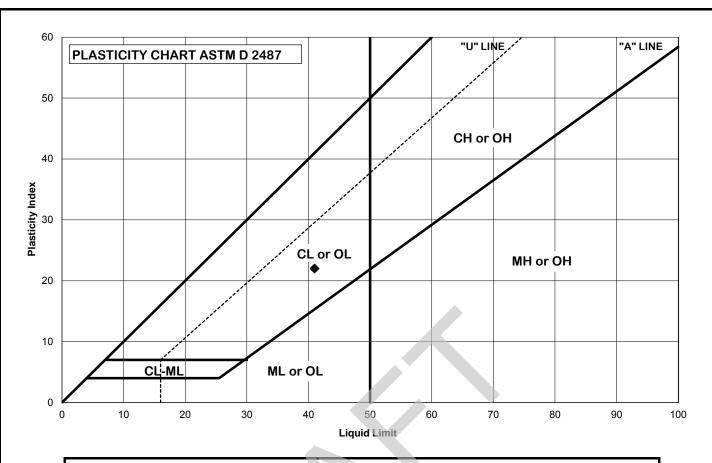
Project Name.	Mid Brataria Div. (BA-152)	Hydrometer with Dispersing Agent		Hydrometer without Dispersing Agent			
Project No	18274-001-00	% Retained Number 40	0	% Retained Number 40	0		
Sample Id.	PZ-6 (S-6)	% Retained Number 60	0	% Retained Number 60	0		
Depth	23-25	% Retained Number 100	0	% Retained Number 100	0		
Date	9-10-13	% Retained Number 200	.60	% Retained Number 200	1.90	%D	% Clay without Dispersant X 100
Type	Grain Size Analysis	% Sand (Total)	.60	% Sand (Total)	1.90	/00_	% Clay with Dispersant
Material	V so gr cl w/ o (CH4)	% Silt	17.70	% Silt	46.10	%D=	52.0%/81.7%X100
Additive:	NA	% Clay and Colloids	81.70	% Clay and Colloids	52.00	%D=	63.6 Percent

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	18274-00	18274-001-00							
Boring No.	PZ-7				Natural WC:	#DIV/0!			
Depth, ft.	0 - 2				Preparation:	Wet (as-received)			
Cup No.	<mark>1356</mark>		Y						
Percent Retained of	Retained on No. 40 Estimated			Estimated or	Tested	0.0			
Original sample description: Medium brown clay with organic matter (CL6)									

Classification	Liquid Limit =	44	Date:	,
(fraction passing No. 40 sieve)	Plastic Limit =	20	Tested By:	
CL	Plasticity Index =	24	Checked By:	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

0/18/2013 SLC SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

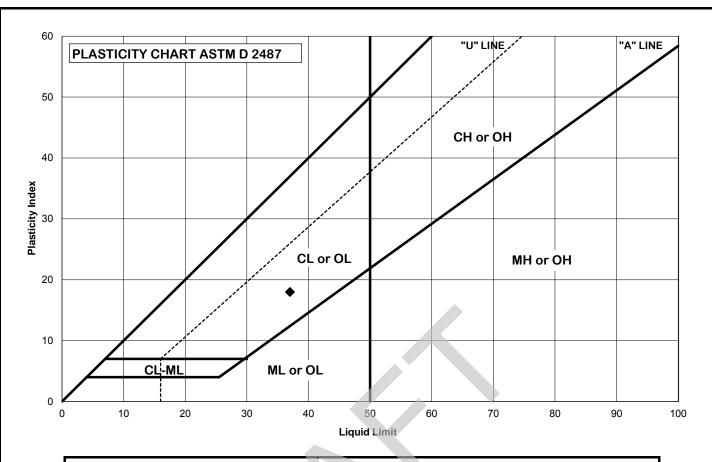
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00°	18274-001-00						
Boring No.	PZ-7				Natural WC:	#DIV/0!		
Depth, ft.	3 - 5				Preparation:	Wet (as-received)		
Cup No.	1356							
Percent Retained on No. 40				Estimated or	Tested	0.0		
Original sample description: Medium brown clay with organic matter and silt (CL4)								

Classification 10/18/2013 Liquid Limit = Date: 41 (fraction passing No. 40 Plastic Limit = 19 Tested By: sieve) CL 22 Checked By: Plasticity Index =

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section


ATTERBERG LIMITS - ASTM D4318

SLC

SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	18274-00 ⁻	18274-001-00							
Boring No.	PZ-7				Natural WC:	#DIV/0!			
Depth, ft.	8 - 10				Preparation:	Wet (as-received)			
Cup No.	1028				No. Points:				
Percent Retained	0		Estimated or Tested		0.0				
Original sample description: Soft gray clay with organic matter and sand (CL4)									

Classification
(fraction passing No. 40 sieve)

Liquid Limit = 37
Plastic Limit = 19
Plasticity Index = 18

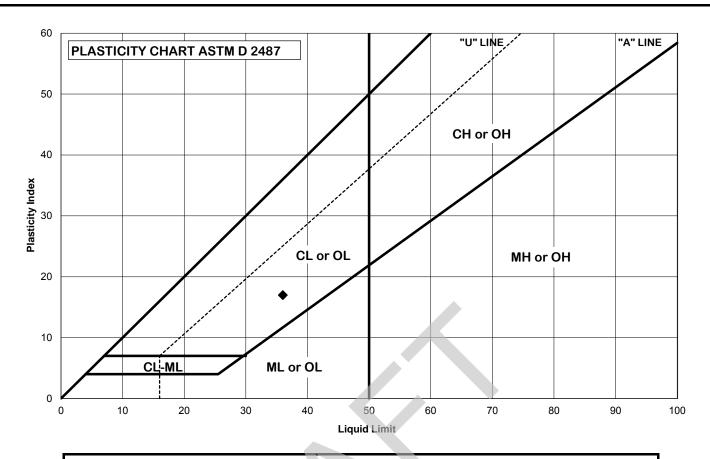
 Date:
 10/18/2013

 Tested By:
 SC

 Checked By:
 SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00 ⁻²	18274-001-00						
Boring No.	PZ-7a				Natural WC:	#DIV/0!		
Depth, ft.	13 - 15				Preparation:	Wet (as-received)		
Cup No.	<mark>1077</mark>	77						
Percent Retained	0		Estimated or	Tested	0.0			
Original sample description: Soft gray clay (CL4)								

Classification (fraction passing No. 40 sieve) Liquid Limit = 36

Plastic Limit = 19

Plasticity Index = 17

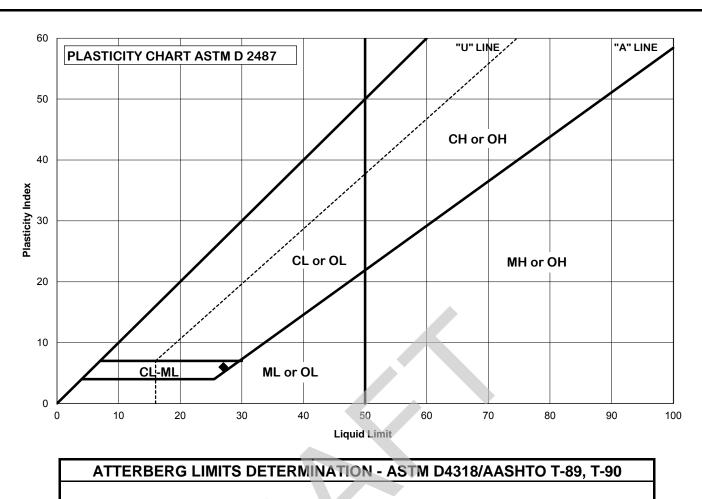
 Date:
 10/18/2013

 Tested By:
 GOM

 Checked By:
 SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

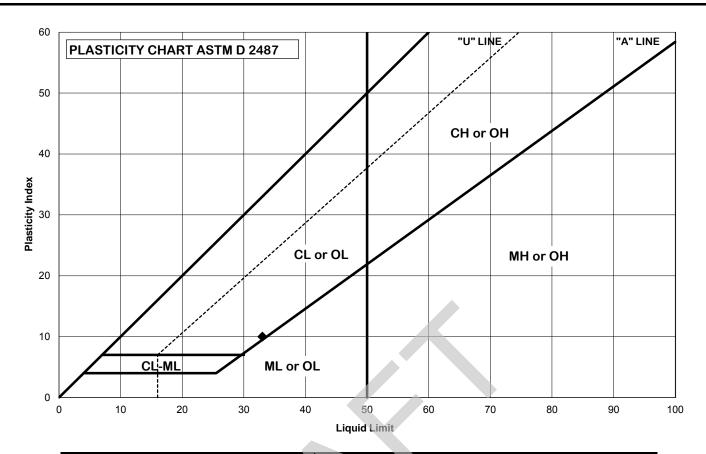
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	PZ-7b				Natural WC:	#DIV/0!			
Depth, ft.	13 - 15				Preparation:	Wet (as-received)			
Cup No.	1029								
Percent Retained on No. 40		0		Estimated or	Tested	0.0			
Original sample description: Firm gray clayey silt with silt (ML)									

	Classification	Liquid Limit =	27	Date:	10/18/2013
	(fraction passing No. 40 sieve)	Plastic Limit =	21	Tested By:	MSM
	CL-ML	Plasticity Index =	6	Checked By:	SLC
,		·			-

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

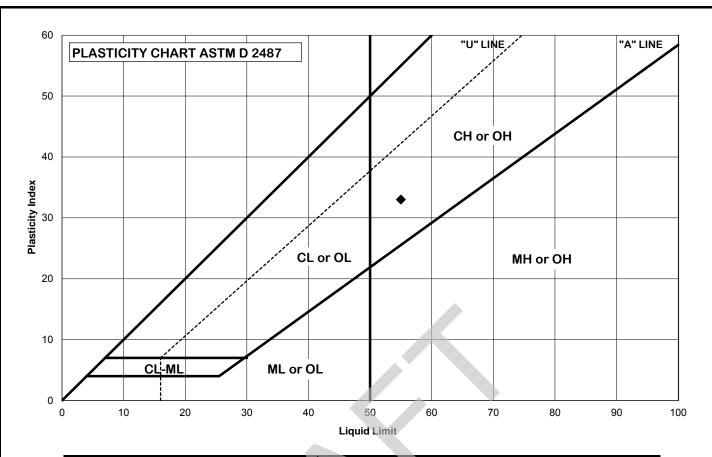
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	PZ-7				Natural WC:	#DIV/0!		
Depth, ft.	18 - 20				Preparation:	Wet (as-received)		
Cup No.	<mark>1356</mark>				No. Points:			
Percent Retained on No. 40		0		Estimated or	Tested	0.0		
Original sample d	Very soft gray	Very soft gray clay (CL4)						

Classification (fraction passing No. 40	Liquid Limit =	33	Date:
sieve)	Plastic Limit =	23	Tested By:
CL	Plasticity Index =	10	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/18/2013 SLC SLC

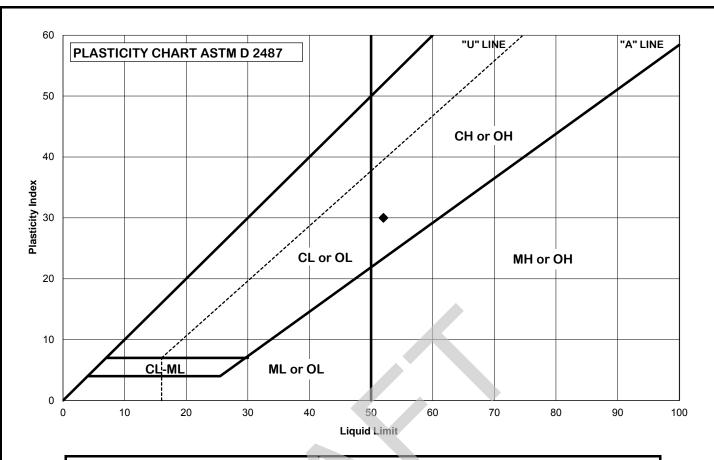
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	PZ-7				Natural WC:	#DIV/0!			
Depth, ft.	23 - 25				Preparation:	Wet (as-received)			
Cup No.	1356				No. Points:				
Percent Retained on No. 40		0		Estimated or	Tested	0.0			
Original sample d	Medium gra	Medium gray clay with 1" firm silty sand (CH3)							

		· · · · · · · · · · · · · · · · · · ·		_	
	Classification	Liquid Limit =	55	Date:	10/18/2013
	(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:	SLC
	СН	Plasticity Index =	33	Checked By:	SLC
,		•		•	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERB	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	_A CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-</mark> 00	18274-001-00							
Boring No.	PZ-8				Natural WC:	#DIV/0!			
Depth, ft.	0 - 2				Preparation:	Wet (as-received)			
Cup No.	1356				No. Points:				
Percent Retained on No. 40		0	0 Estimated or Tested		0.0				
Original sample de	Stiff brown c	Stiff brown clay with sand (CH2)							

22

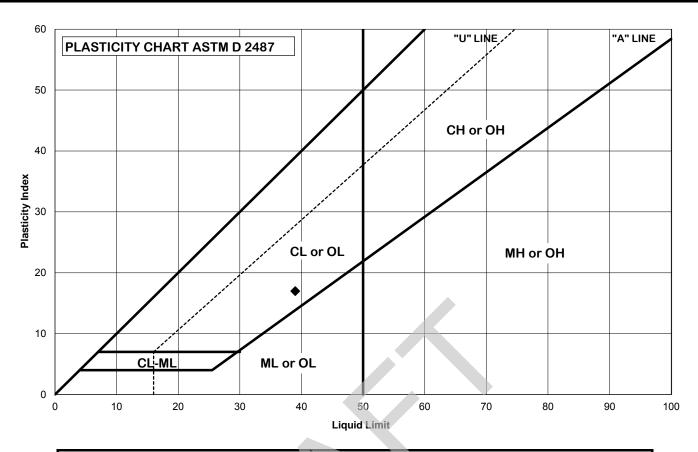
30

Classification Liquid Limit = **52** (fraction passing No. 40 Plastic Limit = sieve) CH Plasticity Index =

10/18/2013 Date: Tested By: SLC SLC Checked By:

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

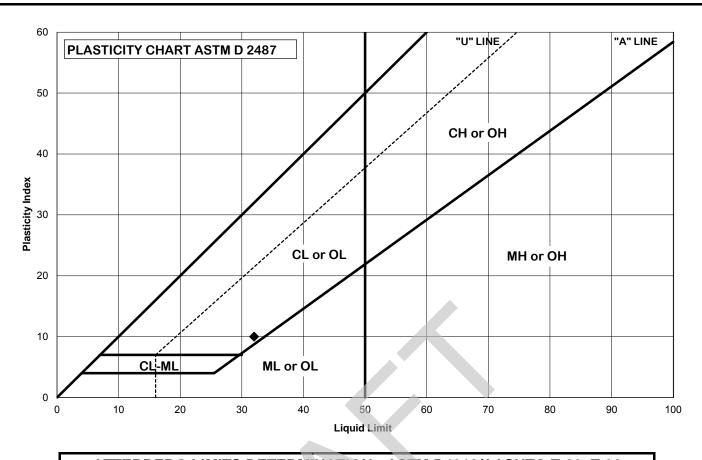
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	PZ-8				Natural WC:	#DIV/0!			
Depth, ft.	3 - 5				Preparation:	Wet (as-received)			
Cup No.	1355				No. Points:				
Percent Retained on No. 40		0		Estimated	or Tested	0.0			
Original sample description:		Brown an	Brown and gray clay (CL4)						

Classification	Liquid Limit =	39	Date:
(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:
CL	Plasticity Index =	17	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/18/2013 BH SLC

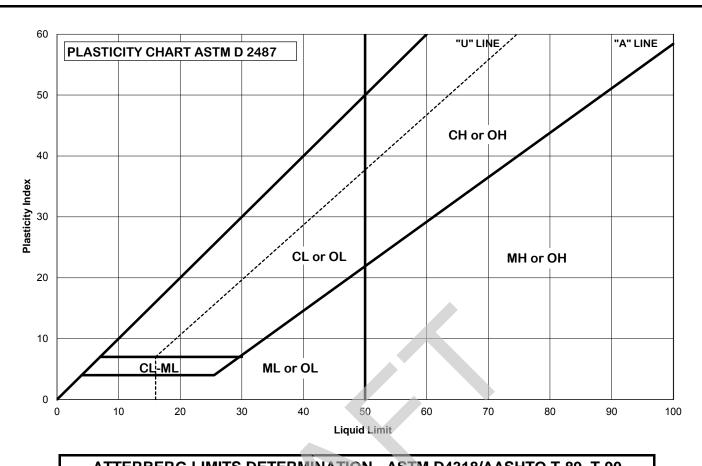
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-0</mark> 0	18274-001-00							
Boring No.	PZ-8				Natural WC:	#DIV/0!			
Depth, ft.	13 - 15				Preparation:	Wet (as-received)			
Cup No.	<mark>1028</mark>				No. Points:				
Percent Retained on No. 40		0		Estimated or	Tested	0.0			
Original sample d	Brown and g	Brown and gray clayey silt (ML)							

_			_	
Classification	Liquid Limit =	32	Date:	10/18/2013
(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:	SC
CL	Plasticity Index =	10	Checked By:	SLC
	•		•	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

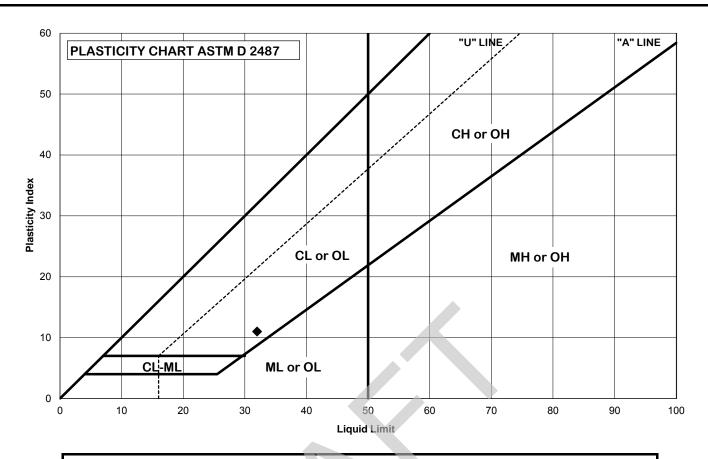
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
					<u> </u>			
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00	18274-001-00						
Boring No.	PZ-8				Natural WC:	#DIV/0!		
Depth, ft.	18 - 20		·		Preparation:	Wet (as-received)		
Cup No.	<mark>1355</mark>				No. Points:			
Percent Retained on No. 40		0		Estimat	ed or Tested	0.0		
Original sample d	Loose br	Loose brown and gray sandy silt with clay (ML)						

_			_	
Classification (fraction passing No. 40	Liquid Limit =	44	Date:	10/18/2013
sieve)	Plastic Limit =	20	Tested By:	ВН
CL	Plasticity Index =	24	Checked By:	SLC
	•		•	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

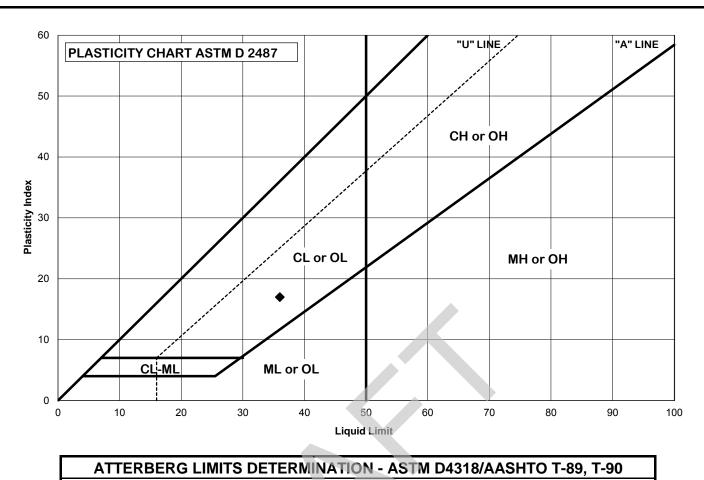
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	18274-00°	18274-001-00					
Boring No.	PZ-8	PZ-8			Natural WC:	#DIV/0!	
Depth, ft.	23 - 25	23 - 25			Preparation:	Wet (as-received)	
Cup No.	1355	1355			No. Points:		
Percent Retained on No. 40		0	Estimated or Tested 0.0		0.0		
Original sample d	Driginal sample description: Loose brown and gray sandy silt with clay (ML)						

Classification 10/18/2013 Liquid Limit = Date: 32 (fraction passing No. 40 Plastic Limit = 21 Tested By: sieve) CL 11 Checked By: Plasticity Index =

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section


ATTERBERG LIMITS - ASTM D4318

BH

SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

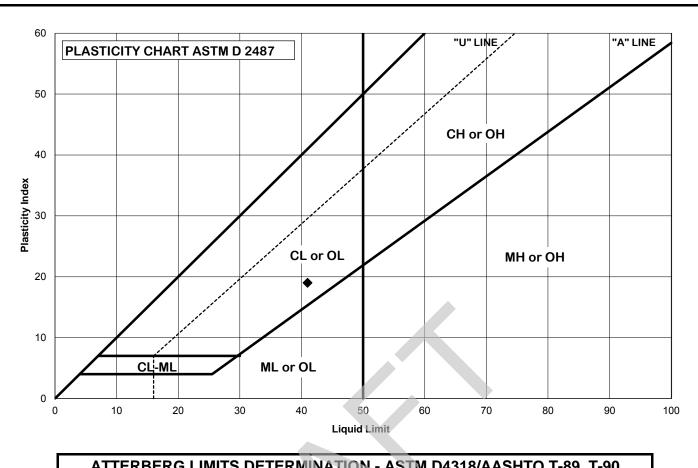
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
			ΔV				
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-0</mark> 0	18274-001-00					
Boring No.	PZ-8 SA	PZ-8 SA			Natural WC:	#DIV/0!	
Depth, ft.	8 - 10	8 - 10			Preparation:	Wet (as-received)	
Cup No.	1029	1029			No. Points:		
Percent Retained on No. 40		0		Estimated or	Tested	0.0	
Original sample description:		Brown and gray clay (CL4)					

Classification	Liquid Limit =	36	Date:	,
(fraction passing No. 40 sieve)	Plastic Limit =	19	Tested By:	
CL	Plasticity Index =	17	Checked By:	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

0/18/2013 MSM SLC

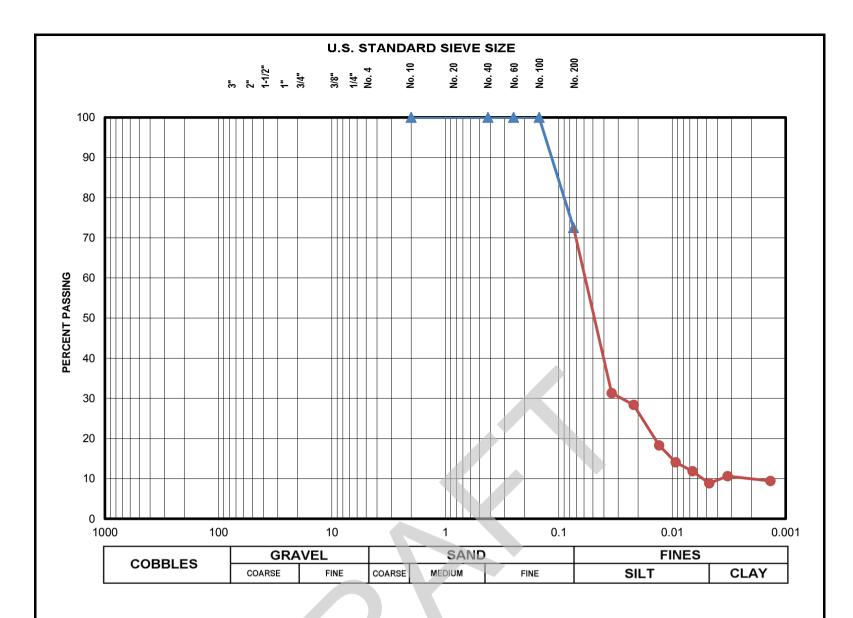
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-0</mark> 0	18274-001-00				
Boring No.	PZ-8 SB	PZ-8 SB			Natural WC:	#DIV/0!
Depth, ft.	8 - 10	8 - 10			Preparation:	Wet (as-received)
Cup No.	1355	1355			No. Points:	
Percent Retained on No. 40		0		Estimated or	Tested	0.0
Original sample description:		Brown and gray clayey silt (ML)				

_	*	_	_	
Classification (fraction passing No. 40	Liquid Limit =	41	Date:	10/18/2013
sieve)	Plastic Limit =	22	Tested By:	ВН
CL	Plasticity Index =	19	Checked By:	SLC
	·		<u>-</u>	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

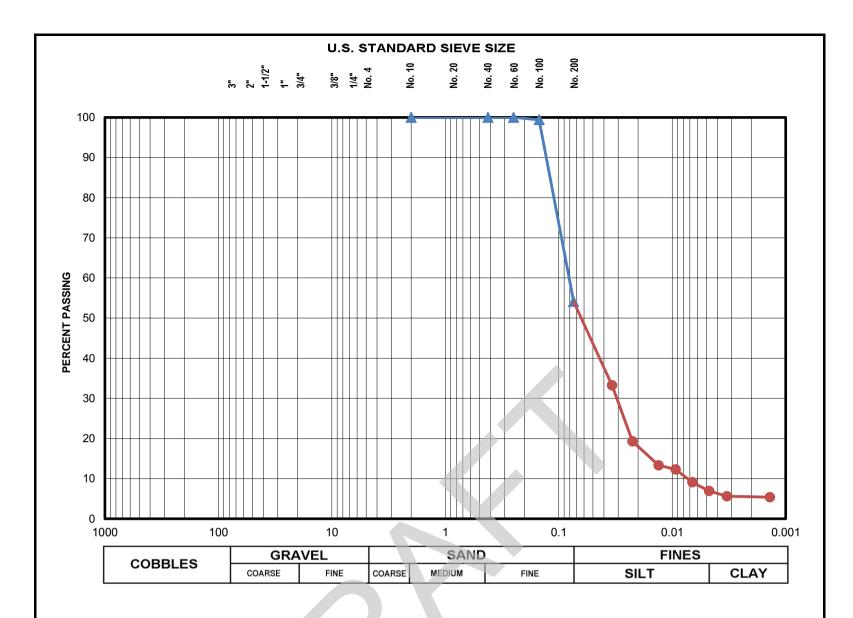
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

Description (D 2488) Firm gray clayey sandy silt (ML)

In	Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0		
2"	100.0	No. 10	100.0		
1 1/2"	100.0	No. 20	100.0		
1"	100.0	No. 40	100.0		
3/4"	100.0	No. 60	100.0		
3/8"	100.0	No. 100	100.0		
1/4"	100.0	No. 200	72.5		

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1156

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8 SA	Checked By	SLC
Source/Depth (feet)	28 - 30		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

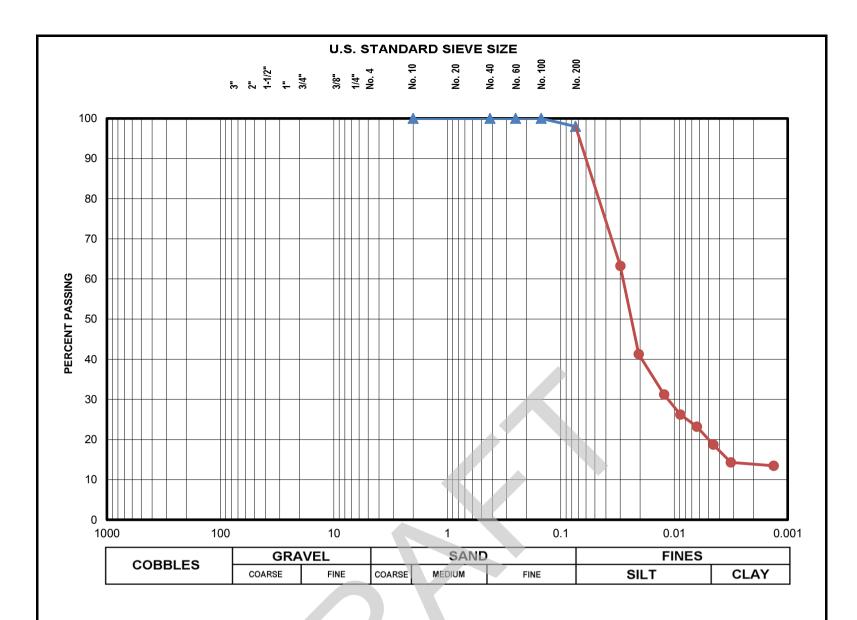
18274-001-00

Description (D 2488)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	99.4	
1/4"	100.0	No. 200	54.1	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1156

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/22/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-8 SA	Checked By	SLC
Source/Depth (feet)	53 - 55		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

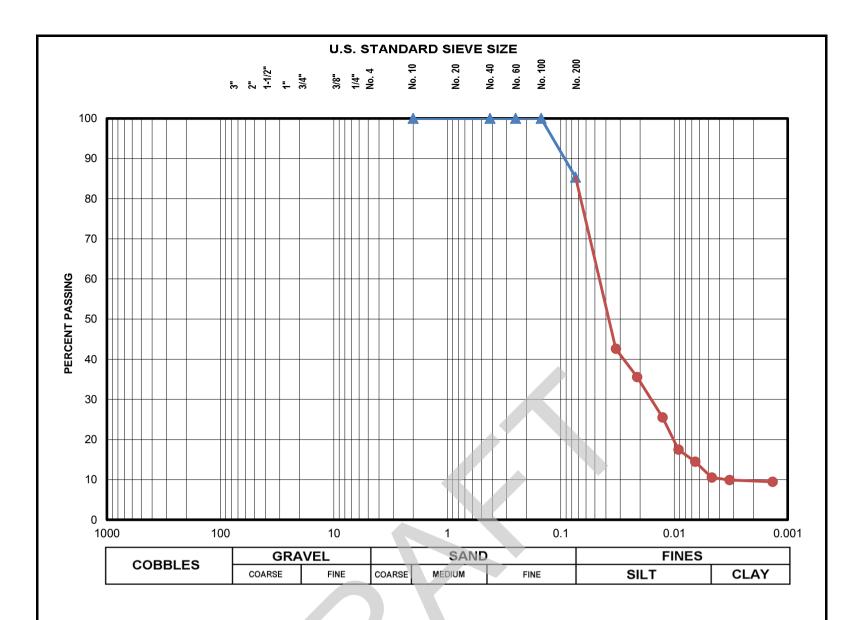
18274-001-00

Description (D 2488)	Brown and gray clayey silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	98.0

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1150

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/22/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-8 SB	Checked By	SLC
Source/Depth (feet)	8 - 10		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

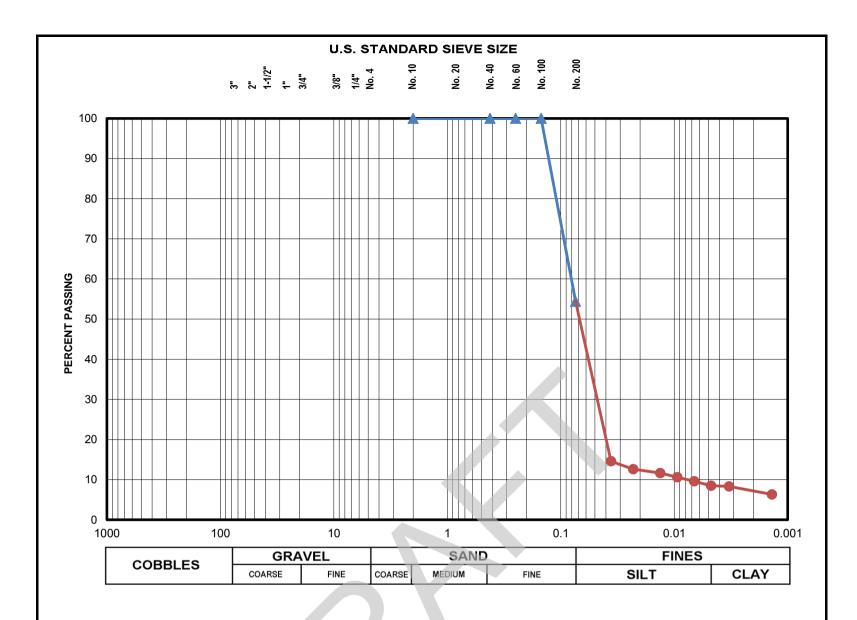
18274-001-00

Description (D 2488)	Loose gray clayey sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	85.3

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1136
Hydro jar ID:	1157

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8 SB	Checked By	SLC
Source/Depth (feet)	28 - 30		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

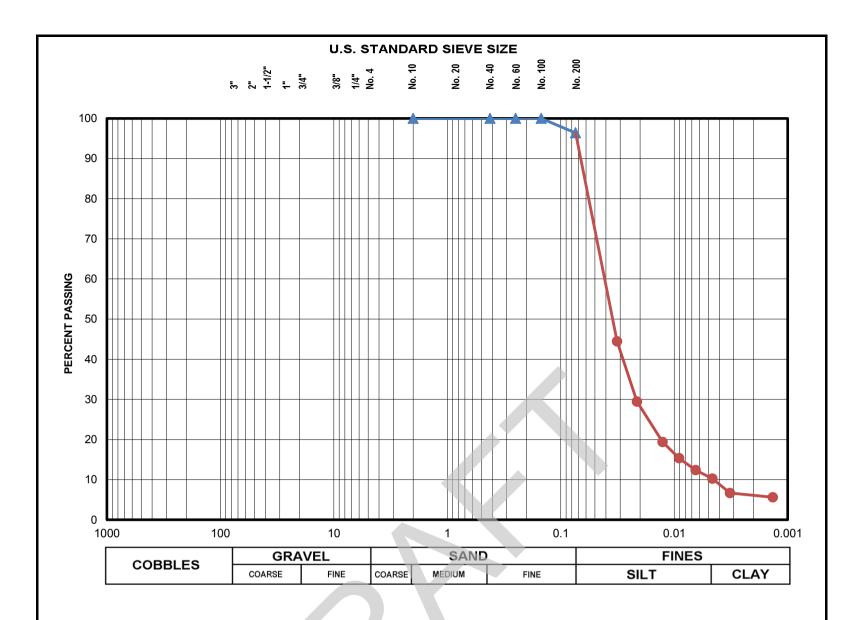
18274-001-00

Description (D 2488) Firm gray sandy silt with	clay (ML)
--	-----------

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	54.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1353

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8 SB	Checked By	SLC
Source/Depth (feet)	43 - 45		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

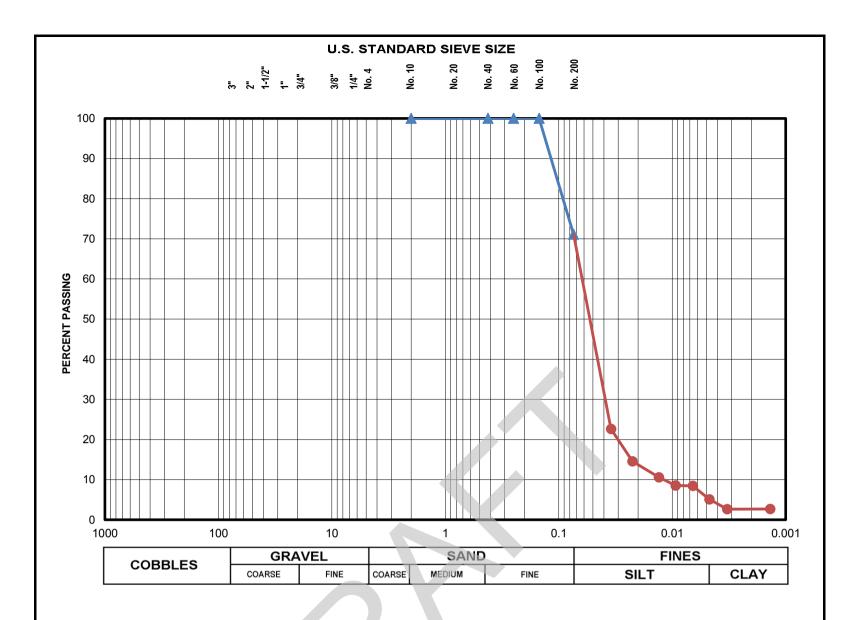
18274-001-00

Description (D 2488)	Brown and gray clayey silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	96.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1154

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/22/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-8	Checked By	SLC
Source/Depth (feet)	13 - 15		•

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

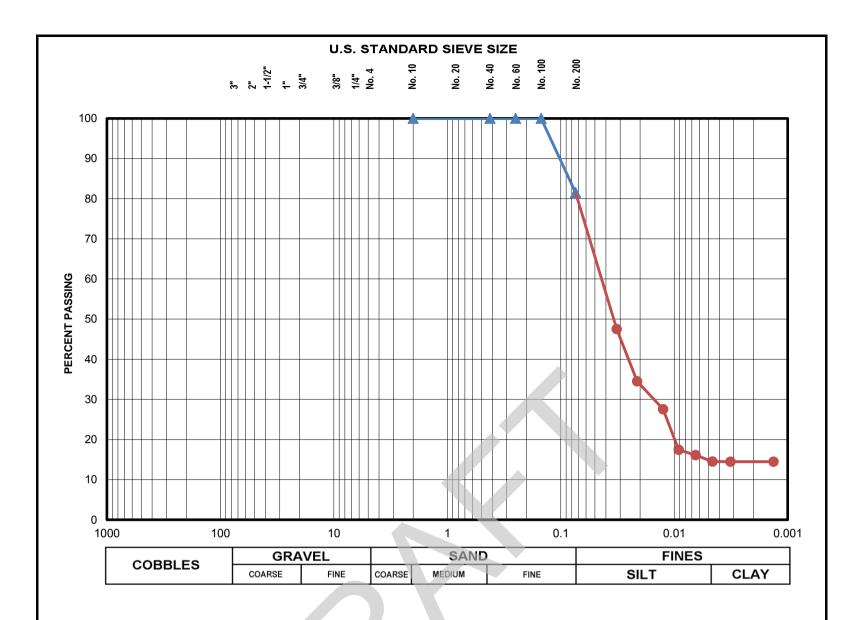
18274-001-00

Description (D 2488)	Loose brown and gray sandy silt with clay (ML)
----------------------	--

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	71.1

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1150

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8	Checked By	SLC
Source/Depth (feet)	18 - 20		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

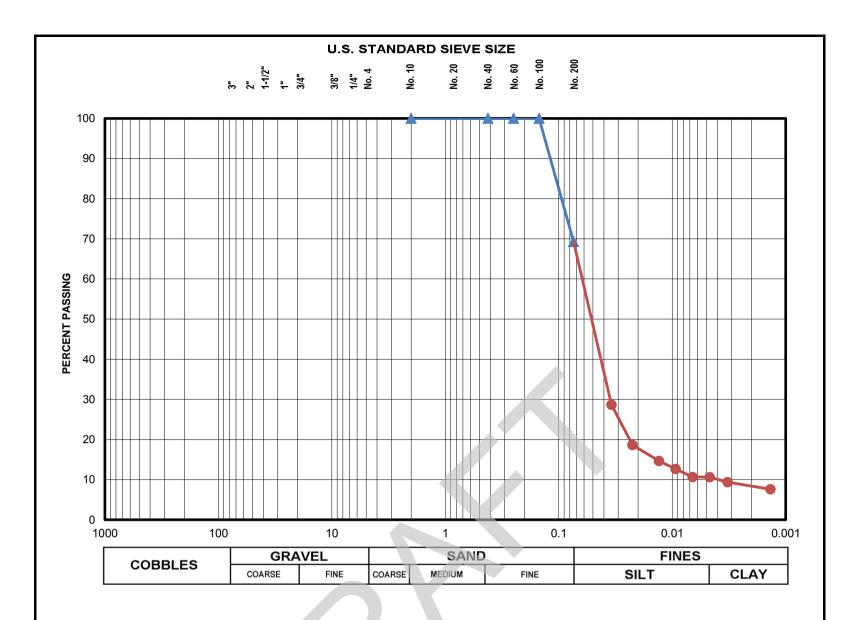
18274-001-00

Description (D 2488)	Loose brown and gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	81.5

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1154

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8	Checked By	SLC
Source/Depth (feet)	23 - 25		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

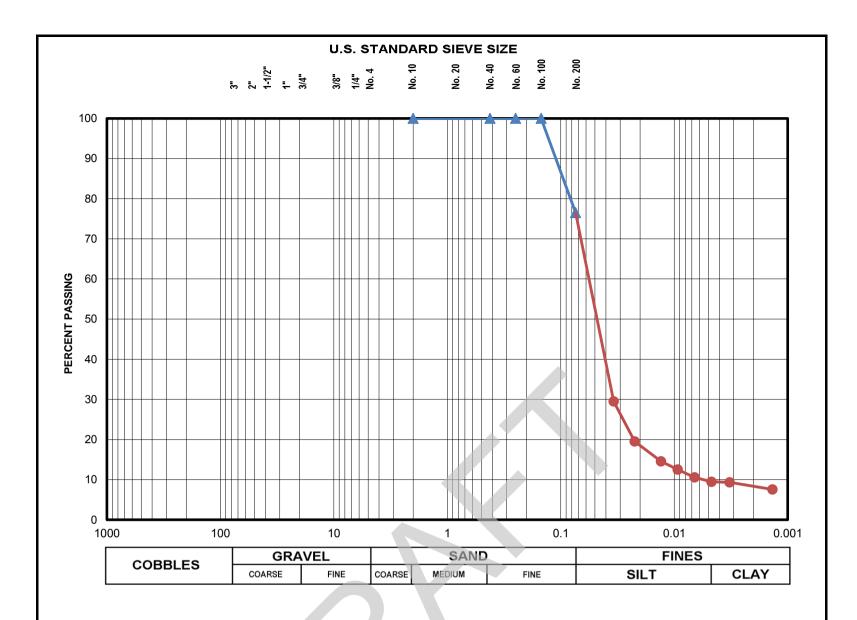
18274-001-00

Description (D 2488)	Loose, gray sandy silt with clay (ML)
----------------------	---------------------------------------

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	69.3

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	1158

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8	Checked By	SLC
Source/Depth (feet)	33 - 35		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

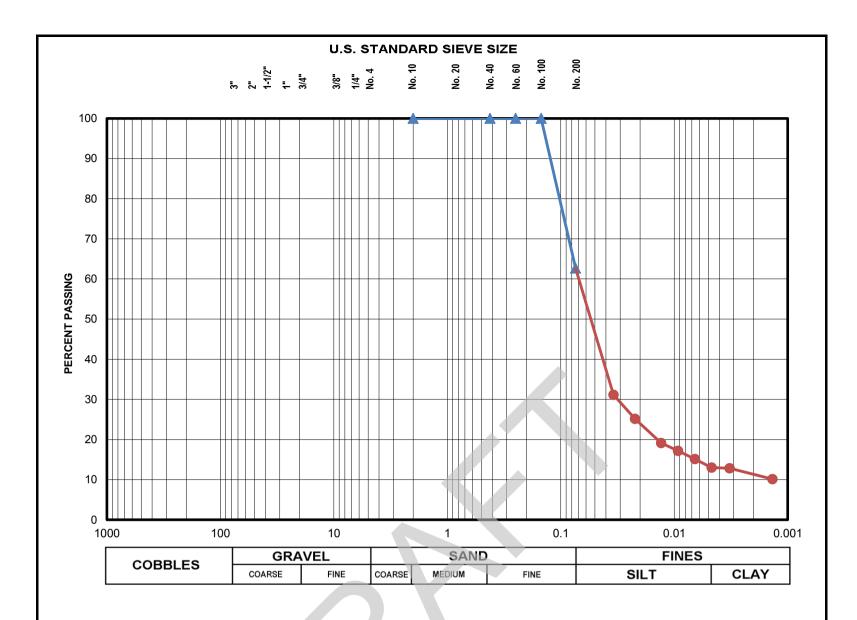
18274-001-00

Description (D 2488)	Loose gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	76.5

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1161

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8	Checked By	SLC
Source/Depth (feet)	38 - 40		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

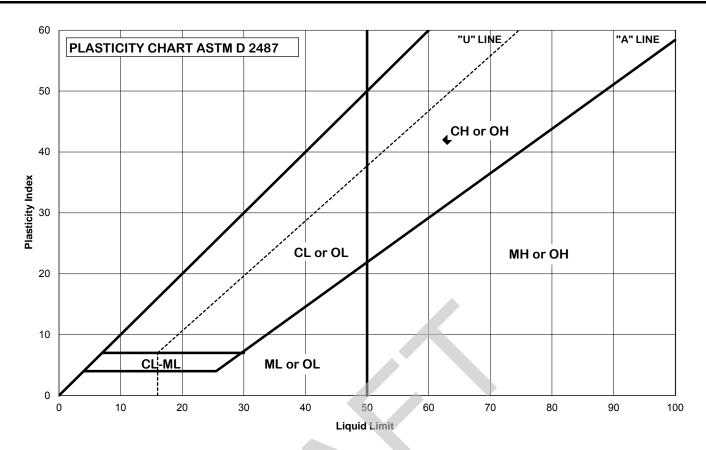
18274-001-00

Description (D 2488)	Dense gray clayey sandy silt (ML)

Individual Sieve Data - % Passing						
3"	100.0	No. 4	100.0			
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	100.0			
3/8"	100.0	No. 100	100.0			
1/4"	100.0	No. 200	62.7			

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1354

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (B.	Date Tested	10/21/2013
Project No.	18274-001-00	Tested By	AB/SEF
Sample ID.	PZ-8	Checked By	SLC
Source/Depth (feet)	48 - 50		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

18274-001-00

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	PZ-9	PZ-9			Natural WC:	#DIV/0!		
Depth, ft.	0 - 2	0 - 2			Preparation:	Wet (as-received)		
Cup No.	1356							
Percent Retained on No. 40		0		Estimated or	Tested	0.0		
Original sample d	lescription:	Stiff brown ar	Stiff brown and gray clay with trace of fine sand (CH3)					

Classification
(fraction passing No. 40
sieve)
СН

Liquid Limit = 63

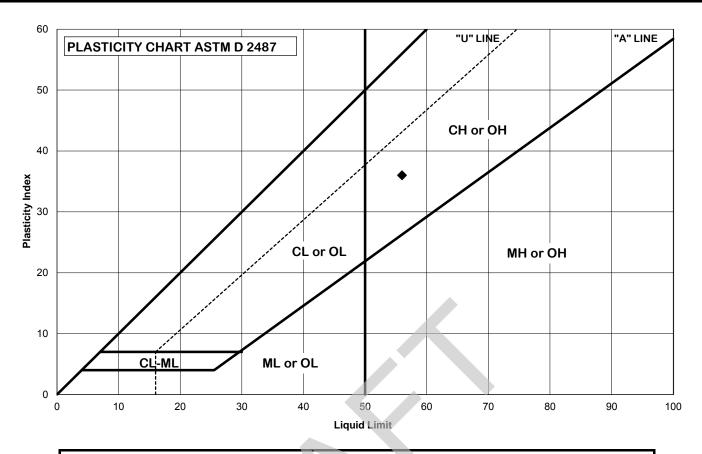
Plastic Limit = 21

Plasticity Index = 42

Date:	10/1/2013
Tested By:	SLC
Checked By:	SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

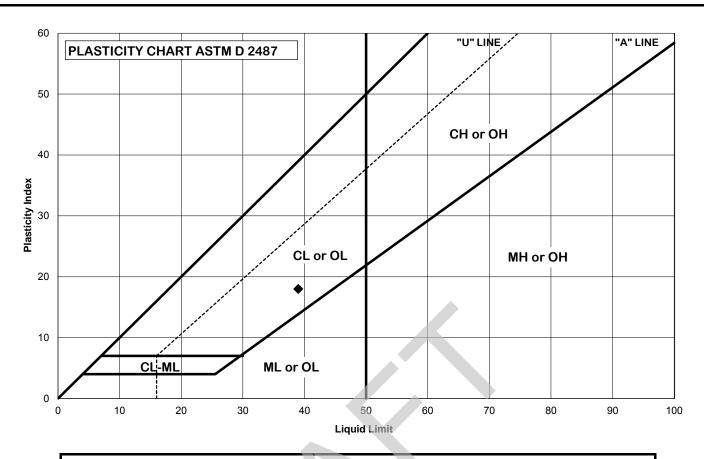
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 0	18274-001-00						
Boring No.	PZ-9	PZ-9			Natural WC:	#DIV/0!		
Depth, ft.	3 - 5				Preparation:	Wet (as-received)		
Cup No.	1356				No. Points:			
Percent Retained on No. 40		0		Estimated	or Tested	0.0		
Original sample description:		Stiff brow	Stiff brown and gray clay (CH2)					

		· ·	_
Date	56	Liquid Limit =	Classification (fraction passing No. 40
Tested By	20	Plastic Limit =	sieve)
Checked By:	36	Plasticity Index =	CH

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/1/2013 SLC SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 01	18274-001-00						
Boring No.	PZ-9	PZ-9			Natural WC:	#DIV/0!		
Depth, ft.	8 - 10	8 - 10			Preparation:	Wet (as-received)		
Cup No.	<mark>1355</mark>	355			No. Points:			
Percent Retained on No. 40		0	Estimated or Tested		0.0			
Original sample de	Original sample description: Firm brown and gray clay (CL4)							

Classification
(fraction passing No. 40 sieve)

CL

Liquid Limit = 39

Plastic Limit = 21

Plasticity Index = 18

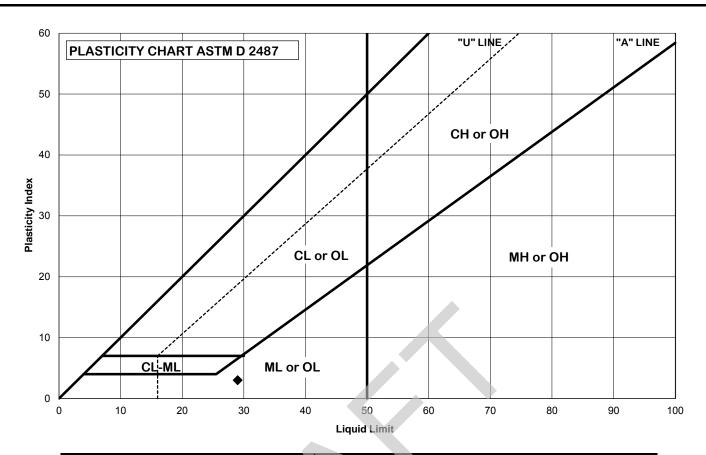
Date: 9/26/2013

Tested By: BH

Checked By: SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

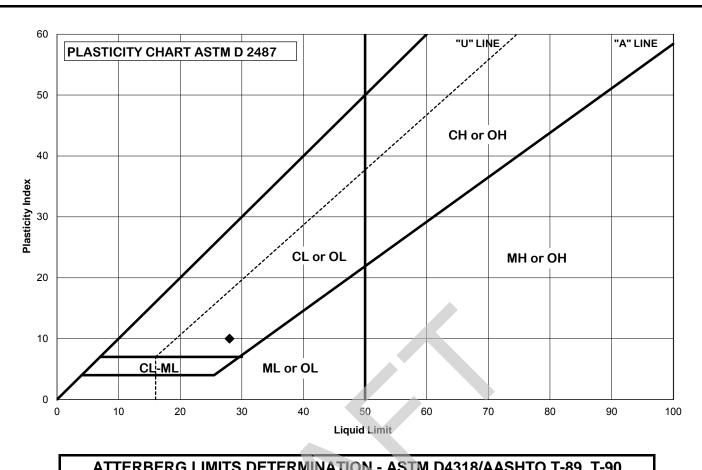
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00°	18274-001-00						
Boring No.	PZ-9	PZ-9			Natural WC:	#DIV/0!		
Depth, ft.	18 - 20	- 20			Preparation:	Wet (as-received)		
Cup No.	<mark>1356</mark>				No. Points:			
Percent Retained on No. 40		0		Estimated or	Tested	0.0		
Original sample description:		Firm gray s	andy clayey s	silt (ML)				

Classification (fraction passing No. 40 sieve)	Liquid Limit =	29	Date:	,
	Plastic Limit =	26	Tested By:	
ML	Plasticity Index =	3	Checked By:	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

0/18/2013 SLC SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

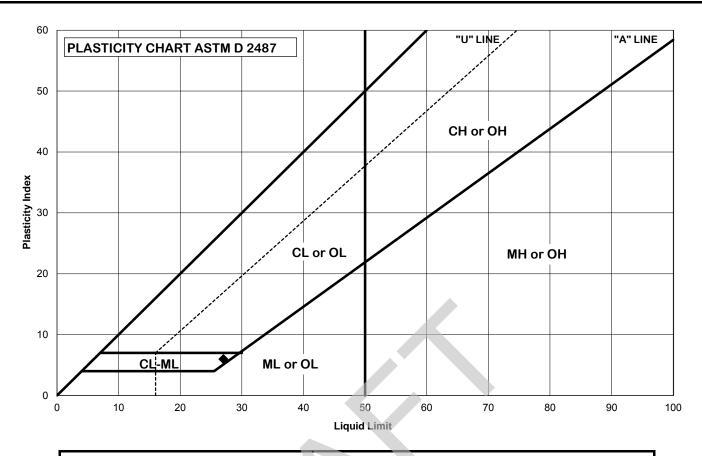
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERI	BERG LIMITS	S DETERI	VINATIO	N - ASTN	1 D4318/AA	SHTO T-89, T-90
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-0</mark> 0	18274-001-00				
Boring No.	PZ-9 SA	PZ-9 SA			Natural WC:	#DIV/0!
Depth, ft.	23 - 25	23 - 25			Preparation:	Wet (as-received)
Cup No.	<mark>1355</mark>	1355			No. Points:	
Percent Retained on No. 40 0 Estimate			Estimated or	Tested	0.0	
Original sample description: Medium gray clay (CL4)						

· · · · · · · · · · · · · · · · · · ·	_
Liquid Limit =	Classification (fraction passing No. 40
Plastic Limit =	sieve)
Plasticity Index =	CL
=	Plastic Limit

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

10/18/2013 BH SLC

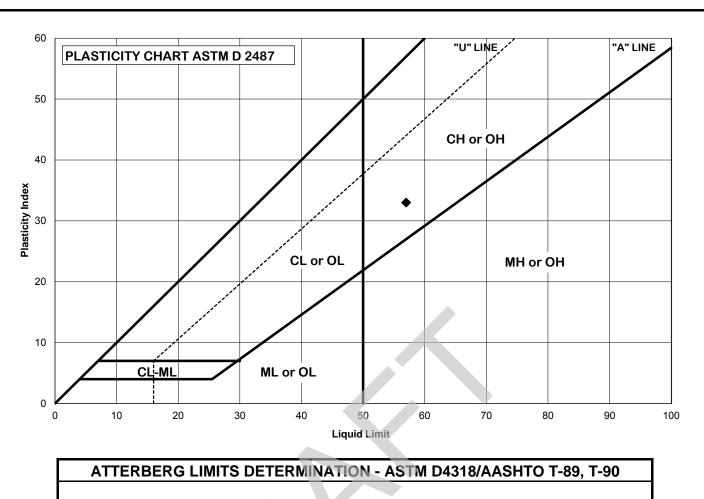
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	18274-00 ⁻²	18274-001-00				
Boring No.	PZ-9 SB	PZ-9 SB			Natural WC:	#DIV/0!
Depth, ft.	13 - 15	i - 15			Preparation:	Wet (as-received)
Cup No.	<mark>1356</mark>				No. Points:	
Percent Retained on No. 40 0 Estimate			Estimated or	Tested	0.0	
Original sample d	Firm gray cla	ayey silt (ML))			

	_		_	
Classification (fraction passing No. 40	Liquid Limit =	27	Date:	10/18/2013
sieve)	Plastic Limit =	21	Tested By:	SLC
CL-ML	Plasticity Index =	6	Checked By:	SLC
			•	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

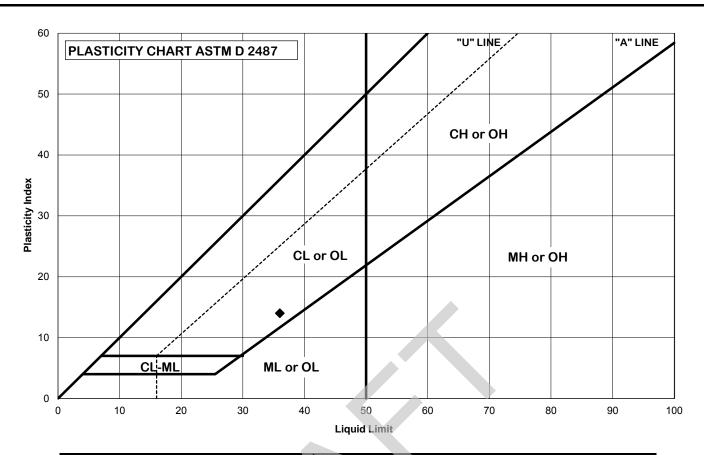
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-0</mark> 0	18274-001-00				
Boring No.	PZ-10	PZ-10			Natural WC:	#DIV/0!
Depth, ft.	0 - 2	0 - 2			Preparation:	Wet (as-received)
Cup No.	1028				No. Points:	
Percent Retained on No. 40 0 Estimate			Estimated or	Tested	0.0	
Original sample d	Stiff tan and	Stiff tan and brown clay (CH2)				

Classification (fraction passing No. 40 sieve)	Liquid Limit = Plastic Limit =		Date: Tested By:
СН	Plasticity Index =	33	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

9/23/2013 lc slc

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

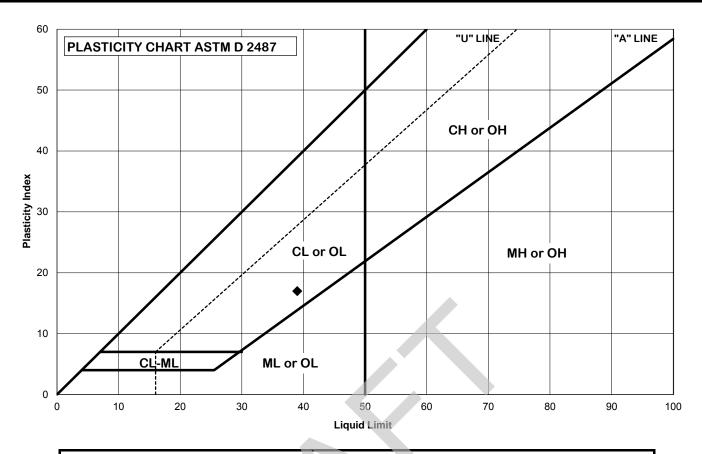
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERE	BERG LIMITS	DETERN	INATIO	N - ASTM	1 D4318/AA	SHTO T-89, T-90
Project	LA CPRA	- Mid-Barata	aria Divers	sion (BA-15	3), Plaquemin	es Parish, LA
Project No.	<mark>18274-</mark> 00	18274-001-00				
Boring No.	PZ-10	PZ-10			Natural WC:	#DIV/0!
Depth, ft.	3 - 5	3 - 5			Preparation:	Wet (as-received)
Cup No.	1355	1355			No. Points:	
Percent Retained on No. 40 DEstimate			Estimated or	Tested	0.0	
Original sample d	e description: Stiff tan and brown gray clay with sand (CL4)					

Classification	Liquid Limit =	36	Date:
(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:
CL	Plasticity Index =	14	Checked By:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

9/25/2013 BH SLC

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	- Mid-Barat	taria Diver	sion (BA-15	3), Plaquemin	es Parish, LA
Project No.	18274-00°	18274-001-00				
Boring No.	PZ-10	PZ-10			Natural WC:	#DIV/0!
Depth, ft.	8 - 10	8 - 10			Preparation:	Wet (as-received)
Cup No.	<mark>1356</mark>				No. Points:	
Percent Retained	ed on No. 40 Estimate			Estimated or	Tested	0.0
Original sample d	iginal sample description: Gray and brown clay (CL4)					

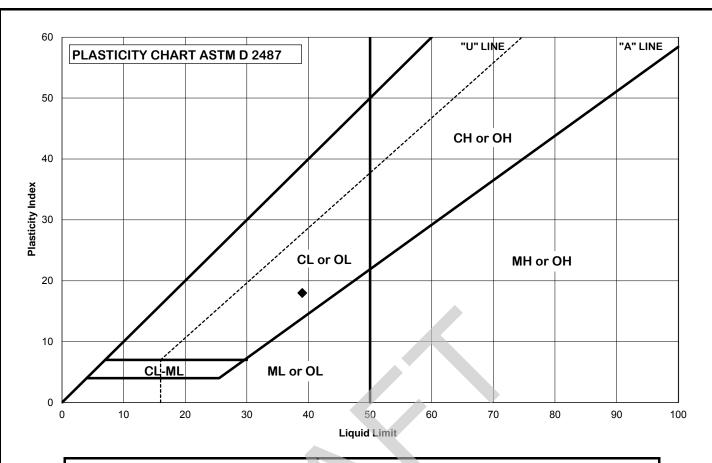
Classification	Liquid
(fraction passing No. 40 sieve)	Plastic
CL	Plasticity I

Liquid Limit =	39
Plastic Limit =	22
Plasticity Index =	17

	_
Date:	9/23/2013
Tested By:	slc
Checked By:	slc

N	0	TI	=0	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-0</mark> 01	18274-001-00				
Boring No.	PZ-10	PZ-10			Natural WC:	#DIV/0!
Depth, ft.	13 - 15	13 - 15			Preparation:	Wet (as-received)
Cup No.	<mark>1356</mark>	1356			No. Points:	
Percent Retained on No. 40 Estimated on			Estimated or	Tested	0.0	
Original sample de	Original sample description: Gray and brown clayey silt (ML)					

Classification 9/23/2013 Liquid Limit = Date: 39 (fraction passing No. 40 Plastic Limit = 21 Tested By: sieve) CL Checked By: Plasticity Index = 18

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

slc

slc

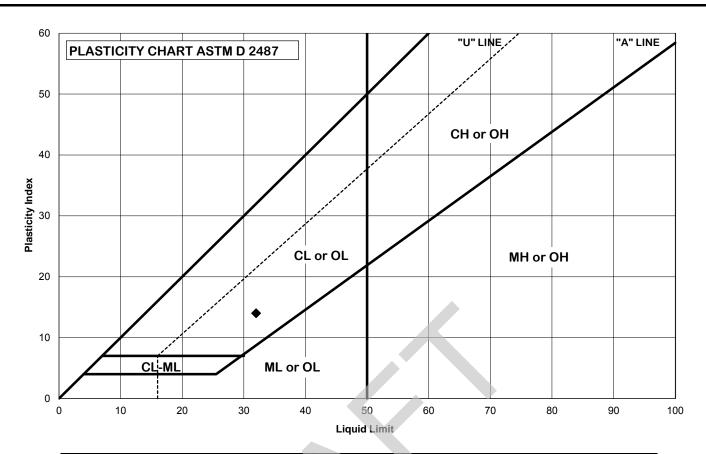
LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project	LA CPRA	- Mid-Barat	taria Diver	sion (BA-15	3), Plaquemin	es Parish, LA
Project No.	<mark>18274-0</mark> 0	18274-001-00				
Boring No.	PZ-10	PZ-10			Natural WC:	#DIV/0!
Depth, ft.	18 - 20	18 - 20			Preparation:	Wet (as-received)
Cup No.	1077	1077			No. Points:	
Percent Retained	0		Estimated or	Tested	0.0	
Original sample description: Very loose brown and gray clayey sandy silt (ML)						

		_	_	
Classification (fraction passing No. 40	Liquid Limit =	34	Date:	9/24/2013
sieve)	Plastic Limit =	21	Tested By:	SB
CL	Plasticity Index =	13	Checked By:	SLC
	•			*

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00 ²	18274-001-00				
Boring No.	PZ-10	PZ-10			Natural WC:	#DIV/0!
Depth, ft.	23 - 25	23 - 25			Preparation:	Wet (as-received)
Cup No.	1355	1355			No. Points:	
Percent Retained on	rcent Retained on No. 40 DEstimated			Estimated or	Tested	0.0
Original sample description: Loose brown and gray clayey sandy silt (ML)						

Classification (fraction passing No. 40 sieve)
CL

Liquid Limit = 32

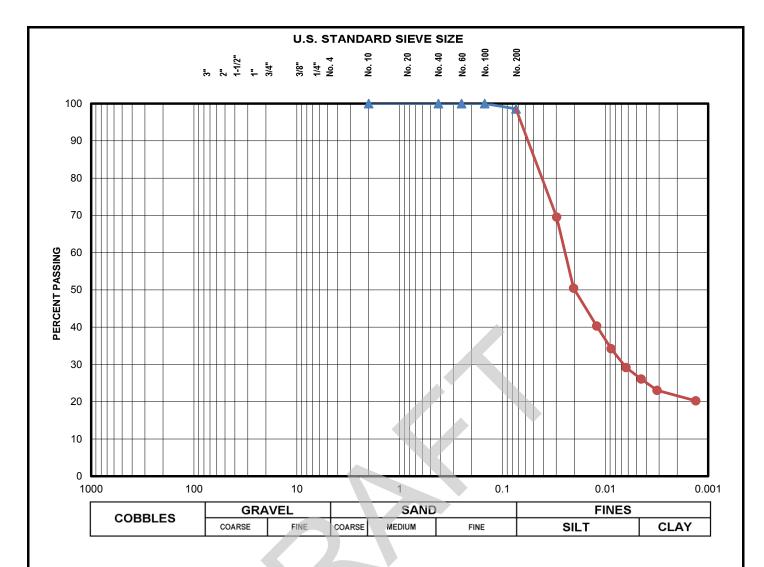
Plastic Limit = 18

Plasticity Index = 14

Date:	9/25/2013
Tested By:	ВН
Checked By:	SLC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

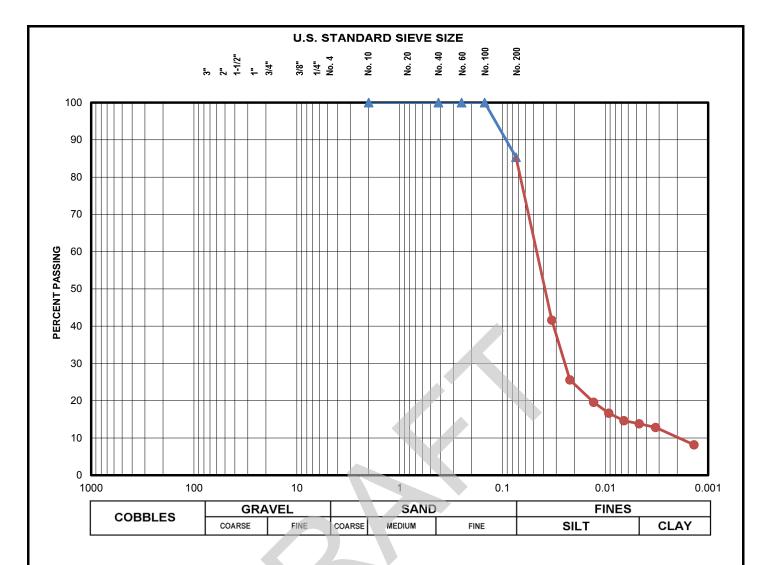
ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

Description (D 2488) Gr	ray and brown cla	yey silt (ML)

In	Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0		
2"	100.0	No. 10	100.0		
1 1/2"	100.0	No. 20	100.0		
1"	100.0	No. 40	100.0		
3/4"	100.0	No. 60	100.0		
3/8"	100.0	No. 100	100.0		
1/4"	100.0	No. 200	98.6		


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1163

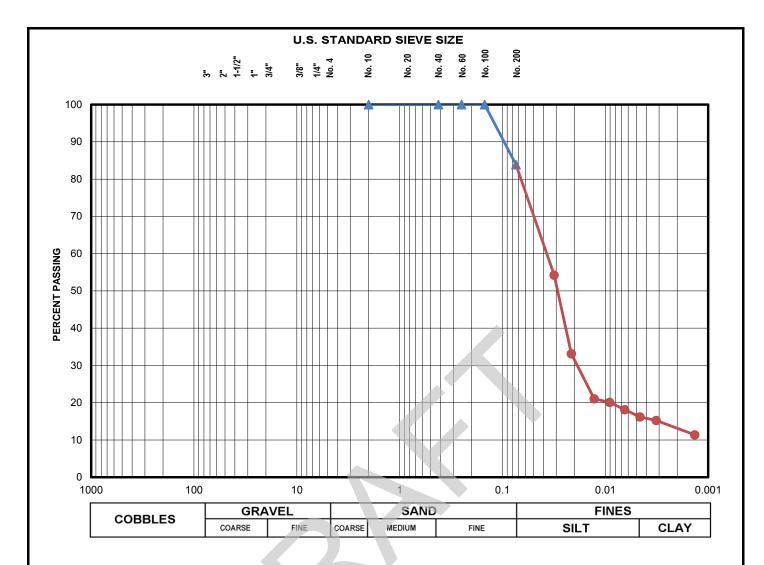
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	13 - 15		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Very loose brow	n and gray clayey sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	85.4


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1157

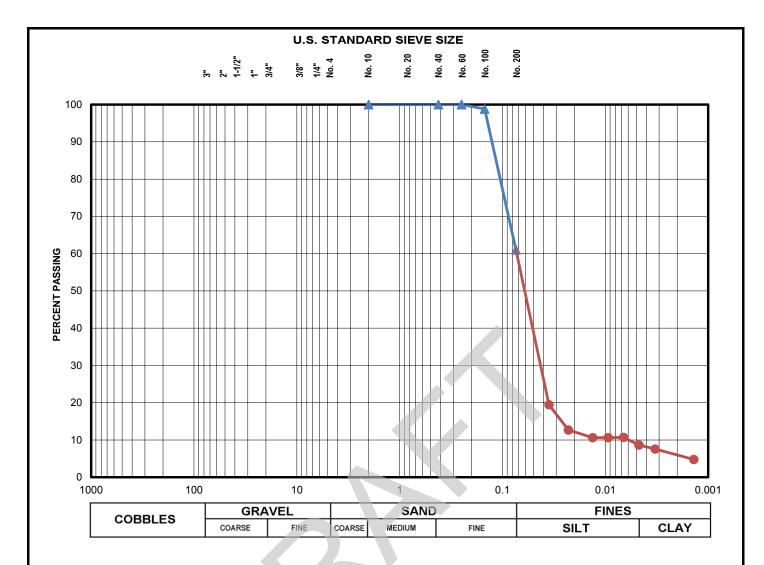
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/1/2013
Project No.	18274-001-00	Tested By	SEF/GOM
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	18 - 20		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	ose brown and	gray sandy clayey silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	83.9


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	1150

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/1/2013
Project No.	18274-001-00	Tested By	SEF/GOM
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	23 - 25		

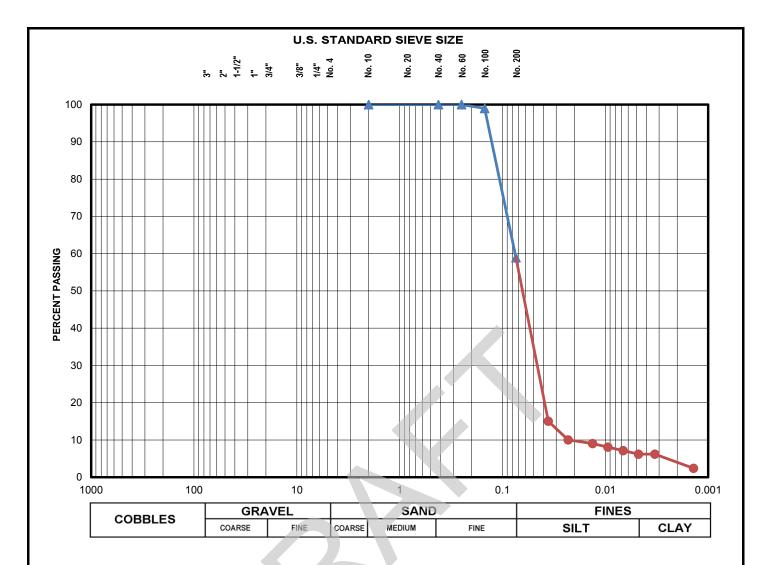
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

		/ -
Description (D 2488)	Dense brown an	d gray sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	98.8
1/4"	100.0	No. 200	61.0

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1158

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	28 - 30		

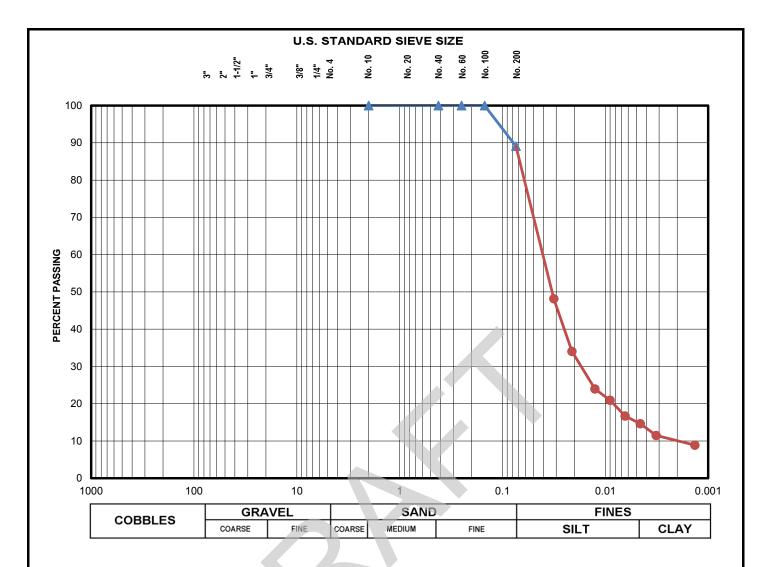
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish

11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809 atton; Privileged & Confidential W8274-004-00

Description (D 2488)	Dense tan and gray	y sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.0
1/4"	100.0	No. 200	58.9


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1158

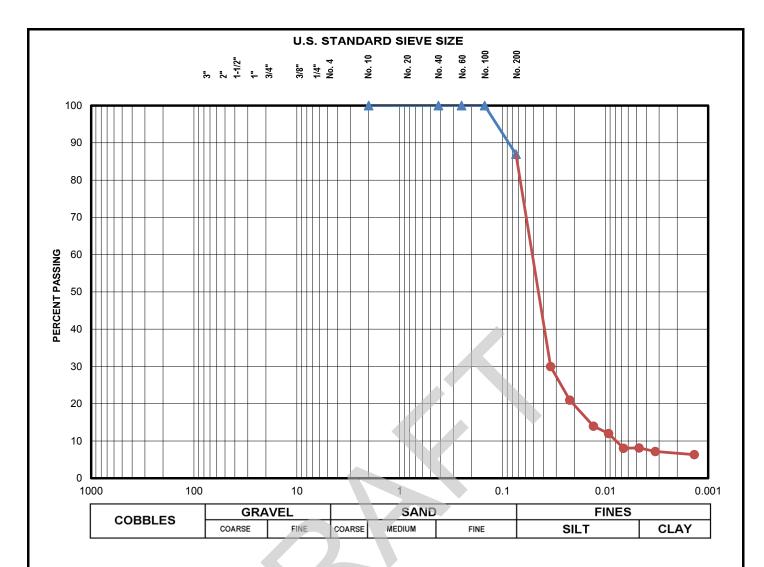
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/1/2013
Project No.	18274-001-00	Tested By	SEF/GOM
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	33 - 35		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm brown and g	gray clayey silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	89.1


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1161

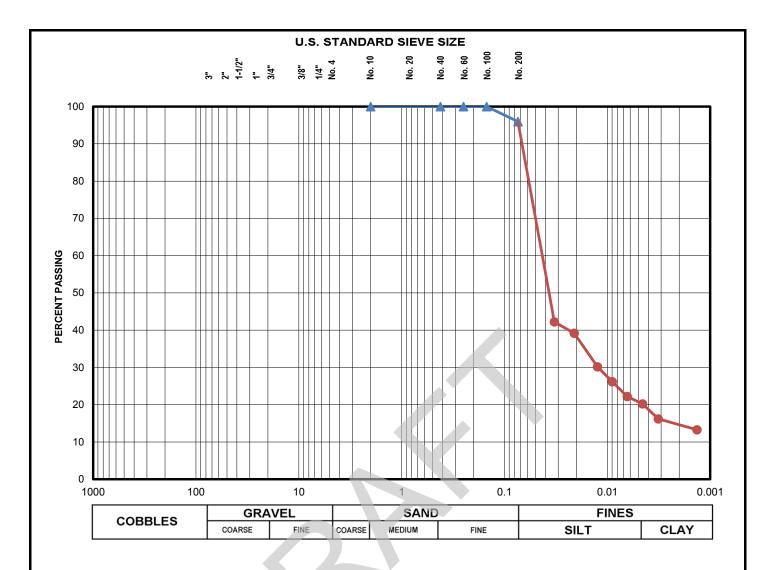
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	38 - 40		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	gray sandy silt with clay (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	87.0


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1135

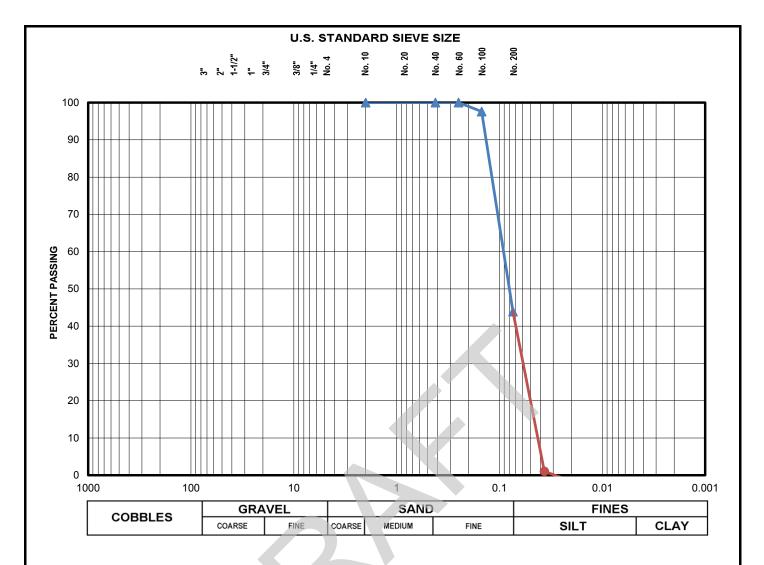
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/1/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	43 - 45		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm brown and gray clayey silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	96.0


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	1157

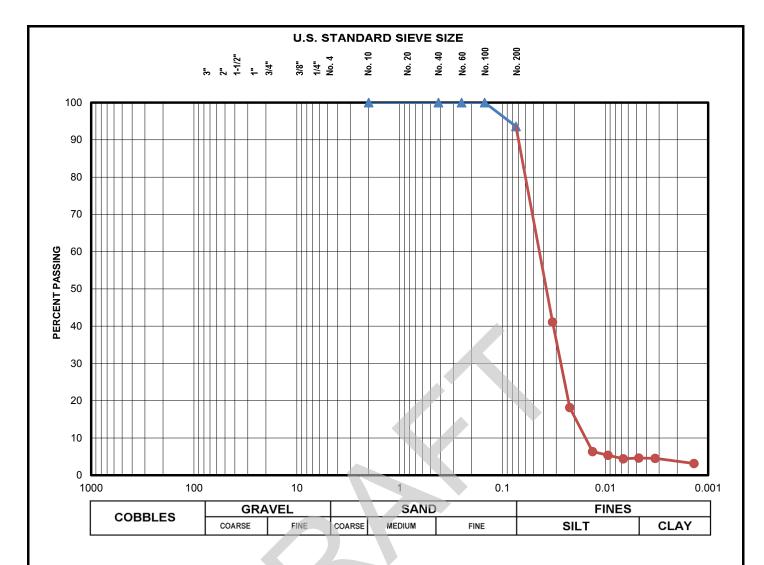
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10	Checked By	SLC
Source/Depth (feet)	48 - 50		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

		,
Description (D 2488)	Dense brown an	d gray silty sand (SP)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	97.6
1/4"	100.0	No. 200	43.9


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1353

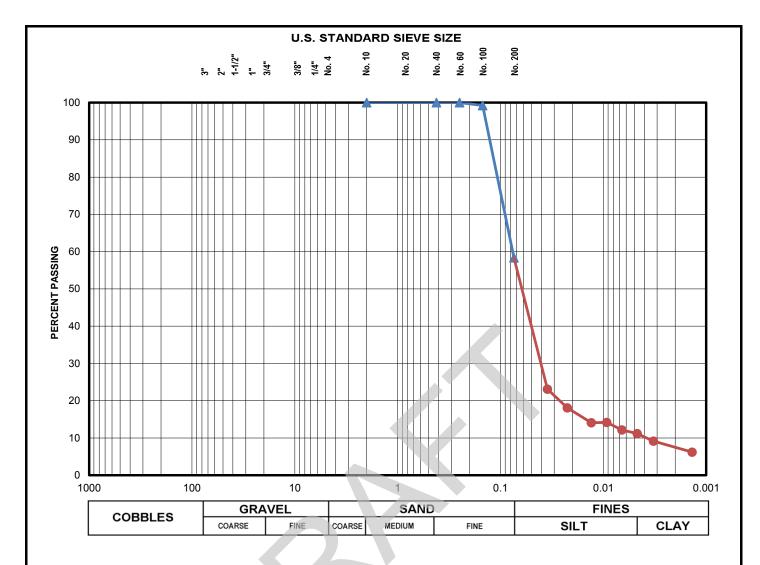
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10B	Checked By	SLC
Source/Depth (feet)	23 - 25		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm brown and gray sandy silt (ML)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	93.6


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1154

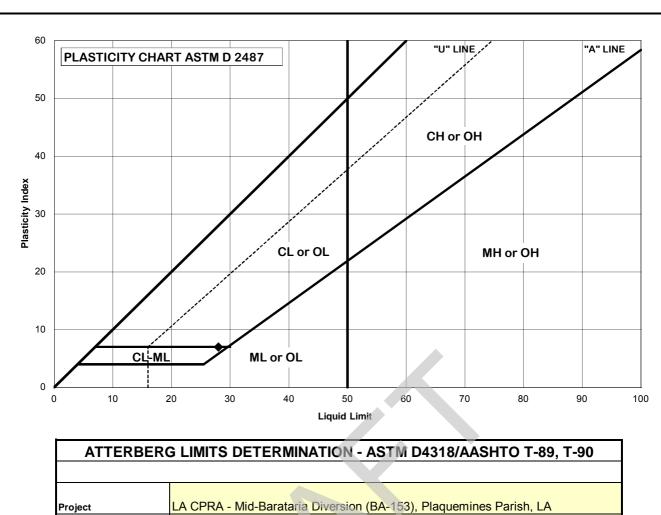
^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/1/2013
Project No.	18274-001-00	Tested By	SEF/GOM
Sample ID.	PZ-10B	Checked By	SLC
Source/Depth (feet)	38 - 40		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

Description (D 2488)	Firm brown and	gray clayey sandy silt (ML)

Individual Sieve Data - % Passing						
3"	100.0	No. 4	100.0			
2"	100.0	No. 10	100.0			
1 1/2"	100.0	No. 20	100.0			
1"	100.0	No. 40	100.0			
3/4"	100.0	No. 60	100.0			
3/8"	100.0	No. 100	99.2			
1/4"	100.0	No. 200	58.4			


Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1354

^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/3/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-10B	Checked By	SLC
Source/Depth (feet)	48 - 50		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

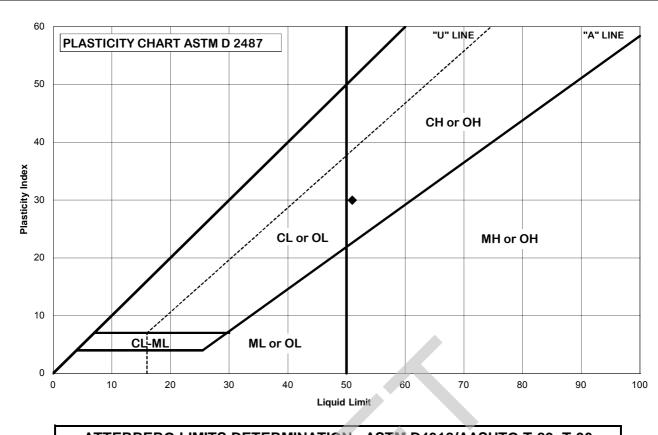
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-00</mark>	18274-001-00				
Boring No.	PZ-11				Natural WC:	#DIV/0!
Depth, ft.	0 - 2				Preparation:	Wet (as-received)
Cup No.	1356	1356			No. Points:	
Percent Retained on No. 40		0		Estimated or Tested		0.0
Original sample d	Dense b	Dense brown clayey silt (ML)				

Classification	Liquid Limit =	28	Date:	9/23/2013
(fraction passing No. 40 sieve)	Plastic Limit =	21	Tested By:	slc
CL-ML	Plasticity Index =	7	Checked By:	slc
NOTES:				

Liquid Limit = 28

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were


GEOENGINEERS ,

Classification

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

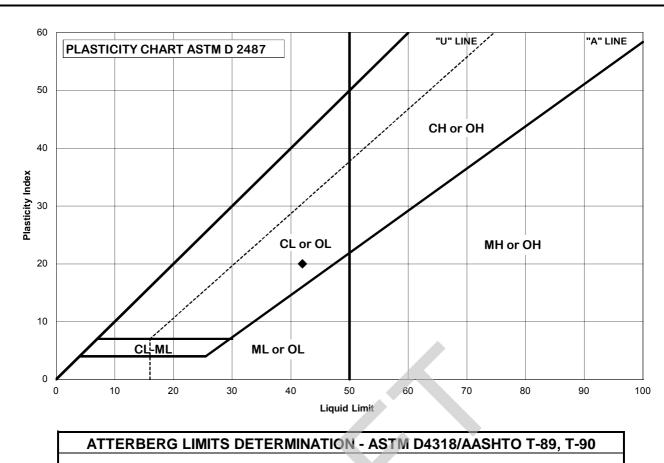
ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-00</mark>	18274-001-00				
Boring No.	PZ-11				Natural WC:	#DIV/0!
Depth, ft.	3 - 5				Preparation:	Wet (as-received)
Cup No.	1028	1028			No. Points:	
Percent Retained on No. 40		0	Estimated or Tested		0.0	
Original sample description: Medium brown and gray clay with sand seams and organic matter (CH2)				c matter (CH2)		

Classification	Liquid Limit =	51	Date:	9/23/2013
(fraction passing No. 40 sieve)	Plastic Limit =	21	Tested By:	sb
СН	Plasticity Index =	30	Checked By:	slc
	•		•	

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

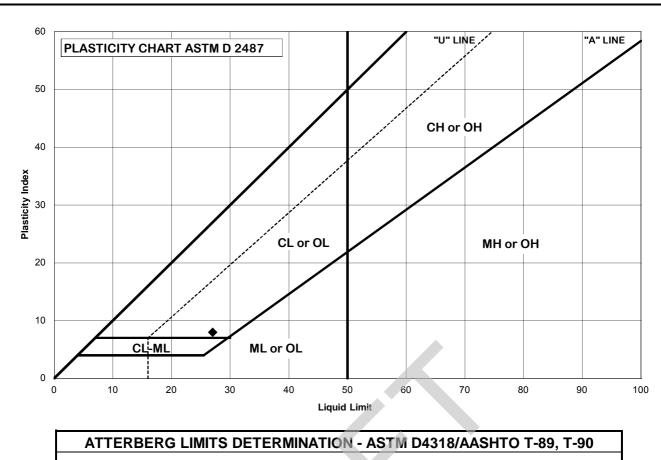
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-00</mark>	18274-001-00				
Boring No.	PZ-11				Natural WC:	#DIV/0!
Depth, ft.	<mark>8 - 10</mark>				Preparation:	Wet (as-received)
Cup No.	1356	356			No. Points:	
Percent Retained on No. 40		0		Estimated or Tested		0.0
Original sample description:			Medium brown and gray clay with silt and sand seams (CL6)			

Classification	Liquid Limit =	42	Date:	10/15/2013
(fraction passing No. 40 sieve)	Plastic Limit =	22	Tested By:	SLC
CL	Plasticity Index =	20	Checked By:	SLC


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

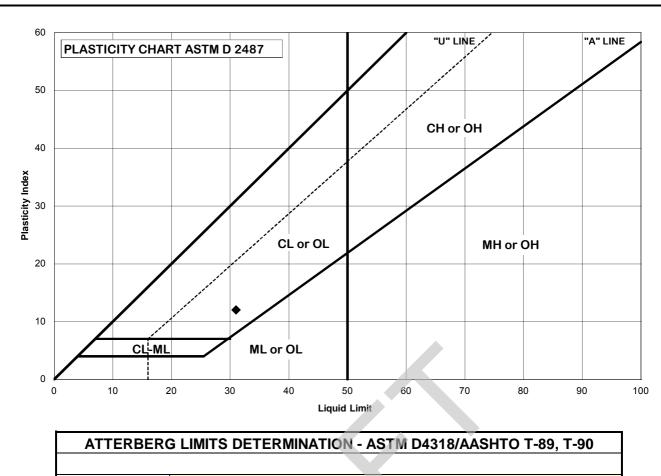
GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00	18274-001-00				
Boring No.	PZ-11				Natural WC:	#DIV/0!
Depth, ft.	<mark>13 - 15</mark>				Preparation:	Wet (as-received)
Cup No. 1028				No. Points:		
Percent Retained on No. 40		0		Estimated	I or Tested	0.0
Original sample description: Firm brown and gray sandy silt with clay (ML)						

(fraction passing No. 40	Liquid Limit =	27	Date:	9/23/2013
sieve)	Plastic Limit =	19	Tested By:	lc
CL	Plasticity Index =	8	Checked By:	slc


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

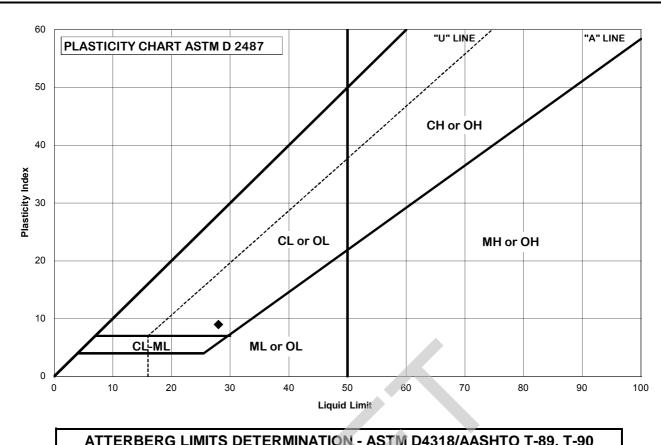
This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90							
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-00</mark>	18274-001-00					
Boring No.	PZ-11				Natural WC:	#DIV/0!	
Depth, ft.	18 - 20				Preparation:	Wet (as-received)	
Cup No.	1077	1077			No. Points:		
Percent Retained on No. 40		0		Estimated or Tested		0.0	
Original sample d	Firm brown	Firm brown and gray sandy silt with clay (ML)					

Classification (fraction passing No. 40	Liquid Limit =	31	Date:	9/23/2013
sieve)	Plastic Limit =	19	Tested By:	sb
CL	Plasticity Index =	12	Checked By:	slc
			_	


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

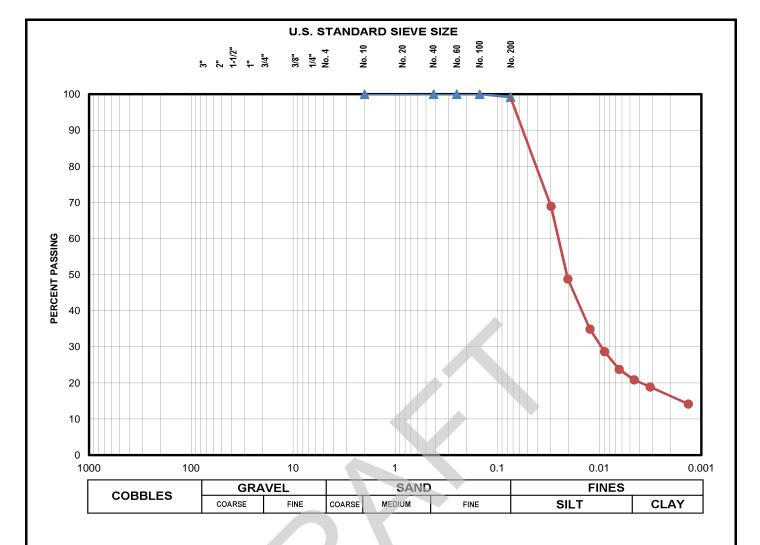
GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-00</mark>	18274-001-00				
Boring No.	PZ-11				Natural WC:	#DIV/0!
Depth, ft.	23 - 25				Preparation:	Wet (as-received)
Cup No.	1356	1356 No. I			No. Points:	
Percent Retained on No. 40		Estimated	l or Tested	0.0		
Original sample description: Firm brown and gray sandy silt with clay (ML)						

Classification	Liquid Limit =	28	Date:	9/23/2013
(fraction passing No. 40 sieve)	Plastic Limit =	19	Tested By:	slc
CL	Plasticity Index =	9	Checked By:	slc
			, , ,	


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

Description (D 2488)	Medium brown and gray sandy clay with sand seams (CL)
2 000: p.:.0:: (2 2 :00)	Fredrik of our and gray bandy of an war bearing (CD)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	99.2	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1147
Hydro jar ID:	1161
*assumed unless noted	

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	10/1/2013
Project No.	18274-001-00	Tested By	SEF/GOM
Sample ID.	PZ-11	Checked By	SLC
Source/Depth (feet)	8 - 10		

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

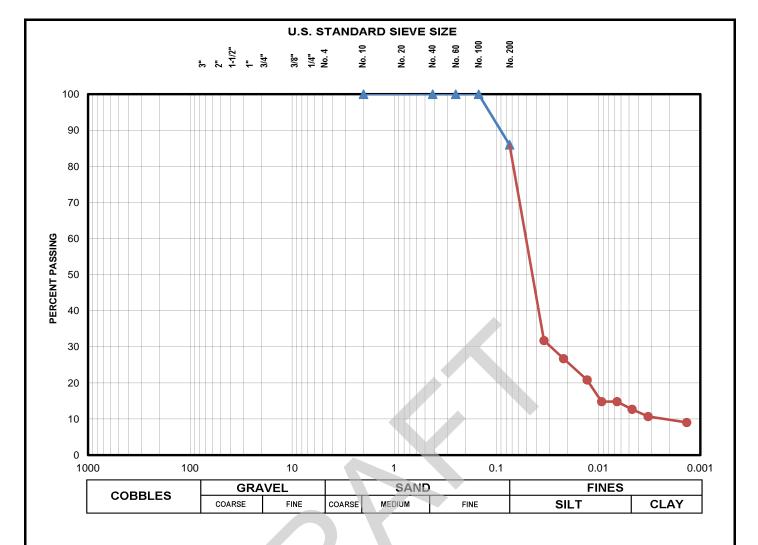
Description (D 2488)	Medium brown and gray very sandy clay (CL)
= 000: p.i.o.: (= = 100)	Median of the area gray very standy only (CE)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	99.8	
1/4"	100.0	No. 200	85.5	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1163
*assumed unless noted	

Project
 LA CPRA - Mid-Barataria Diversion (BA-15)
 Date Tested
 10/1/2013

 Project No.
 18274-001-00
 Tested By
 GOM/SEF


 Sample ID.
 PZ-11
 Checked By
 SLC

 Source/Depth (feet)
 13 - 15

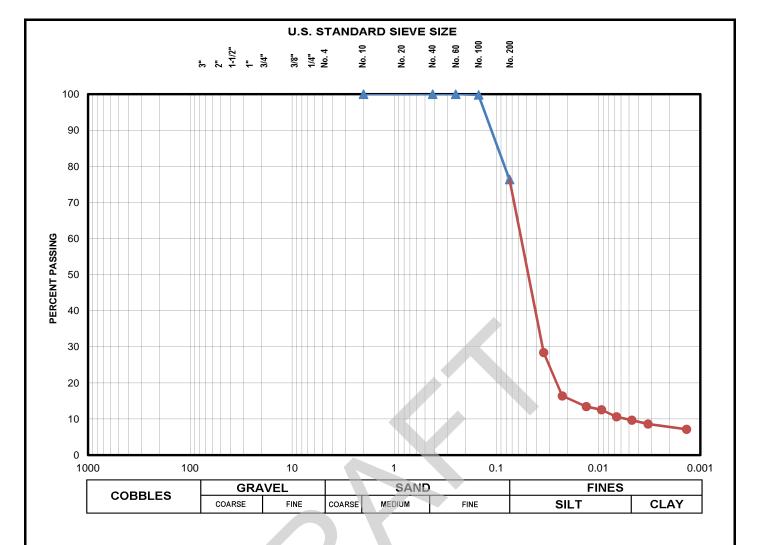
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

Description (D 2488)	Medium brown and gray very sandy clay (CL)
	Median of the art gray very state of (EE)

Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	100.0	
3/8"	100.0	No. 100	100.0	
1/4"	100.0	No. 200	86.0	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1154


^{*}assumed unless noted

Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-11	Checked By	SLC
Source/Depth (feet)	18 - 20		_

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

Description (D 2488)	Medium brown and gray very sandy clay (CL)
	Median of the art gray very state of (EE)

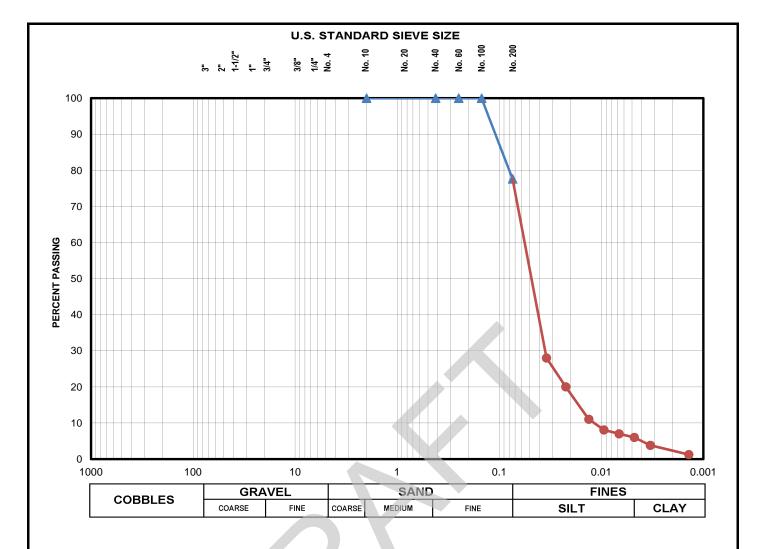
Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	76.4

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1353
*assumed unless noted	

Project
 LA CPRA - Mid-Barataria Diversion (BA-15)
 Date Tested
 10/1/2013

 Project No.
 18274-001-00
 Tested By
 GOM/SEF

 Sample ID.
 PZ-11
 Checked By
 SLC


 Source/Depth (feet)
 23 - 25
 SLC

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

Description (D 2488)	Medium brown and gray sandy clay (CL)

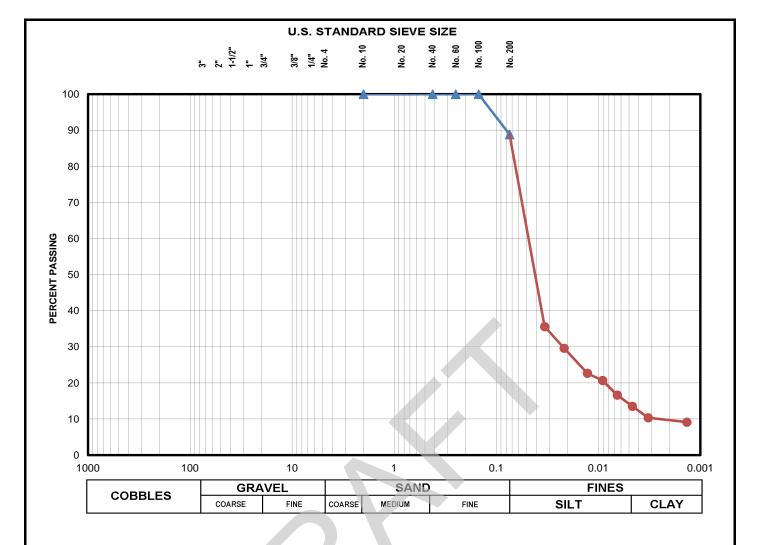
Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	77.6

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1145
Hydro jar ID:	1158
*assumed unless noted	

Project
 LA CPRA - Mid-Barataria Diversion (BA-15)
 Date Tested
 9/26/2013

 Project No.
 18274-001-00
 Tested By
 SEF

 Sample ID.
 PZ-11
 Checked By
 SLC


Source/Depth (feet) 28 - 30

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

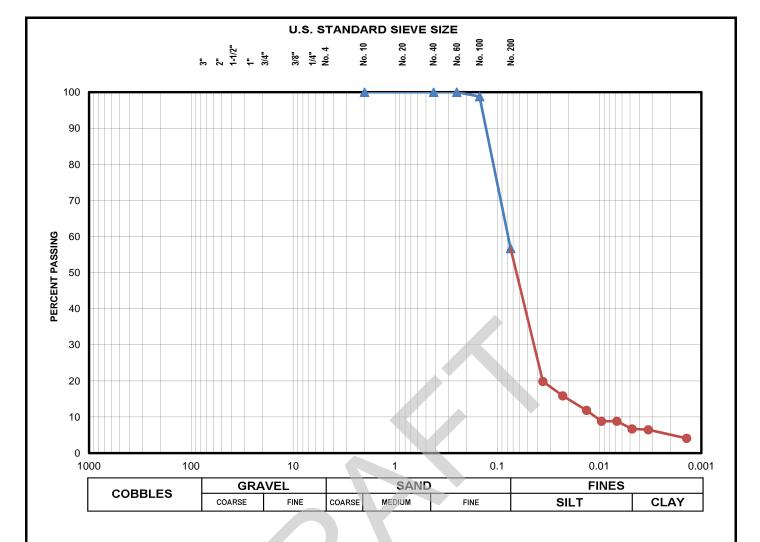
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

Description (D 2488)	Firm gray clayey sand (SP)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	88.8

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1137
Hydro jar ID:	1161
*assumed unless noted	•


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-11	Checked By	SLC
Source/Depth (feet)	33 - 35		

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

Description (D 2488)	Firm gray clavey sand (SP)
= 000: p.:o:: (= = :00)	Tim gray enayey said (51)

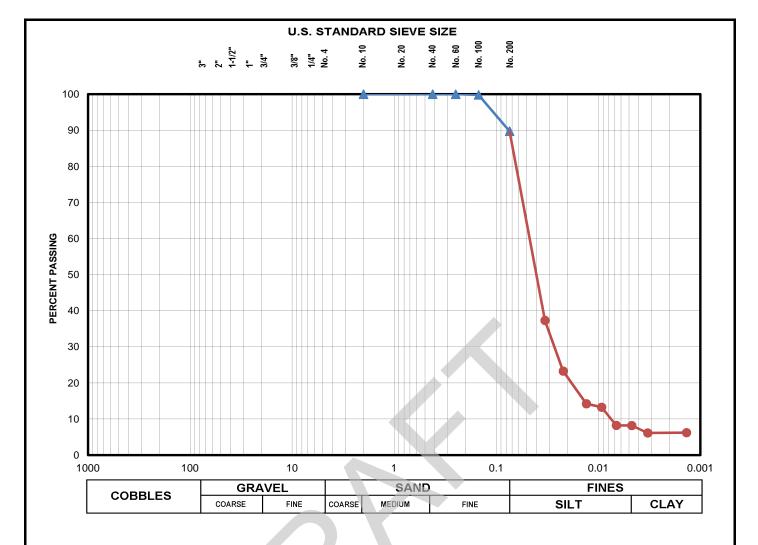
Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	98.8
1/4"	100.0	No. 200	56.7

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1135
Hydro jar ID:	1135
*assumed unless noted	

Project
 LA CPRA - Mid-Barataria Diversion (BA-15)
 Date Tested
 9/26/2013

 Project No.
 18274-001-00
 Tested By
 SEF

 Sample ID.
 PZ-11
 Checked By
 SLC


 Source/Depth (feet)
 38 - 40

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

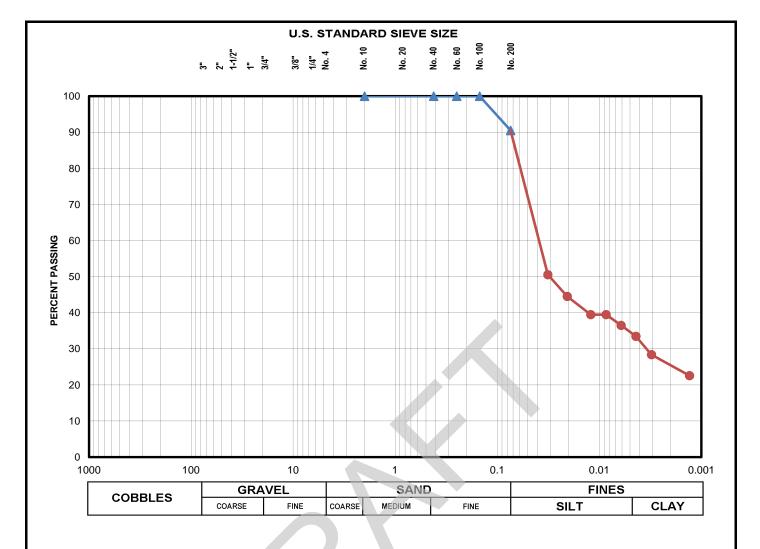
Description (D 2488)	Firm gray clayey sand (SP)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	89.7

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1351
Hydro jar ID:	1150
*assumed unless noted	

LA CPRA - Mid-Barataria Diversion (BA-15 **Project Date Tested** 9/26/2013 Project No. 18274-001-00 Tested By SEF

PZ-11 Sample ID. Source/Depth (feet) 43 - 45


Checked By SLC

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

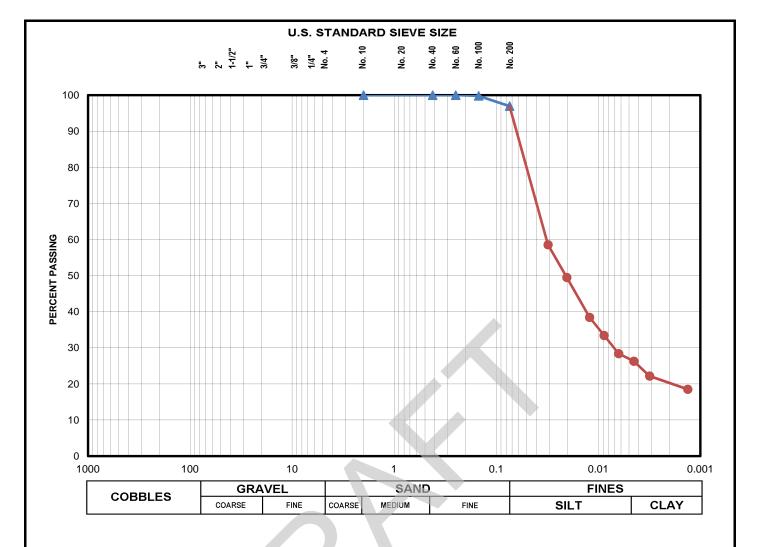
ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

Description (D 2488)	Medium brown and gray sandy clay (CL)
Description (D 2700)	Wicdium blown and gray sandy clay (CE)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	100.0
1/4"	100.0	No. 200	90.5

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1352
Hydro jar ID:	1354
*assumed unless noted	


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-11B	Checked By	SLC
Source/Depth (feet)	28 - 30		

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

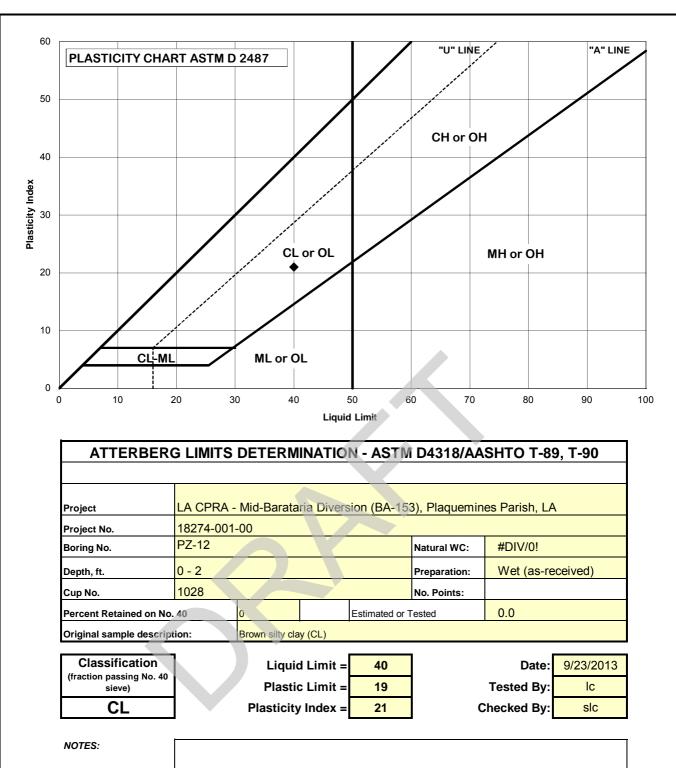
CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

Description (D 2488)	Medium gray clay (CL)
Boodinption (B 2100)	Wednesday Clay (CE)

Individual Sieve Data - % Passing			
3"	100.0	No. 4	100.0
2"	100.0	No. 10	100.0
1 1/2"	100.0	No. 20	100.0
1"	100.0	No. 40	100.0
3/4"	100.0	No. 60	100.0
3/8"	100.0	No. 100	99.8
1/4"	100.0	No. 200	97.0

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1148
Hydro jar ID:	1353

^{*}assumed unless noted


Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	9/26/2013
Project No.	18274-001-00	Tested By	SEF
Sample ID.	PZ-11B	Checked By	SLC
Source/Depth (feet)	43 - 45		_

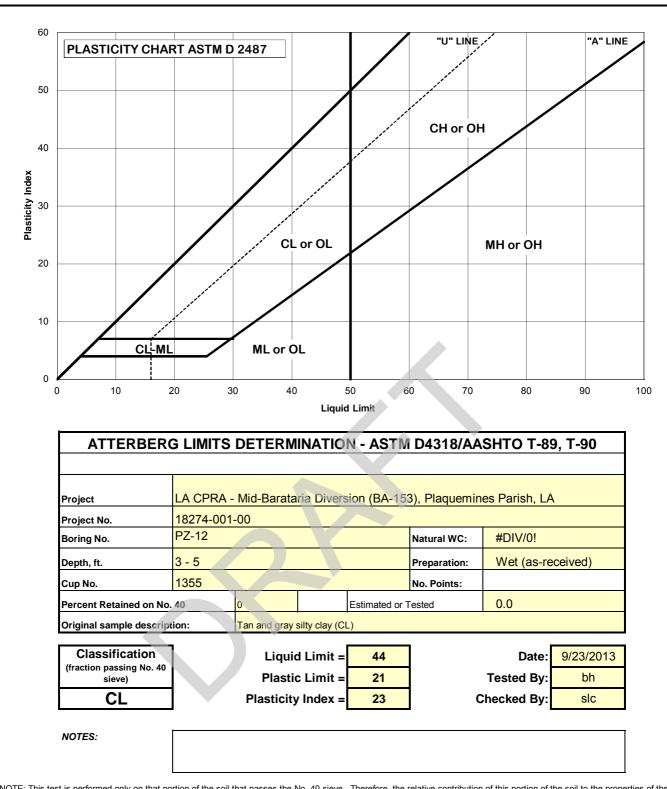
NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00

)	-	i identify index	 5.1.55.1.5t. 27.
	=		
NOTES:			

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

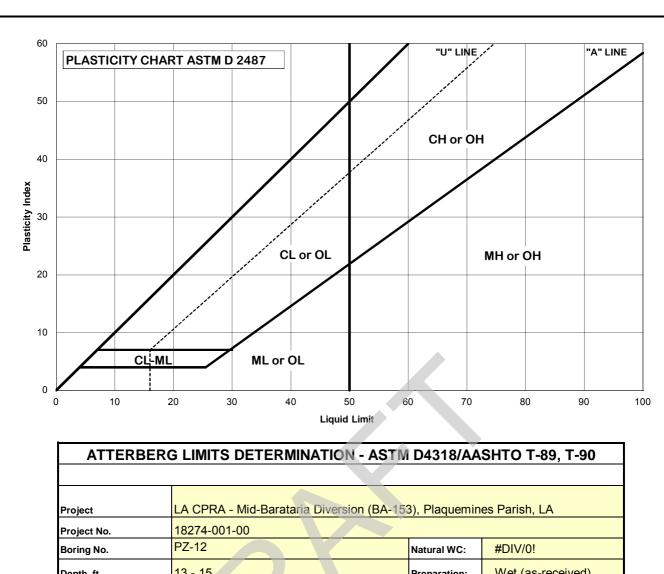
ATTERBERG LIMITS - ASTM D4318

A - Mid-Barataria Diversion (BA-153), Plaquemines Pa

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section



11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

RA - Mid-Barataria Diversion (BA-153), Plaquemines Par

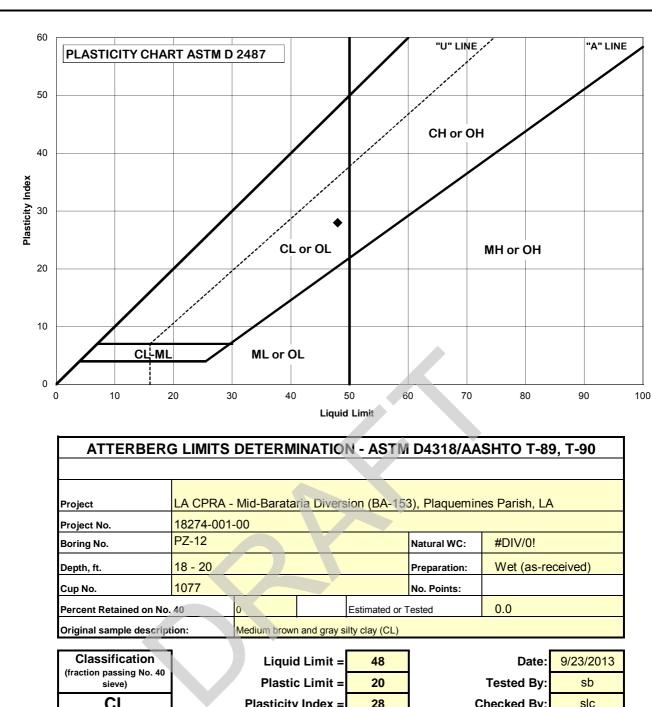
18274-001-00

ATTERBER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	18274-001	8274-001-00								
Boring No.	PZ-12				Natural WC:	#DIV/0!				
Depth, ft.	13 - 15				Preparation:	Wet (as-received)				
Cup No.	1028				No. Points:					
Percent Retained on N	o. 40	0	Estimated or Tested 0.0			0.0				
Original sample descri	Original sample description: Medium brown and gray silty clay (CL)									

Classification (fraction passing No. 40	Liquid Limit =	44	Date:	9/23/2013
sieve)	Plastic Limit =	21	Tested By:	sb
CL	Plasticity Index =	23	Checked By:	slc
			•	

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS /

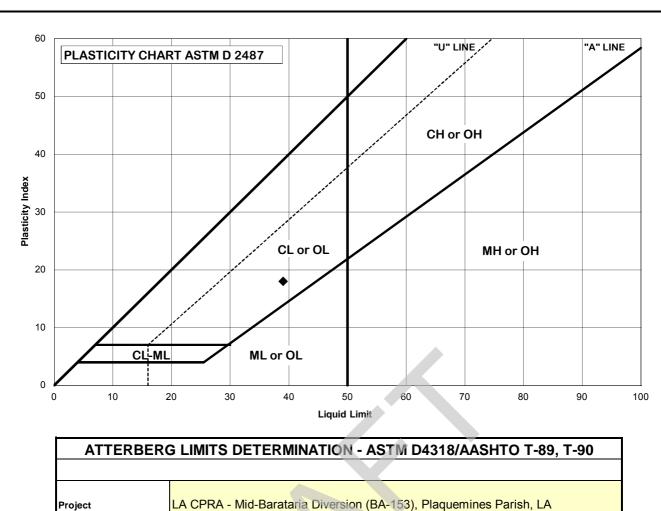
11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS - ASTM D4318

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

CL	Plasticity Index =	28	Checked By:	slc
NOTES:				

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

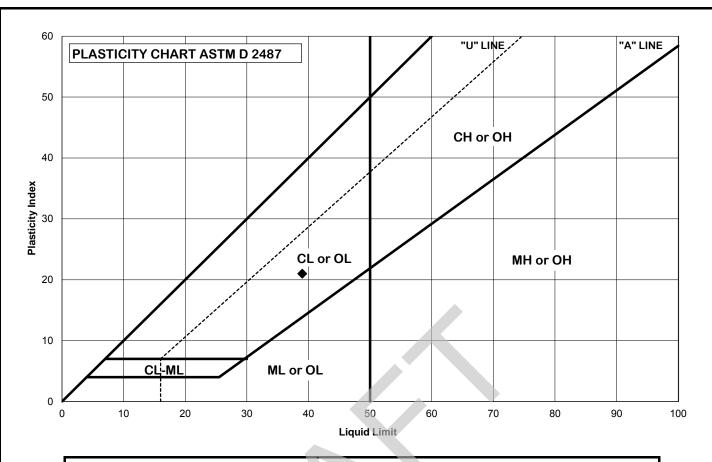
ATTERBERG LIMITS - ASTM D4318

A - Mid-Barataria Diversion (BA-153), Plaquemines Pa

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-00</mark>	1-00							
Boring No.	PZ-12				Natural WC:	#DIV/0!			
Depth, ft.	23 - 25				Preparation:	Wet (as-received)			
Cup No.	1028	1028 No. Points:							
Percent Retained on No. 40 0 Estimated or Tested 0.0					0.0				
Original sample d	Original sample description: Medium brown and gray silty clay (CL)								

Classification	Liquid Limit =	39	Date:	9/23/2013
(fraction passing No. 40 sieve)	Plastic Limit =	21	Tested By:	lc
CL	Plasticity Index =	18	Checked By:	slc
	•		-	

NOTES:


NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were

GEOENGINEERS

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460 **ATTERBERG LIMITS - ASTM D4318**

A - Mid-Barataria Diversion (BA-153), Plaquemines Par

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	18274-00 ⁻²	18274-001-00								
Boring No.	PZ-12 S3/	A			Natural WC:	#DIV/0!				
Depth, ft.	8 - 10				Preparation:	Wet (as-received)				
Cup No.	1355				No. Points:					
Percent Retained	on No. 40	0		Estimated or Tested		0.0				
Original sample d	Original sample description: Medium brown clay with organic matter (CL4)									

Classification
(fraction passing No. 40 sieve)

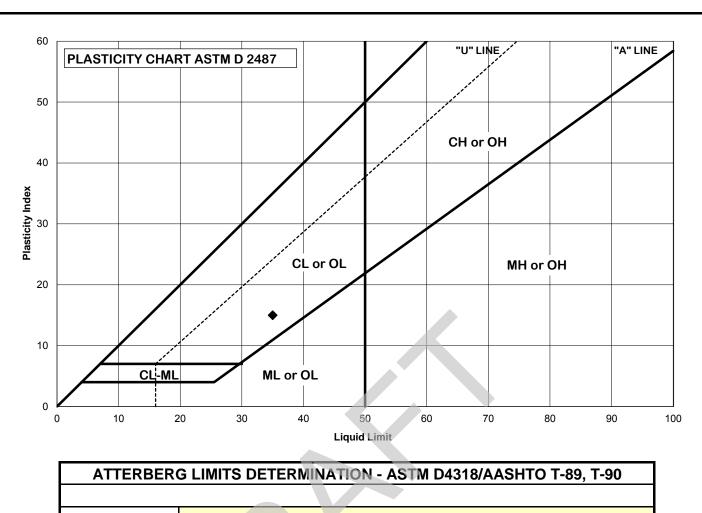
Date: 9/23/2013

Tested By: bh

Checked By: slc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERB	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90								
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA							
Project No.	<mark>18274-</mark> 001	-00							
Boring No.	PZ-12 S3E	3			Natural WC:	#DIV/0!			
Depth, ft.	8 - 10				Preparation:	Wet (as-received)			
Cup No.	. 1028 No. Points:								
Percent Retained or	n No. 40	0		Estimated or	Tested	0.0			
Original sample des	Original sample description: Gray clay (CL4)								

Classification (fraction passing No. 40 sieve) Liquid Limit = 35

Plastic Limit = 20

Plasticity Index = 15

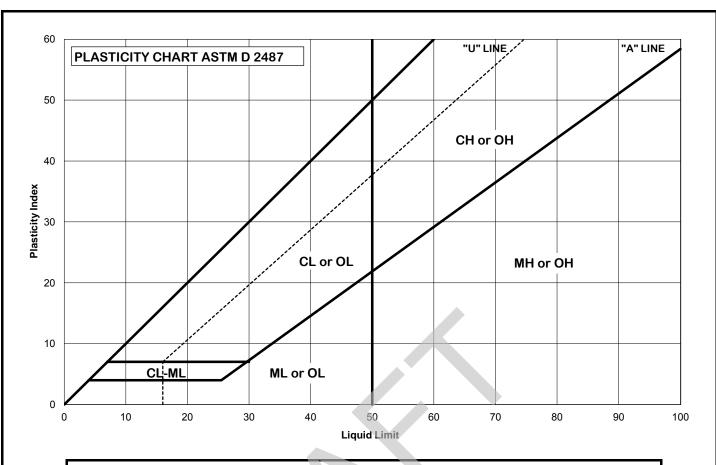
Date: 9/23/2013

Tested By: bh

Checked By: slc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERB	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	<mark>18274-</mark> 001	-00								
Boring No.	PZ-14				Natural WC:	#DIV/0!				
Depth, ft.	0 - 2				Preparation:	Wet (as-received)				
Cup No.	<mark>1028</mark>				No. Points:					
Percent Retained on No. 40 0 Estimated or Tested					0.0					
Original sample de	scription:	Soft brown cl	Priginal sample description: Soft brown clay (CH4)							

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 99

Plastic Limit = 37

Plasticity Index = 62

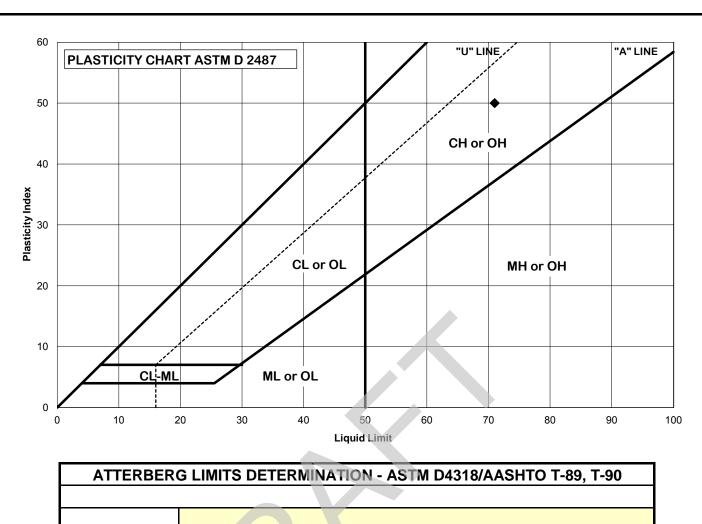
Date: 6/25/2013

Tested By: SC

Checked By: SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERE	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA								
Project No.	<mark>18274-</mark> 001	18274-001-00								
Boring No.	PZ-14				Natural WC:	#DIV/0!				
Depth, ft.	3 - 5				Preparation:	Air Dried				
Cup No.	<mark>1026</mark>				No. Points:					
Percent Retained	on No. 40	0	Estimated or Tested (0.0				
Original sample de	original sample description: Very soft gray clay (CH3)									

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 71
Plastic Limit = 21
Plasticity Index = 50

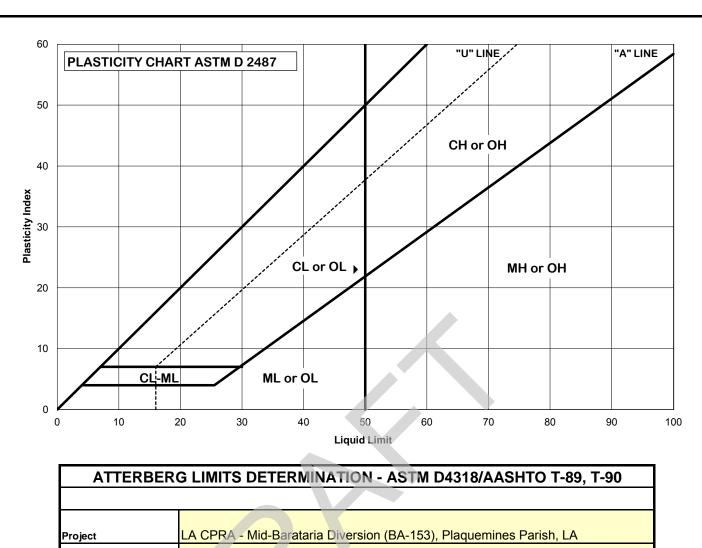
 Date:
 6/27/2013

 Tested By:
 SC

 Checked By:
 OS

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90									
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA									
Project No.	18274-001	8274-001-00								
Boring No.	PZ-14				Natural WC:	#DIV/0!				
Depth, ft.	8 - 10				Preparation:	Air Dried				
Cup No.	1077				No. Points:					
Percent Retained on N	Percent Retained on No. 40 0 Estimated or Tested 0.0									
Original sample descri	ption:	Very soft gray	clay (CL6)							

Classification
(fraction passing No. 40
sieve)
CL

Liquid Limit = 48

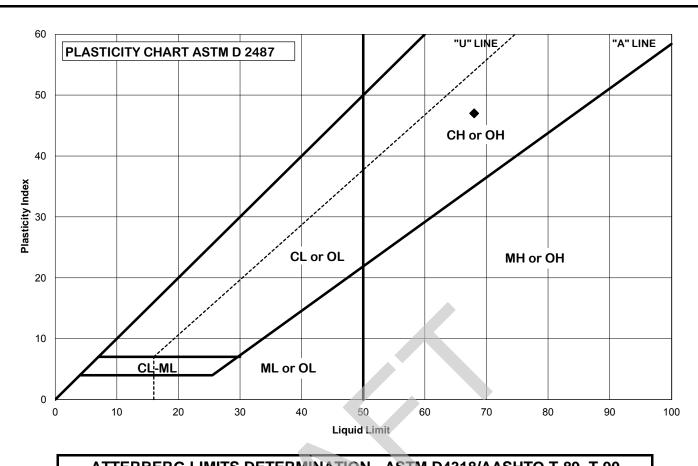
Plastic Limit = 25

Plasticity Index = 23

Date:	6/25/2013
Tested By:	ВН
Checked By:	SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	- Mid-Barat	taria Diver	sion (BA-15	3), Plaquemin	es Parish, LA
Project No.	<mark>18274-0</mark> 0	18274-001-00				
Boring No.	PZ-14	PZ-14			Natural WC:	#DIV/0!
Depth, ft.	13 - 15				Preparation:	Air Dried
Cup No.	1029				No. Points:	
Percent Retained	on No. 40	0		Estimated or	Tested	0.0
Original sample d	escription:	tion: Very soft gray clay (CH3)				

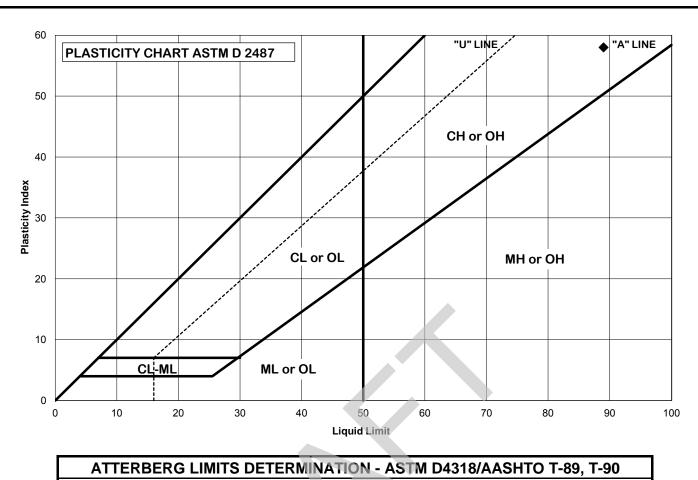
-	•		-
Classification (fraction passing No. 40	Liquid Limit =	68	Date:
sieve)	Plastic Limit =	21	Tested By:
СН	Plasticity Index =	47	Checked By:

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318


6/27/2013

SC

OS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	- Mid-Barata	aria Divers	sion (BA-150	3), Plaquemin	es Parish, LA
Project No.	<mark>18274-0</mark> 01	18274-001-00				
Boring No.	PZ-14				Natural WC:	#DIV/0!
Depth, ft.	23 - 25				Preparation:	Air Dried
Cup No.	1077				No. Points:	
Percent Retained o	n No. 40	o. 40 0 Estimated or Tested 0.0				0.0
Original sample de	escription: Very soft gray clay (CH4)					

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 89
Plastic Limit = 31
Plasticity Index = 58

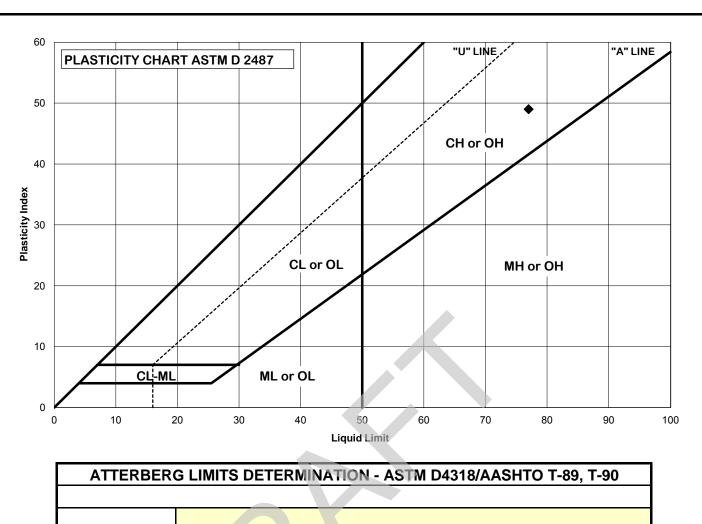
Date: 6/21/2013

Tested By: bh

Checked By: sc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-</mark> 001	18274-001-00				
Boring No.	PZ-14	PZ-14			Natural WC:	#DIV/0!
Depth, ft.	30 - 31.5				Preparation:	Air Dried
Cup No.	1077					
Percent Retained o	on No. 40	Estimated or Tested 0.0				0.0
Original sample de	sample description: Very soft gray clay with silt lenses (CH4)					

Classification (fraction passing No. 40 sieve)

Liquid Limit = 77

Plastic Limit = 28

Plasticity Index = 49

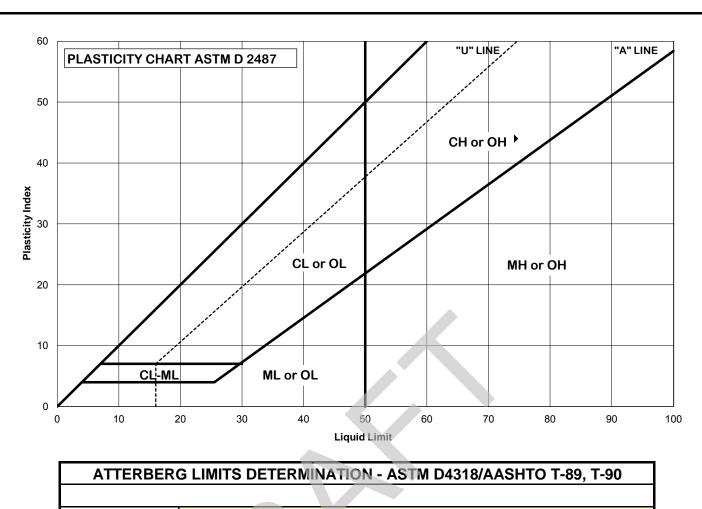
Date: 6/21/2013

Tested By: bh

Checked By: sc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

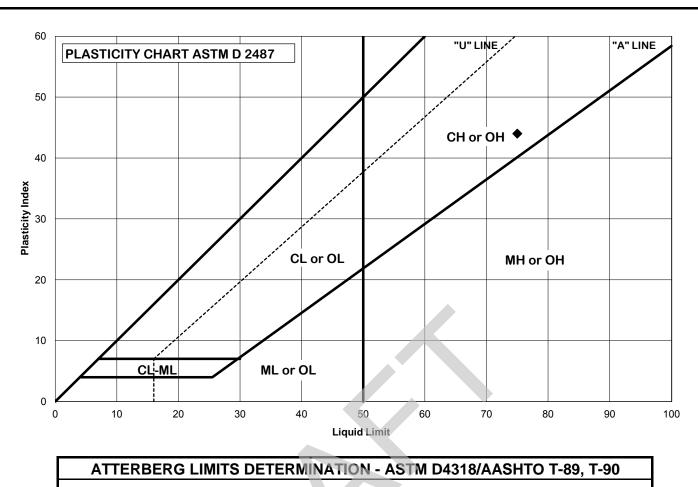
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	- Mid-Barata	aria Divers	sion (BA-153	3), Plaquemin	es Parish, LA
Project No.	<mark>18274</mark> -001	18274-001-00				
Boring No.	PZ-14				Natural WC:	#DIV/0!
Depth, ft.	33 - 35				Preparation:	Air Dried
Cup No.	1077		No. Points:			
Percent Retained	on No. 40	No. 40 0 Estimated or Tested 0.0				0.0
Original sample o	description:	ription: Very soft gray clay (CH3)				

Classification
(fraction passing No. 40
sieve)
СН

Date:	6/21/2013
Tested By:	bh
Checked By:	SC

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-001	18274-001-00				
Boring No.	PZ-14				Natural WC:	#DIV/0!
Depth, ft.	48 - 50				Preparation:	Air Dried
Cup No.	1077	No. Points:				
Percent Retained on N	lo. 40	Estimated or Tested 0.0				0.0
Original sample descr	ample description: Soft gray clay (CH3)					

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 75
Plastic Limit = 31
Plasticity Index = 44

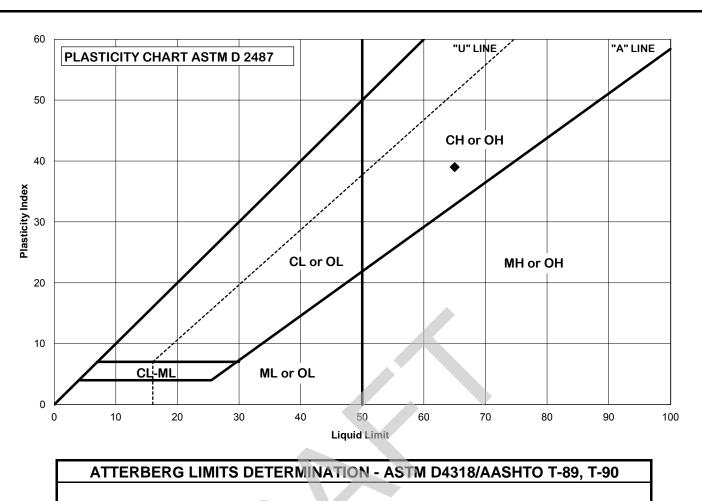
 Date:
 6/21/2013

 Tested By:
 bh

 Checked By:
 sc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-0</mark> 01	18274-001-00				
Boring No.	PZ-14				Natural WC:	#DIV/0!
Depth, ft.	58 - 60				Preparation:	Air Dried
Cup No.	1077				No. Points:	
Percent Retained o	n No. 40	Estimated or Tested 0.0			0.0	
Original sample de	scription:	ription: Soft gray clay (CH3)				

Classification
(fraction passing No. 40 sieve)

CH

CH

Liquid Limit = 65

Plastic Limit = 26

Plasticity Index = 39

Check

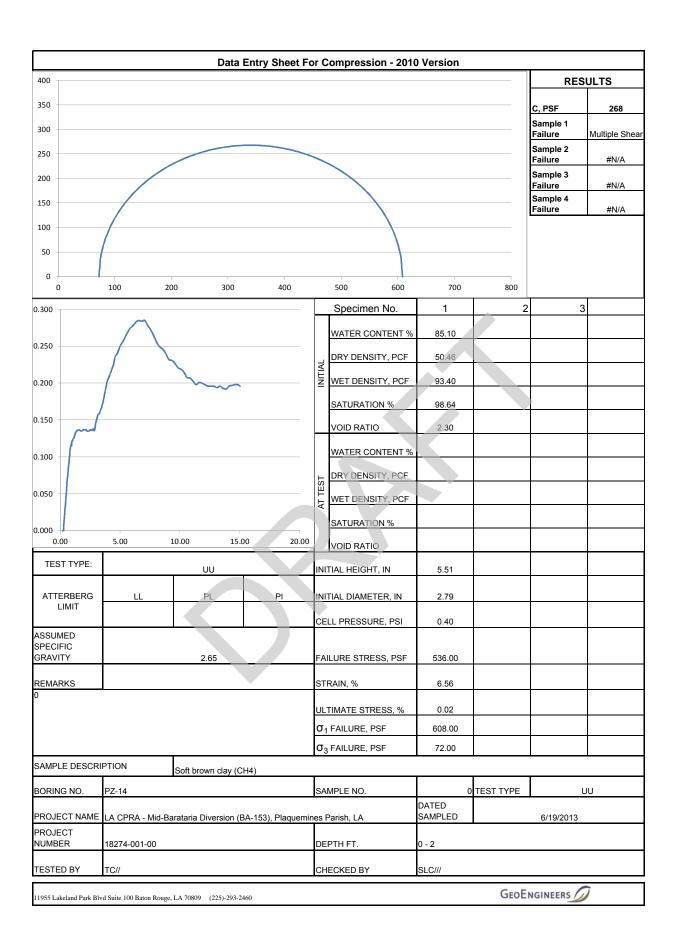
Date: 6/21/2013

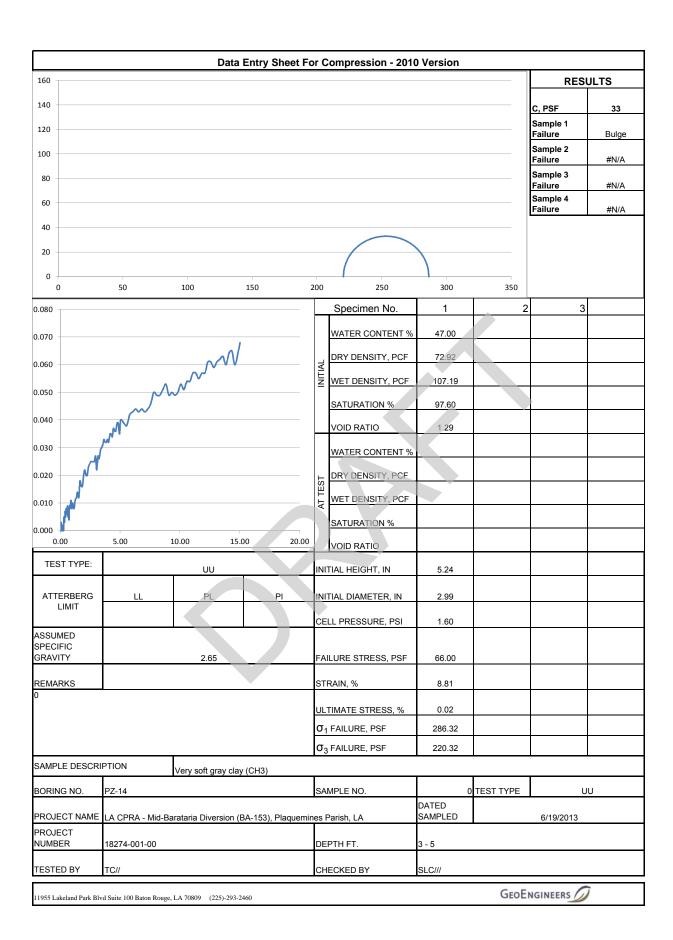
Tested By: bh

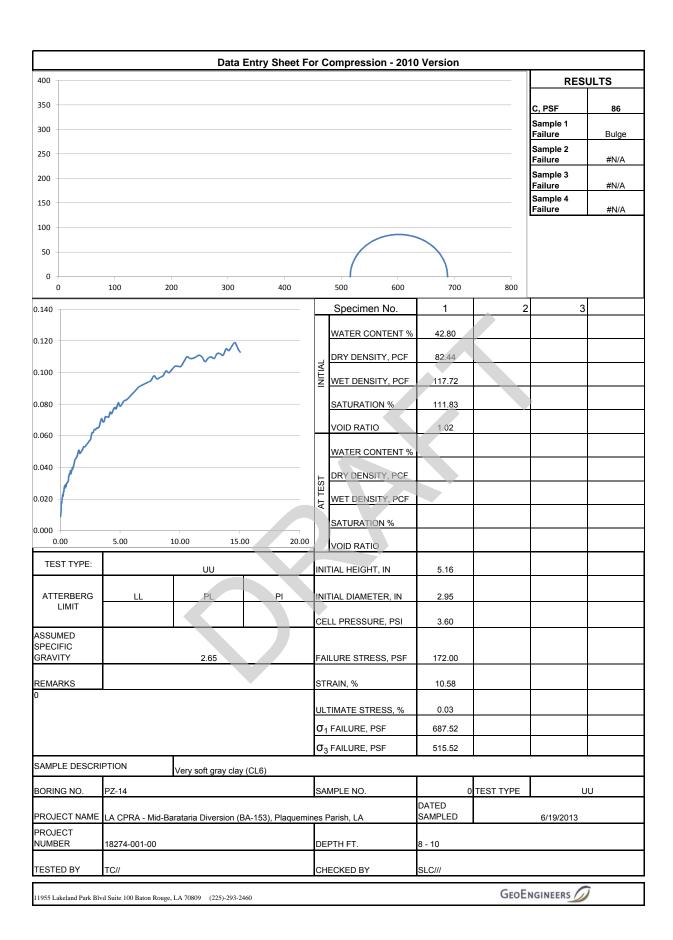
Checked By: sc

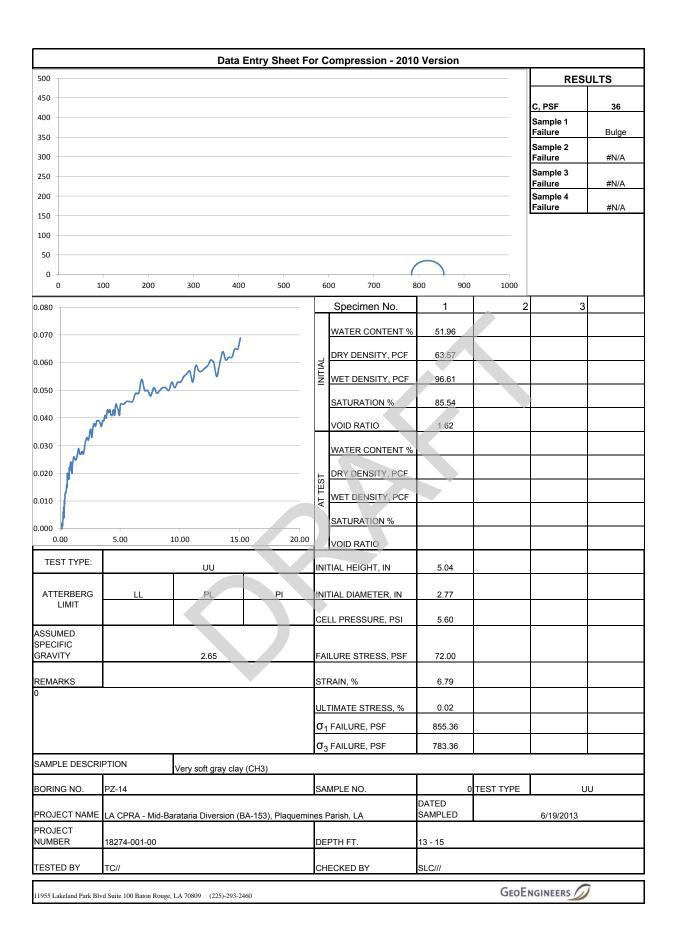
NOTES:

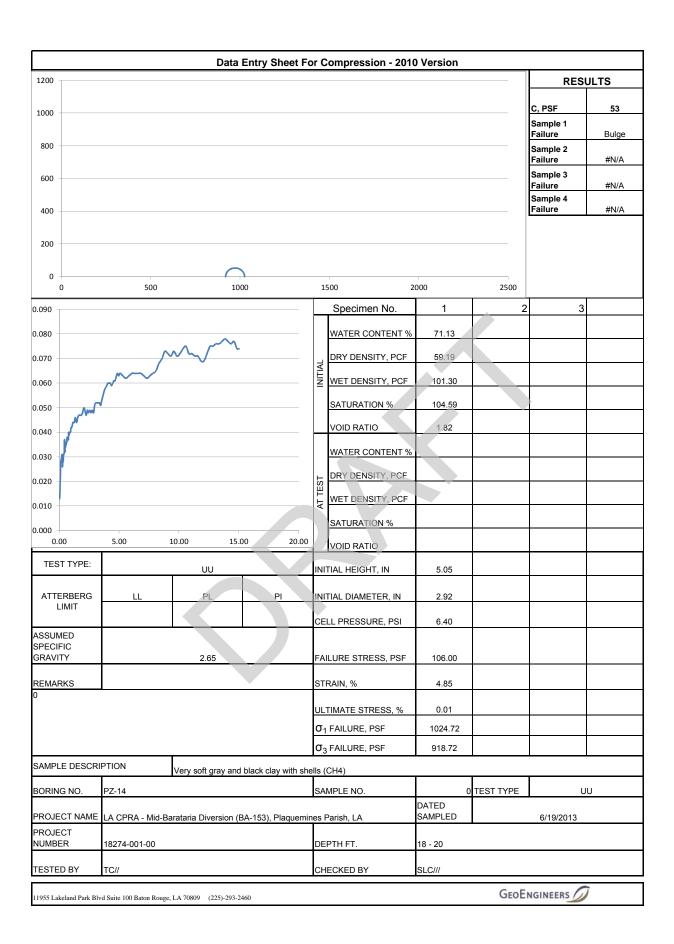
NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

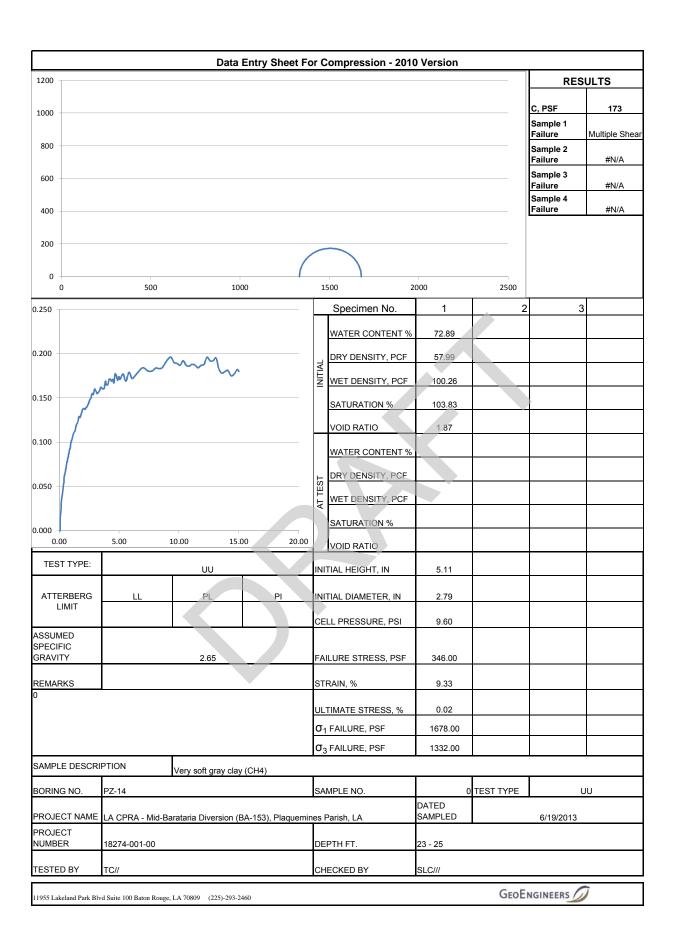

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

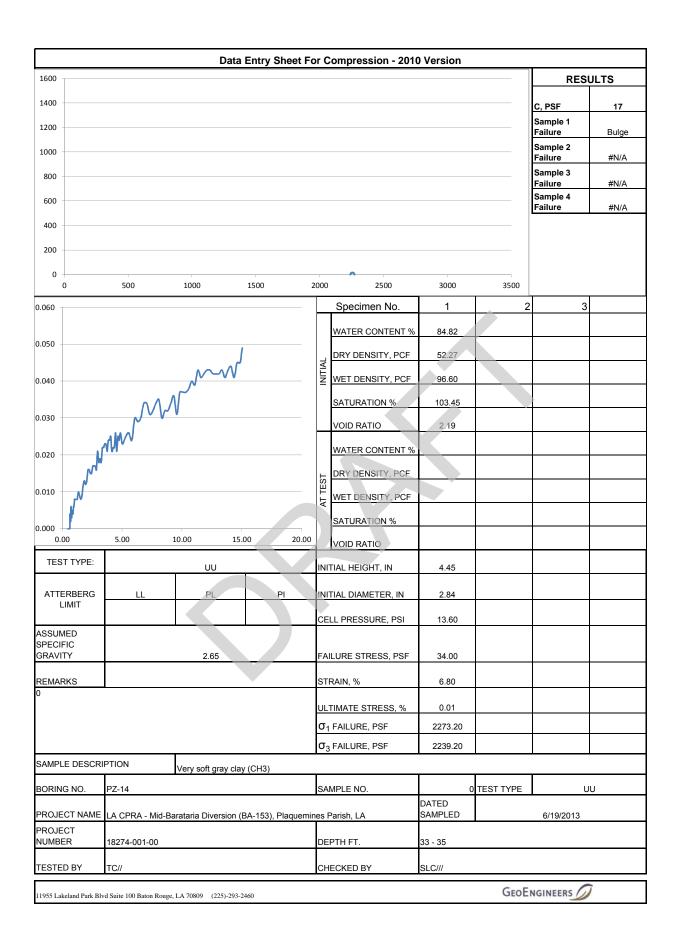


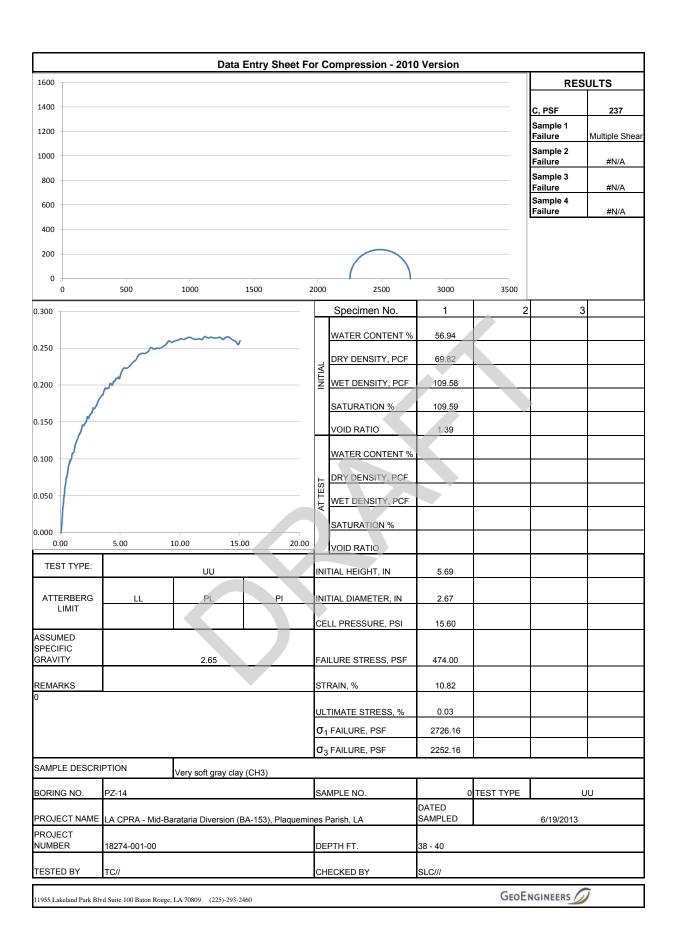

ATTERBERG LIMITS - ASTM D4318

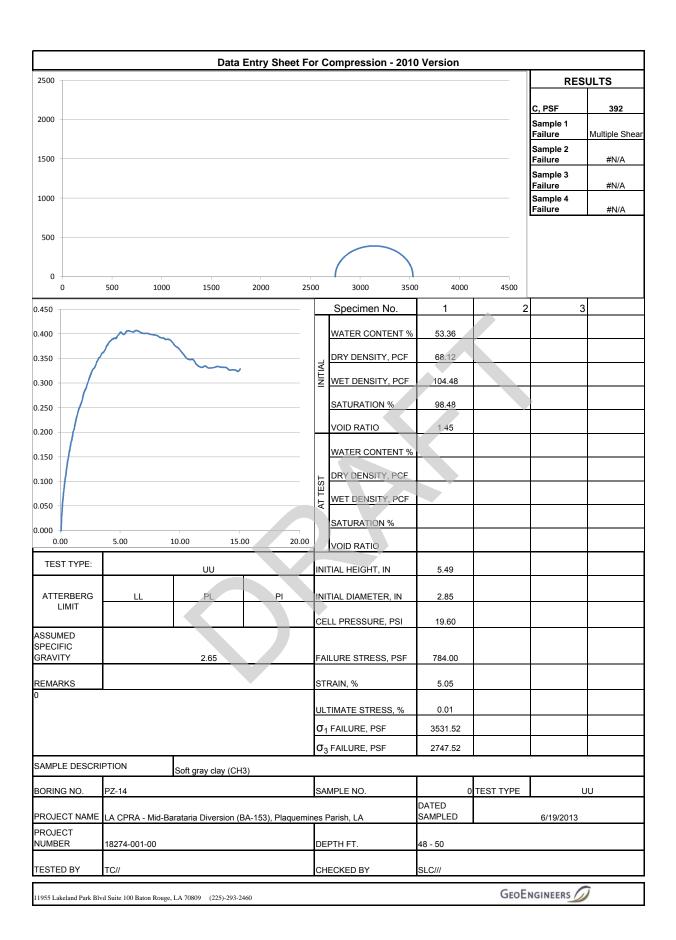

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

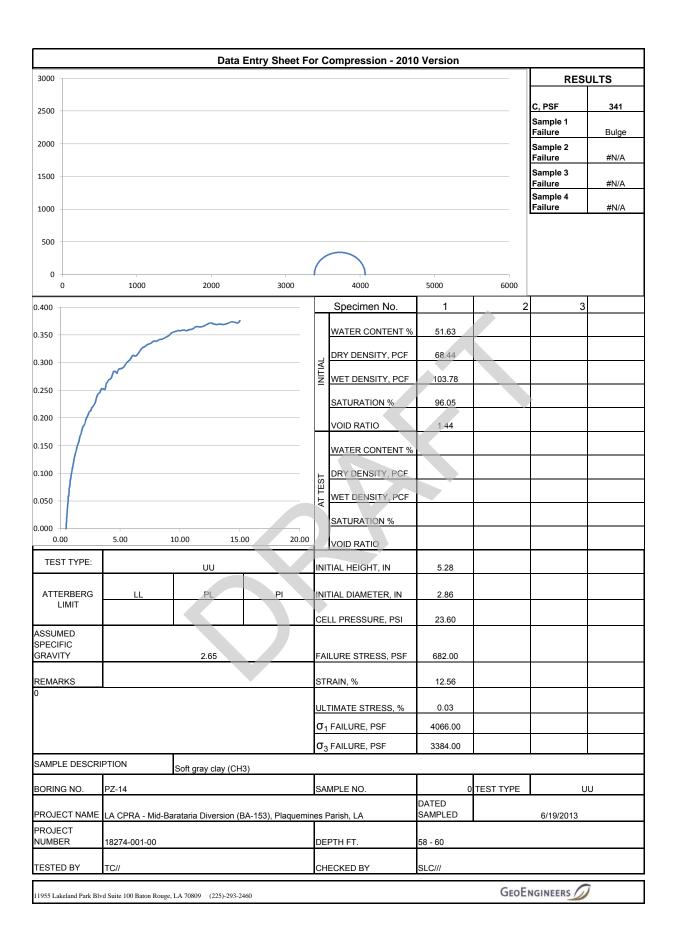

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

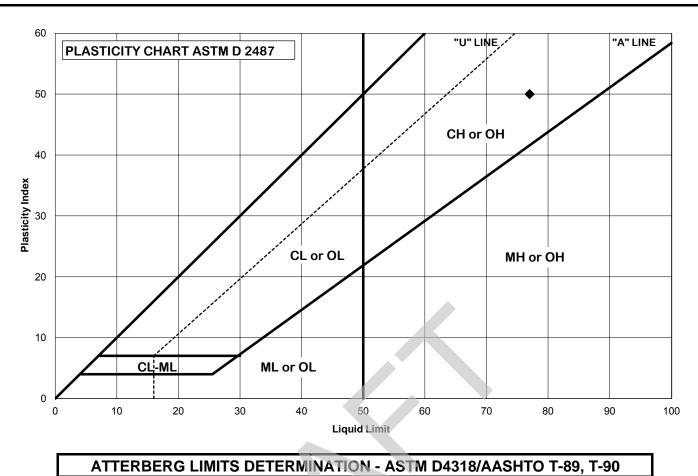












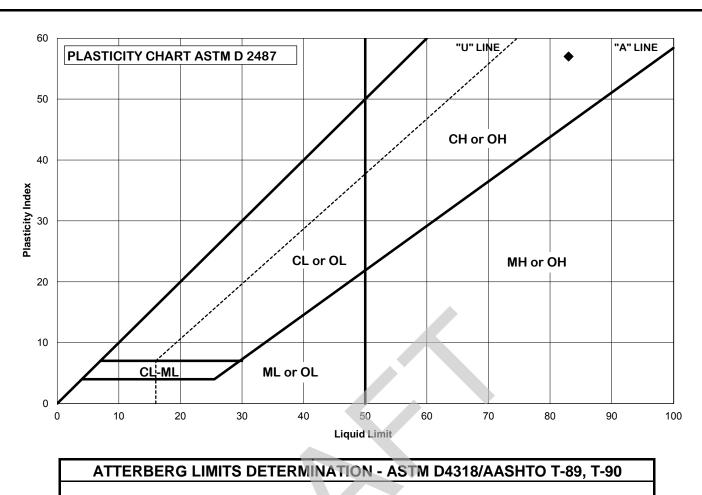
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA -	Mid-Barata	ria Divers	sion (BA-153	3), Plaquemin	es Parish, LA
Project No.	18274-001	18274-001-00				
Boring No.	PZ-15				Natural WC:	#DIV/0!
Depth, ft.	0 - 2				Preparation:	Air Dried
Cup No.	1028	No. Points:				
Percent Retained on N	Percent Retained on No. 40 0 Estimated or Tested 0.0					0.0
Original sample descri	ption:	Stiff brown an	d gray clay	with roots (CH	3)	

Classification	Liquid Limit =	77
(fraction passing No. 40 sieve)	Plastic Limit =	27
СН	Plasticity Index =	50

Date:	6/25/2013		
Tested By:	SC		
Checked By:	SC		

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	18274-001	18274-001-00				
Boring No.	PZ-15		Natural WC:	#DIV/0!		
Depth, ft.	8 - 10		Preparation:	Air Dried		
Cup No.	1028			No. Points:		
Percent Retained on No. 40		0		Estimated or Tested		0.0
Original sample description: Soft brown and gray clay (CH4)						

Classification
(fraction passing No. 40 sieve)

CH

Liquid Limit = 83

Plastic Limit = 26

Plasticity Index = 57

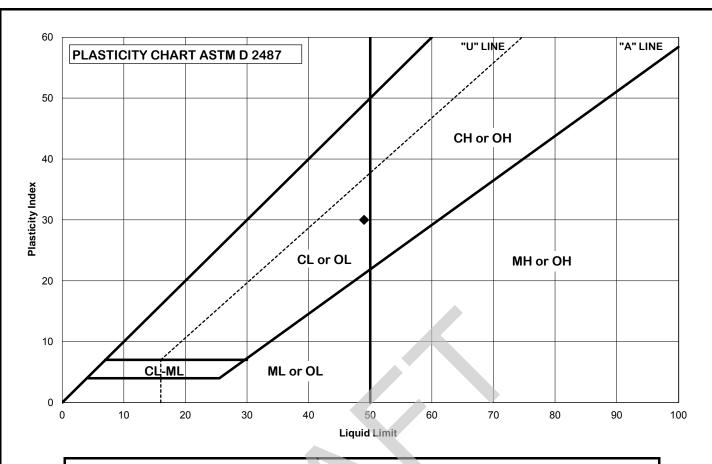
 Date:
 6/25/2013

 Tested By:
 sc

 Checked By:
 sc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

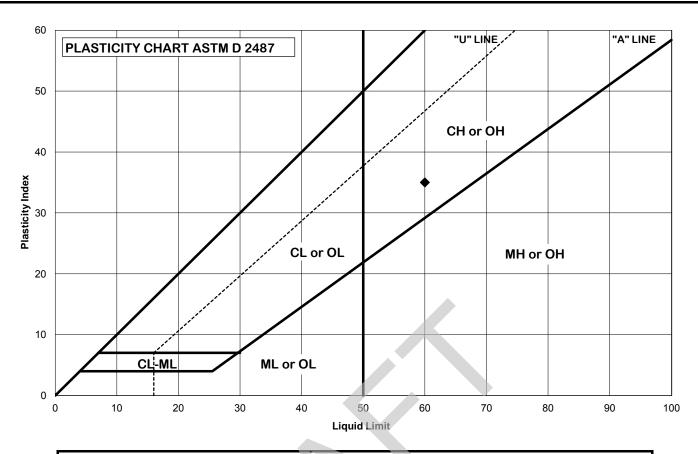
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA				
Project No.	<mark>18274-</mark> 001	18274-001-00				
Boring No.	PZ-15	PZ-15		Natural WC:	#DIV/0!	
Depth, ft.	13.9 - 14.4	13.9 - 14.4		Preparation:	Air Dried	
Cup No.	1026			No. Points:		
Percent Retained on No. 40		0		Estimated or Tested		0.0
Original sample d	Original sample description: Very soft brown and gray clay (CL6)					

Classification	Liquid Limit =	49	Date:
(fraction passing No. 40 sieve)	Plastic Limit =	19	Tested By:
CL	Plasticity Index =	30	Checked By:

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.



ATTERBERG LIMITS - ASTM D4318

6/27/2013 SC OS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

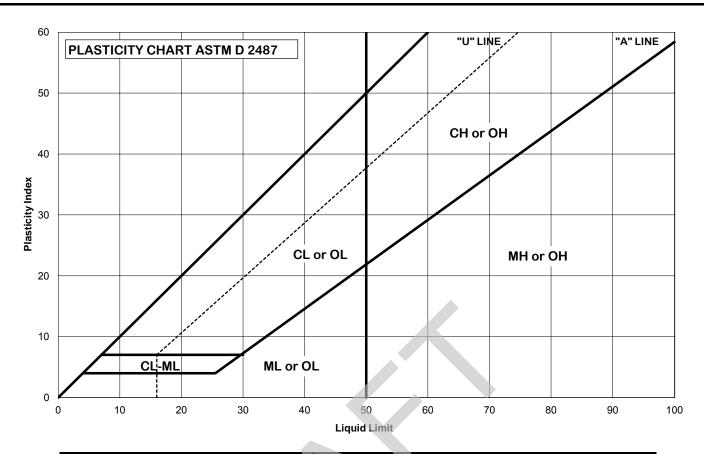
ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project	LA CPRA	- Mid-Barata	aria Divers	sion (BA-153	3), Plaquemin	es Parish, LA
Project No.	18274-00	18274-001-00				
Boring No.	PZ-15				Natural WC:	#DIV/0!
Depth, ft.	18 - 20				Preparation:	Air Dried
Cup No.	1077				No. Points:	
Percent Retained on No. 40		0		Estimated or	Tested	0.0
Original sample d	description:	Very soft bro	wn and gray	clay (CH2)		

Classification (fraction passing No. 40	Liquid Limit =	60
sieve)	Plastic Limit =	25
СН	Plasticity Index =	35

Date:	6/21/2013
Tested By:	bh
Checked By:	sc

N	n	T	FS	٠.

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERI	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00°	18274-001-00				
Boring No.	PZ-15	PZ-15			Natural WC:	#DIV/0!
Depth, ft.	23.5 - 24.4	1			Preparation:	Air Dried
Cup No.	<mark>1026</mark>				No. Points:	
Percent Retained on No. 40		0		Estimated or	Tested	0.0
Original sample d	Very soft bro	wn, tan, and	I gray clay (CH	4)		

Classification	Liquid Limit =	136	
(fraction passing No. 40 sieve)	Plastic Limit =	35	Test
СН	Plasticity Index =	101	Check

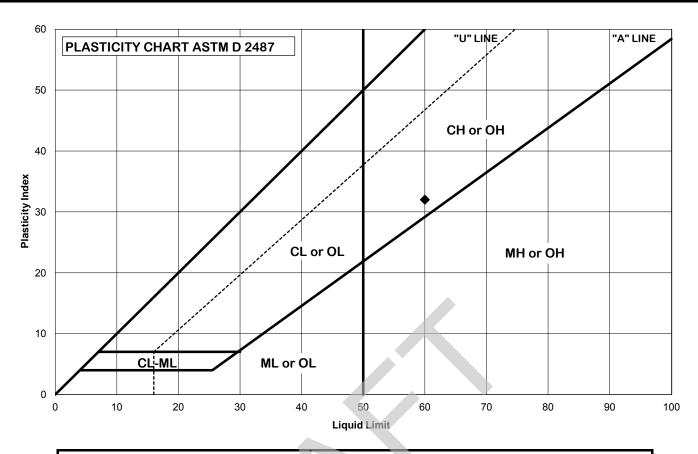
Date: 6/27/2013

Tested By: SC

Checked By: OS

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-

ATTERB	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	LA CPRA	- Mid-Barata	aria Divers	sion (BA-153	3), Plaquemin	es Parish, LA	
Project No.	<mark>18274-0</mark> 0	18274-001-00				•	
Boring No.	PZ-15				Natural WC:	#DIV/0!	
Depth, ft.	23 - 23.5				Preparation:	Air Dried	
Cup No.	1077				No. Points:		
Percent Retained	0		Estimated or	Tested	0.0		
Original sample de	Original sample description:			Very soft tan and gray clay (CH2)			

Classification	Liquid Limit =	60	
(fraction passing No. 40 sieve)	Plastic Limit =		Tes
СН	Plasticity Index =	32	Chec

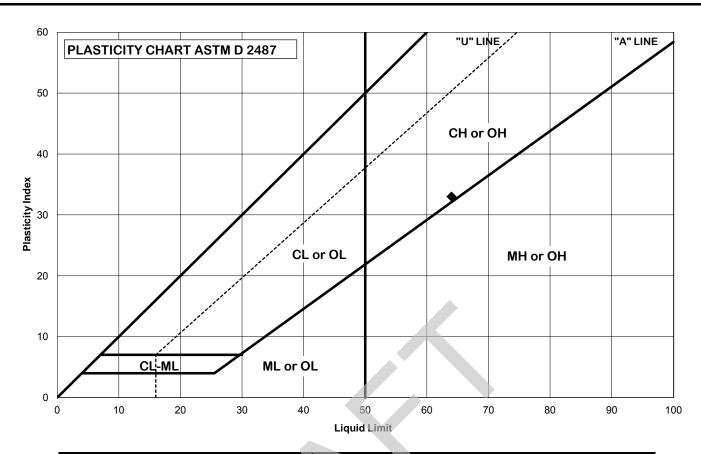
Date: 6/21/2013

Tested By: bh

Checked By: sc

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	18274-00 ²	18274-001-00				
Boring No.	PZ-15	PZ-15			Natural WC:	#DIV/0!
Depth, ft.	29.2 - 30				Preparation:	Air Dried
Cup No.	1029				No. Points:	
Percent Retained on No. 40		0		Estimated or	Tested	0.0
Original sample description:		Very soft tan and gray clay (CH3)				

Classification (fraction passing No. 40	Liquid Limit = Plastic Limit =	Te
cH	Plasticity Index =	Che

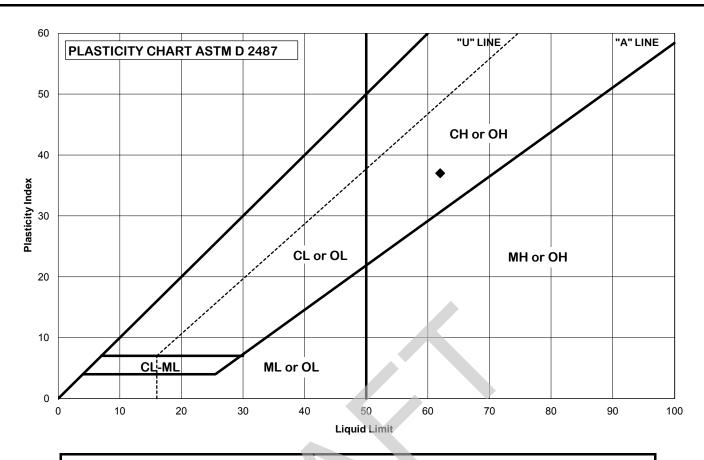
Date: 6/27/2013

Tested By: BH

Checked By: OS

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

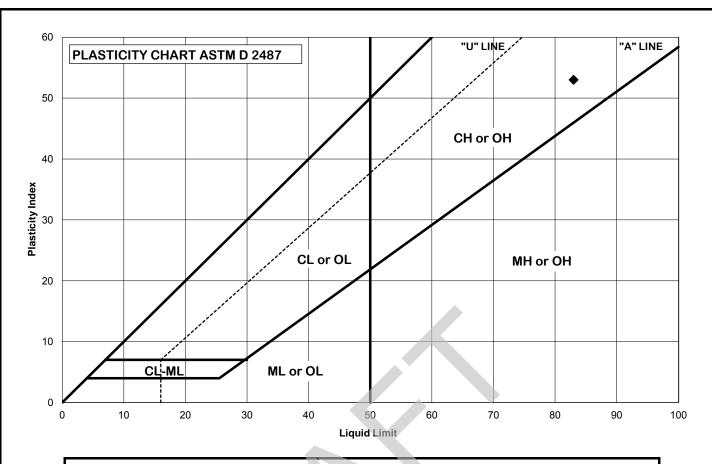
ATTER	ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90					
Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA						
Project No.	<mark>18274-0</mark> 01	18274-001-00				
Boring No.	PZ-15	PZ-15			Natural WC:	#DIV/0!
Depth, ft.	48.5 - 50				Preparation:	Air Dried
Cup No.	1028				No. Points:	
Percent Retained	0	Estimated or Tested		0.0		
Original sample d	escription:	Soft gray and	I tan clay (C	H3)		

Classification	Liquid Limit =	62	
(fraction passing No. 40 sieve)	Plastic Limit =	25	
СН	Plasticity Index =	37	

Date:	6/27/2013	
Tested By:	ВН	
Checked By:	OS	

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.


This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

ATTERBERG LIMITS - ASTM D4318

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460

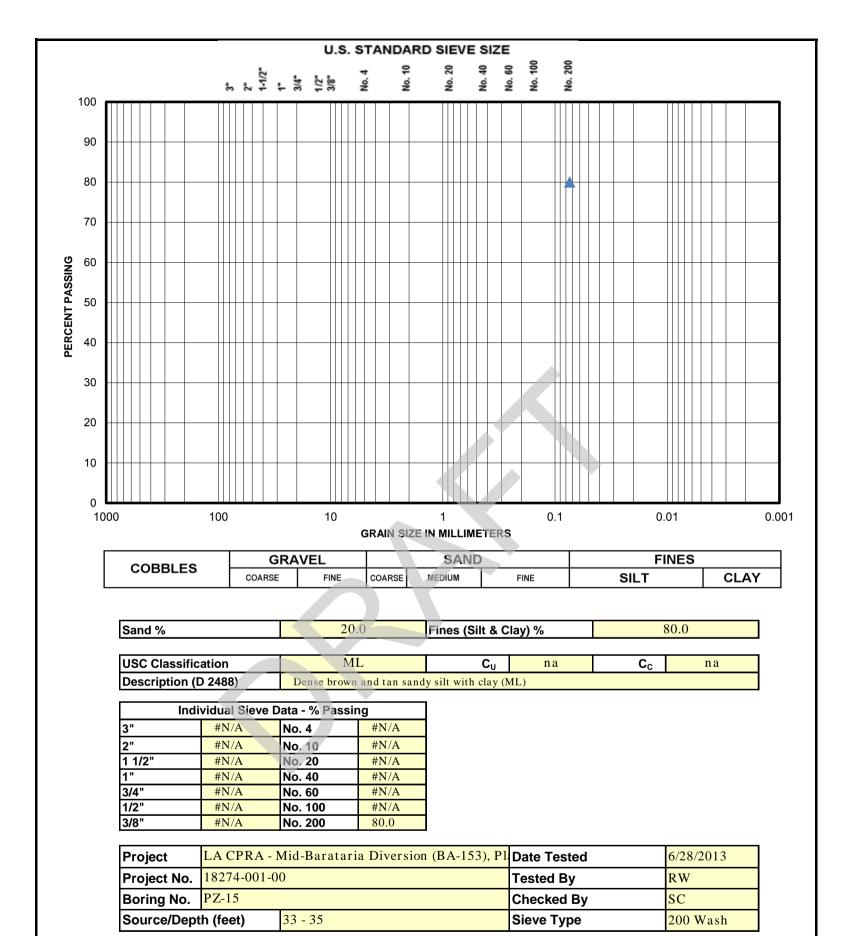
ATTERBERG LIMITS DETERMINATION - ASTM D4318/AASHTO T-89, T-90						
Project	Project LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA					
Project No.	<mark>18274-</mark> 001	18274-001-00				
Boring No.	PZ-15	PZ-15 Natural WC: #DIV/0!				
Depth, ft.	58 - 60	58 - 60			Preparation:	Air Dried
Cup No.	1028	1028 No. Points:				
Percent Retained	ercent Retained on No. 40 0 Estimated or Tested 0.0				0.0	
Original sample description: Medium gray clay (CH4)						

Classification (fraction passing No. 40	Liquid Limit =		Date:
sieve)	Plastic Limit =	30	Tested By:
СН	Plasticity Index =	53	Checked By:

NOTES:

NOTE: This test is performed only on that portion of the soil that passes the No. 40 sieve. Therefore, the relative contribution of this portion of the soil to the properties of the sample as a whole must be considered when using these tests to evaluate properties of a soil.

This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc. Test results are applicable only to the specific sample on which the test was performed, and should not be interpreted as representative of samples obtained at other times or locations, or generated by other operations or processes. Test(s) were performed in general accordance with the the referenced method(s). Any deviations are documented in the notes section.

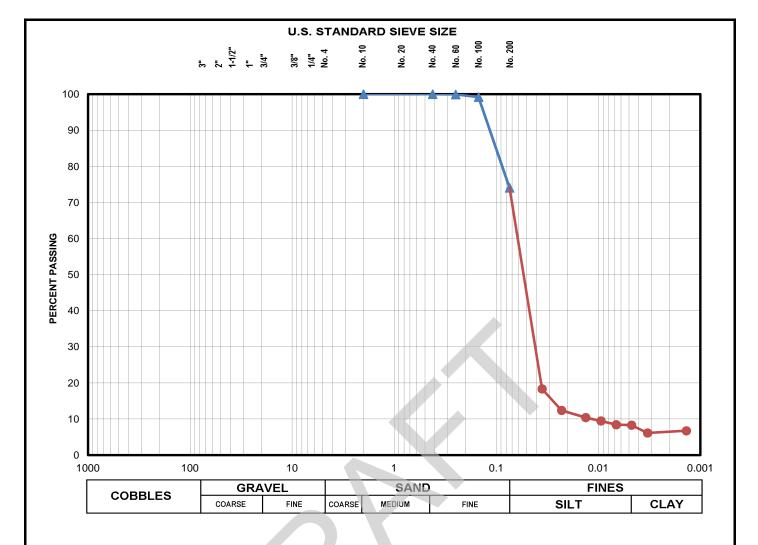

ATTERBERG LIMITS - ASTM D4318

6/27/2013

BH OS

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

11955 Lakeland Park Blvd Suite 100 Baton Rouge, LA 70809 (225)-293-2460


Method A was used for the 200 Wash

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

ASTM D 1140 ANALYSIS OF SOIL FINER THAN No. 200 SIEVE

LA CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, LA

Description (D 2488)	Medium dense gray sandy silt with clay (ML)
Podeription (P 2 100)	Wedidin dense gray saidy site with clay (WE)

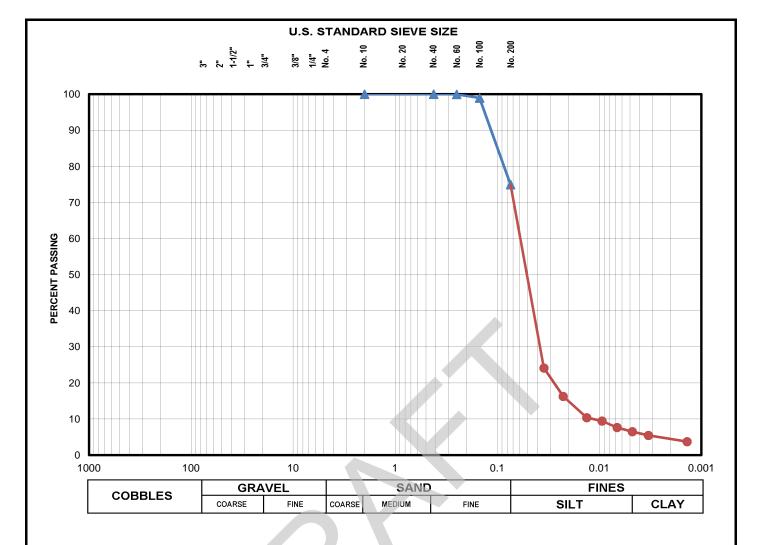
Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	99.9	
3/8"	100.0	No. 100	99.2	
1/4"	100.0	No. 200	74.1	

Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	1146
Hydro jar ID:	1156
*assumed unless noted	

LA CPRA - Mid-Barataria Diversion (BA-15 Date Tested 7/2/2013

Project No.	18274-001-00	Tested By	RW
Sample ID.	PZ-15	Checked By	SC
Source/Depth (feet)	40 - 41.5		

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.



Project

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish,
18274-001-00

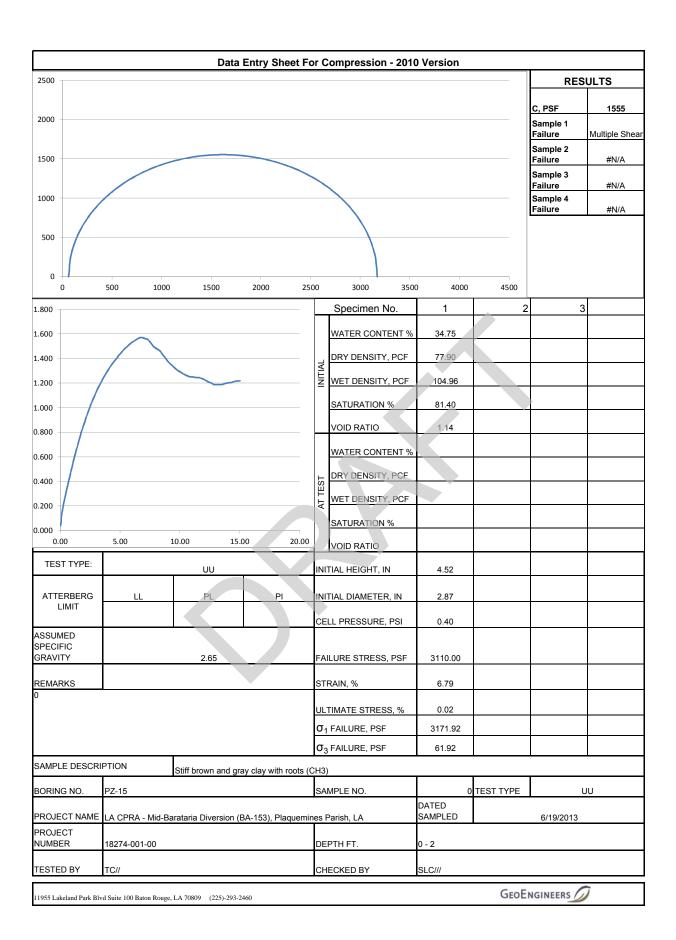
11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809

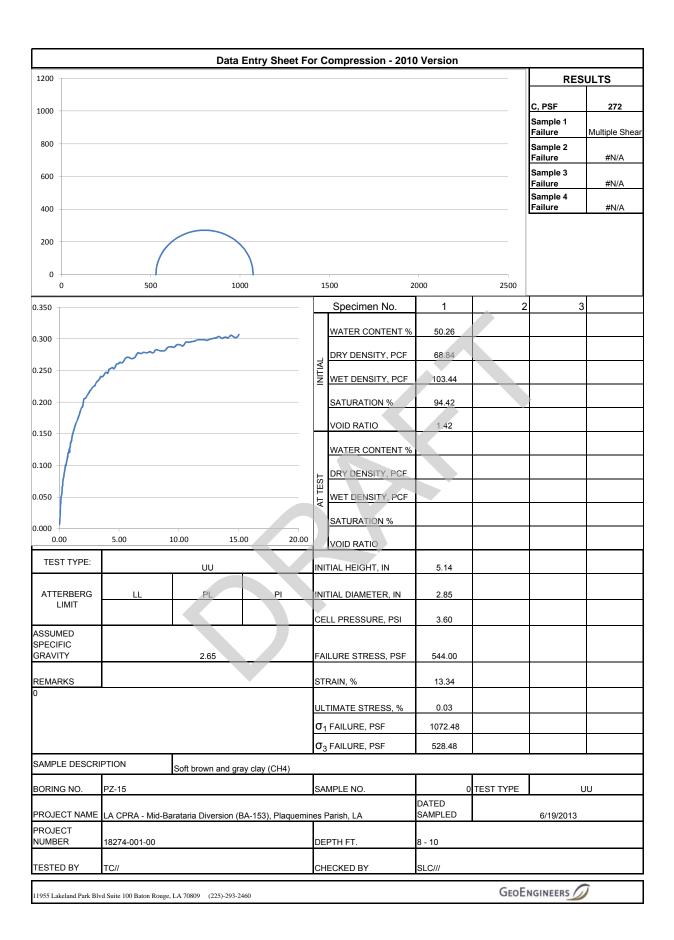
Description (D 2488)	Medium dense gray sandy silt with clay (ML)
= 000: p.:o:: (= = :00)	institution of the state of the

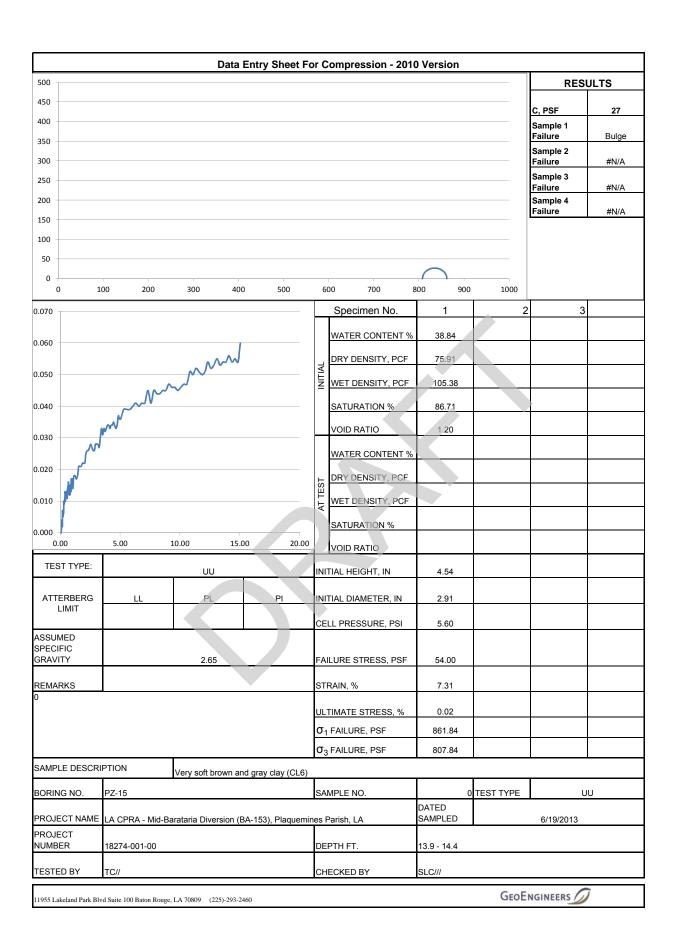
Individual Sieve Data - % Passing				
3"	100.0	No. 4	100.0	
2"	100.0	No. 10	100.0	
1 1/2"	100.0	No. 20	100.0	
1"	100.0	No. 40	100.0	
3/4"	100.0	No. 60	99.9	
3/8"	100.0	No. 100	98.9	
1/4"	100.0	No. 200	74.9	

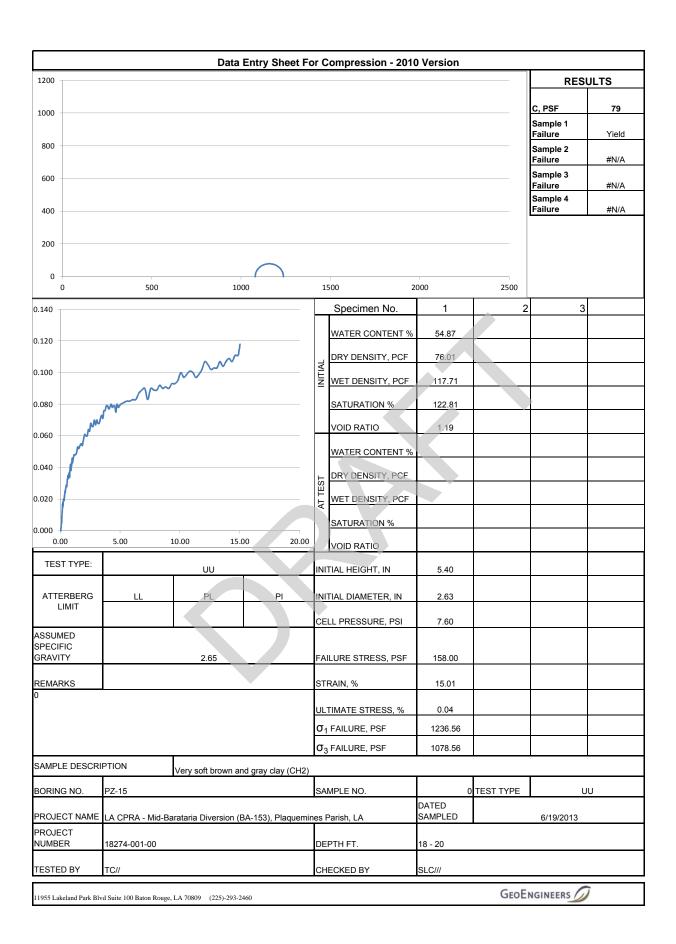
Specific Gravity*	2.65
Dispersion Device	Type A
Dispersion Time	1 min.
Dispersing Agent	$(NaPO_3)_6$
Hydrometer Type	ASTM 152 H
Hydrometer ID:	68515
Hydro jar ID:	1158
*assumed unless noted	

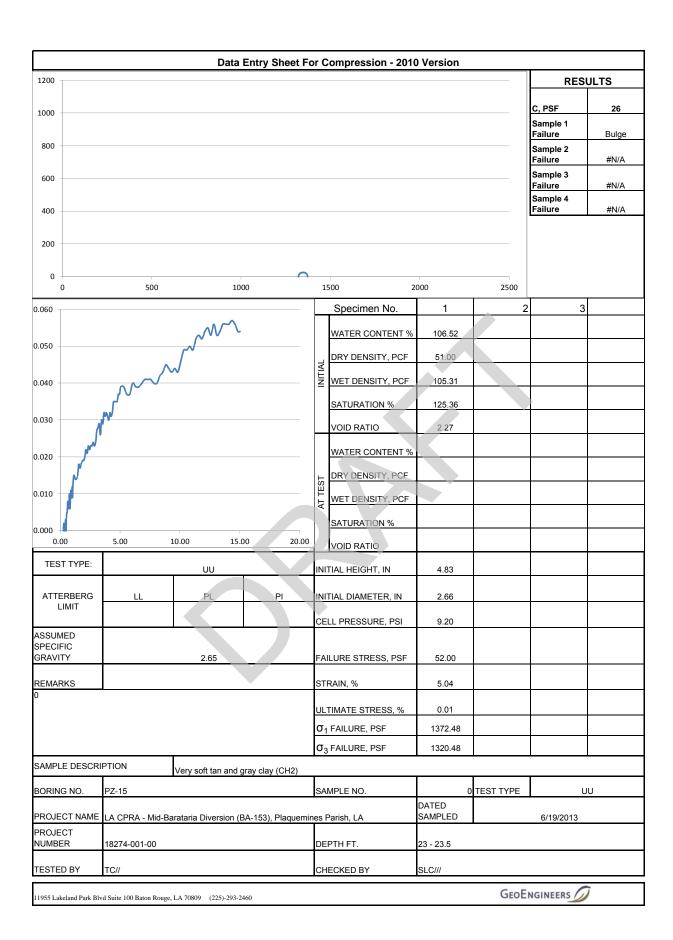
Project	LA CPRA - Mid-Barataria Diversion (BA-15	Date Tested	7/2/2013
Project No.	18274-001-00	Tested By	RW
Sample ID.	PZ-15	Checked By	SC
Source/Depth (feet)	43.5 - 45		

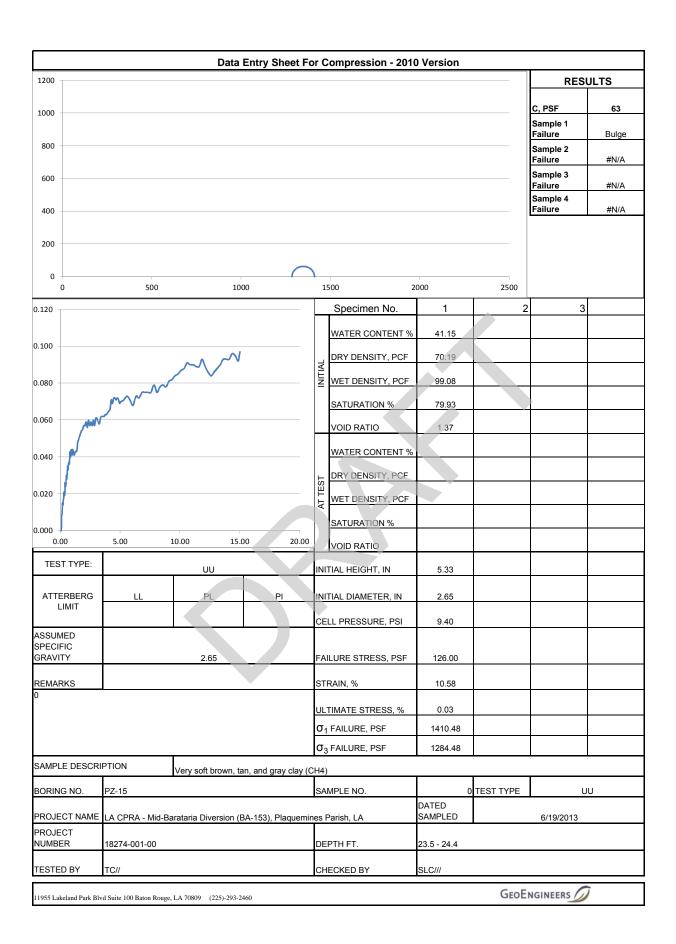

NOTE: Test was performed in general accordance with the referenced test method. Test results are applicable only to the specific sample on which they were performed, and should not be interpreted as representative of any other samples obtained at other times, depths or locations or generated by separate operations or processes. This report may not be reproduced, except in full, without written approval of GeoEngineers, Inc.

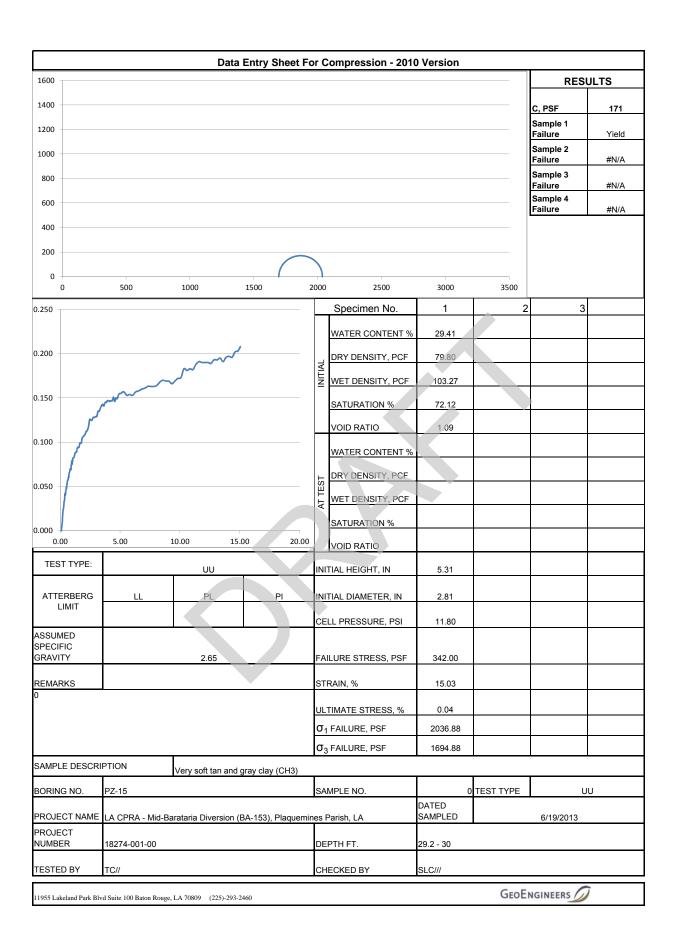


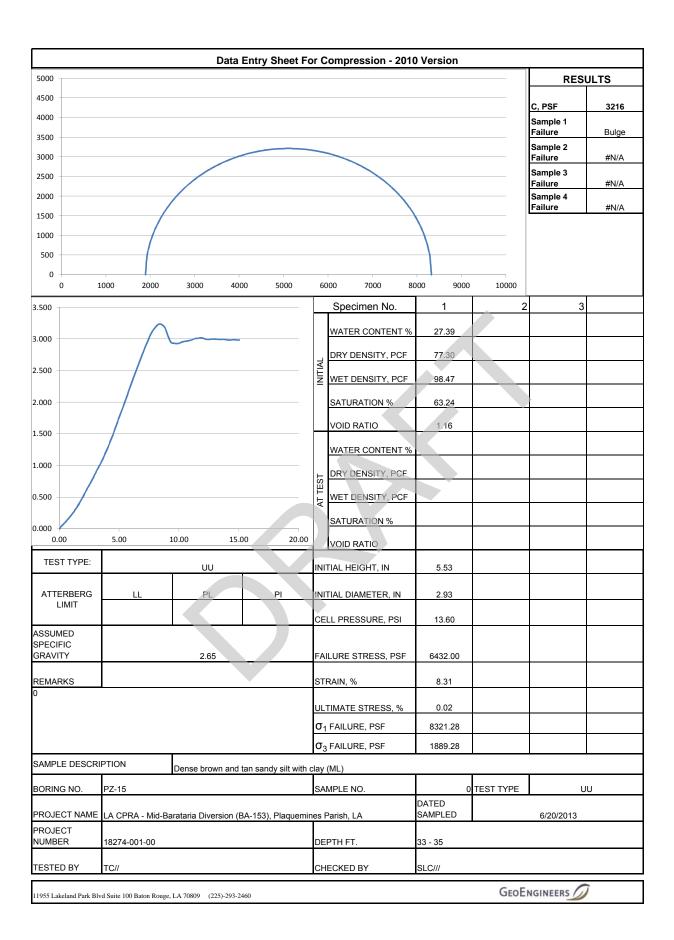

ASTM D 422 SOIL PARTICLE SIZE ANALYSIS

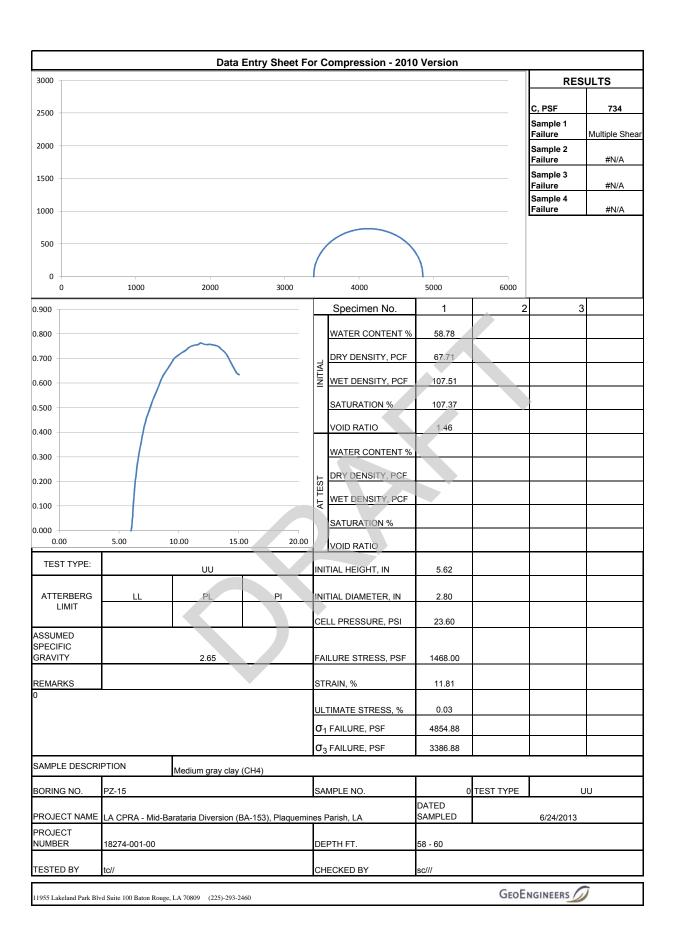

CPRA - Mid-Barataria Diversion (BA-153), Plaquemines Parish, 18274-001-00


11955 Lakeland Park Blvd. Suite 100 Baton Rouge, LA 70809









Hydraulic Conductivity Triaxial Test

11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:	Mid	Barataria Dive	rsion
Project Manager: _	MP	Date Completed: _	9/9/2013 T	echnician:	MP
Boring No.:	IS-2A	Depth:	38-39 S	Sample No.:	
CK'd by:	RLJ	Date CK'd:	9/9/2013	_	
SAMPLE PR	EPARATION:	UNDISTURBED			
METHOD OF CO	OMPACTION:	N/A			
TESTIN	NG METHOD:	METHOD F			
TYPE S	SOIL & USCS				
FIELD MC	DISTURE (%): _N	J/A	LAB MC	DISTURE (%):	
INITIAL DIA	METER (cm):	7.092	FINAL DIAM	IETER** (cm):	7.046
INITIAL L	ENGTH (cm):	10.008	FINAL LE	NGTH** (cm):	9.944
INITIAL MOISTURE CO	ONTENT (%):	41.2	FINAL MOISTURE C	ONTENT (%):	31.2
INITIA	AL WET WT.:	703.1 gms.	FIN	AL WET WT.:	669.5
CONSOLI	DATED (Y/N):	yes	BACKPRE	SSURE (psi):	75.0
CELL PRE	SSURE (psi):	85	EFFECTIVE PRE	SSURE (psi):	10.0
INITIAL DRY DEN	SITY (lbs/ft ³):	78.7	A	ASSUMED G _{S:}	2.80
% C0	OMPACTION: _		FINAL SATU	JRATION (%):	Not Calculated due to
FINAL DRY DEN	SITY (lbs/ft ³):	82.2		alterna	ate layers of Clay and Sand
		B PARAMETER CK.:	yes		
		AVERAGE K _{sat} * (cm/s):	1.42×10 ⁻⁶		
	MAXII	MUM GRADIENT USED:	11.0		
		MUM GRADIENT USED:		-	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	510 (5)2111 0025.	0.0		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.: B13-018	Project Name:	Mid Ba	rataria Dive	ersion
Project Manager: MP	Date Completed:	9/6/2013 Tec	nnician:	MP
Boring No.: IS-2A	Depth:	55-55.5 San	nple No.:	
CK'd by: RLJ	Date CK'd:	9/9/2013	_	
SAMPLE PREPARATION	: UNDISTURBED			
METHOD OF COMPACTION	:N/A			
TESTING METHOD	: METHOD F			
TYPE SOIL & USCS	3			
FIELD MOISTURE (%)	: N/A	LAB MOIS	TURE (%):	
INITIAL DIAMETER (cm)	7.214	FINAL DIAMET	ER** (cm):	7.159
INITIAL LENGTH (cm)	8.407	FINAL LENG	TH** (cm):	8.344
INITIAL MOISTURE CONTENT (%)	: 46.9	FINAL MOISTURE CON	TENT (%):	40.0
INITIAL WET WT.	:598	FINAL	WET WT.:	577.3
CONSOLIDATED (Y/N)	: yes	BACKPRESS	URE (psi):	75.0
CELL PRESSURE (psi)	: 85	EFFECTIVE PRESS	URE (psi):	10.0
INITIAL DRY DENSITY (lbs/ft³)	: 73.9	ASS	UMED G _{S:}	2.80
% COMPACTION	:	FINAL SATURA	TION (%):	Not Calculated due to
FINAL DRY DENSITY (lbs/ft ³)	: 76.7		alterna	ate layers of Clay and Sand
	B PARAMETER CK.:	yes		
		_		
	AVERAGE K _{sat} * (cm/s):	3.37x10 ⁻⁷		
N.	MAXIMUM GRADIENT USED:	26.7		
	MINIMUM GRADIENT USED:		•	
3	WINNING WINDLEN I USED.	13.8		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:	Mid Barataria Diversion		
Project Manager: _	ect Manager: MP		9/13/2013	Technician:	MP
Boring No.:	IS-3A	Depth:	29-30	_ Sample No.:	
CK'd by:	RLJ	Date CK'd:	9/13/2013		
2445/5 55					
	EPARATION: _				
METHOD OF CO	OMPACTION: _	N/A			9
TESTI	NG METHOD: _	METHOD F			
TYPE	SOIL & USCS				
FIELD MC	DISTURE (%): _	N/A	LA	B MOISTURE (%): _	
INITIAL DIA	METER (cm):	7.153	FINAL [DIAMETER** (cm): _	7.105
INITIAL L	ENGTH (cm):	7.765	FINA	L LENGTH** (cm):	7.714
INITIAL MOISTURE C	ONTENT (%):	38.6	FINAL MOISTUR	RE CONTENT (%):	37.8
INITIA	AL WET WT.:	565.2		FINAL WET WT.:	553.3
CONSOLII	DATED (Y/N): _	yes	BACK	(PRESSURE (psi): _	75.0
CELL PRE	SSURE (psi): _	85.0	EFFECTIVE	PRESSURE (psi): _	10.0
INITIAL DRY DEN	SITY (lbs/ft ³):	81.6		ASSUMED G _{S:}	2.70
% C0	OMPACTION: _		FINAL S	SATURATION (%):	96.6
FINAL DRY DEN	SITY (lbs/ft ³):	81.9	spec	imen had alternate la	yers of clay and silty sand
		B PARAMETER CK.:	yes		
		AVERAGE K _{sat} * (cm/s):	1.64x10 ⁻⁷		
	MAX	IMUM GRADIENT USED:	24.0		
	MIN	IMUM GRADIENT USED:	10.6		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

Hydraulic Conductivity Triaxial Test

11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:	Mid Barataria Diversion			
Project Manager: _	MP	Date Completed:	9/17/2013	Technician:	MP	
Boring No.:	IS-3A	Depth:	35-36	Sample No.:	200	
CK'd by:	RLJ	Date CK'd:	9/18/2013			
SAMPLE PR	EPARATION:	UNDISTURBED				
METHOD OF CO	OMPACTION: .	N/A				
TESTI	NG METHOD:	METHOD F			700 T	
TYPE	SOIL & USCS					
FIELD MC	DISTURE (%): .	N/A	LA	B MOISTURE (%):		
INITIAL DIA	METER (cm):	7.158	FINAL	DIAMETER** (cm):	7.109	
INITIAL L	ENGTH (cm):	9.540	FINA	L LENGTH** (cm):	9.477	
INITIAL MOISTURE C	ONTENT (%):	40.9	FINAL MOISTUR	RE CONTENT (%):	40.6	
INITI	AL WET WT.:	672		FINAL WET WT.:	656.8	
CONSOLII	DATED (Y/N):	yes	BACK	(PRESSURE (psi):	75.0	
CELL PRE	SSURE (psi):	85	EFFECTIVE	PRESSURE (psi):	10.0	
INITIAL DRY DEN	ISITY (lbs/ft ³):	77.6		ASSUMED G _{S:}	2.60	
% C	OMPACTION:		FINAL S	SATURATION (%):	93.4	
FINAL DRY DEN	ISITY (lbs/ft ³):	77.5	spec	imen had alternate la	ayers of clay and silty sand	
		B PARAMETER CK.:	yes			
		AVERAGE K _{sat} * (cm/s):	3.17x10 ⁻⁷			
	MAX	XIMUM GRADIENT USED:	17.1			
	MII	NIMUM GRADIENT USED:	7.3			

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

Hydraulic Conductivity Triaxial Test

11638 Sun Belt Court Baton Rouge, Louisiana 70809

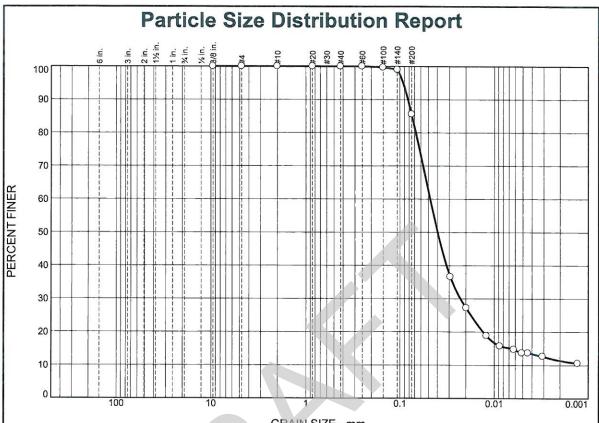
Project No.:	B13-018	Project Name:	Mid Barataria Diversion			
Project Manager:	MP	Date Completed:	9/9/2013	Technician:	MP	
Boring No.:	IS-9A	Depth:	46-47	Sample No.:		
CK'd by:	RLJ	Date CK'd:	9/9/2013			
SAMPLE PR	REPARATION:	UNDISTURBED				
METHOD OF C	OMPACTION:	N/A				
TESTI	NG METHOD:	METHOD F		<u> </u>		
TYPE	SOIL & USCS					
FIELD MO	DISTURE (%):	N/A	LA	B MOISTURE (%):		
INITIAL DIA	METER (cm):	6.906	FINAL	DIAMETER** (cm):	6.867	
INITIAL L	ENGTH (cm):	11.316	FINA	L LENGTH** (cm):	11.252	
INITIAL MOISTURE C	ONTENT (%):	30.8	FINAL MOISTUI	RE CONTENT (%):	28.3	
INITI	AL WET WT.:	833.7		FINAL WET WT.:	795.2	
CONSOLI	DATED (Y/N):	yes	BAC	KPRESSURE (psi):	75.0	
CELL PRE	SSURE (psi):	85	EFFECTIVE	PRESSURE (psi):	10.0	
INITIAL DRY DEN	ISITY (lbs/ft ³):	93.9		ASSUMED Gs:	2.60	
% C	OMPACTION:		FINAL	SATURATION (%):	96.1	
FINAL DRY DEN	ISITY (lbs/ft ³):	92.8				
		B PARAMETER CK.:	yes			
		AVERAGE K _{sat} * (cm/s):	2.08x10 ⁻⁶			
	MAA	VIMI IM CDADIENT LICED.	40.0			
		XIMUM GRADIENT USED:				
	MI	NIMUM GRADIENT USED:	8.3			

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

Hydraulic Conductivity Triaxial Test


11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:	Mid Barataria Diversion			
Project Manager:	roject Manager: MP		9/4/2013	Technician:	MP	
Boring No.:	IS-9A	Depth:	50-51	_ Sample No.:		
CK'd by:	RLJ	Date CK'd:	9/5/2013			
	REPARATION:		200000000000000000000000000000000000000			
METHOD OF C	OMPACTION:	N/A				
TESTI	NG METHOD:	METHOD F				
TYPE	SOIL & USCS					
FIELD M	OISTURE (%): _N	I/A	LA	B MOISTURE (%):		
INITIAL DIA	AMETER (cm):	6.774	FIÑAL I	DIAMETER** (cm):	6.733	
INITIAL I	_ENGTH (cm):	10.485	FINA	L LENGTH** (cm):	10.422	
INITIAL MOISTURE C	ONTENT (%):	32.54	FINAL MOISTUF	RE CONTENT (%):	27.6	
INIT	IAL WET WT.:	775.0		FINAL WET WT.:	737.0	
CONSOLI	DATED (Y/N):	yes	BACK	(PRESSURE (psi): _	75.0	
CELL PRE	ESSURE (psi):	85.0	EFFECTIVE	PRESSURE (psi):	10.0	
INITIAL DRY DEN	NSITY (lbs/ft³):	96.7		ASSUMED G _{S:}	2.65	
% C	OMPACTION:		FINAL S	SATURATION (%):	101.1	
FINAL DRY DEN	NSITY (lbs/ft ³):	97.2				
		B PARAMETER CK.:	yes			
		AVERAGE K _{sat} * (cm/s):	1.58x10 ⁻⁶			
	NAAVIN	ALIM CDADIENT LICED	40.0			
		MUM GRADIENT USED:	100000000000000000000000000000000000000			
	MINIM	IUM GRADIENT USED:	12.7			

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

			GI	RAIN SIZE -	mm.		
% +3"	% Gravel		% Sand			% Fines	
70 T3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.0	14.4	71.9	13.7

SIZE 3/8"	FINER	PERCENT	
3/8"		PERCENT	(X=NO)
	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	100.0		
#100	99.7		
#140	99.0		
#200	85.6		
1			
1			
1			

	Material Description w SILT with Sand and	7.0
PL=	Atterberg Limits	PI=
USCS= (ML)	Classification AASHTO=	
F.M.=0.00	Remarks	

* (no specification provided)

Source of Sample: IS-9A

Depth: 50-51

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

Project No: B13-018

Figure

Hydraulic Conductivity Triaxial Test

11638 Sun Belt Court Baton Rouge, Louisiana 70809

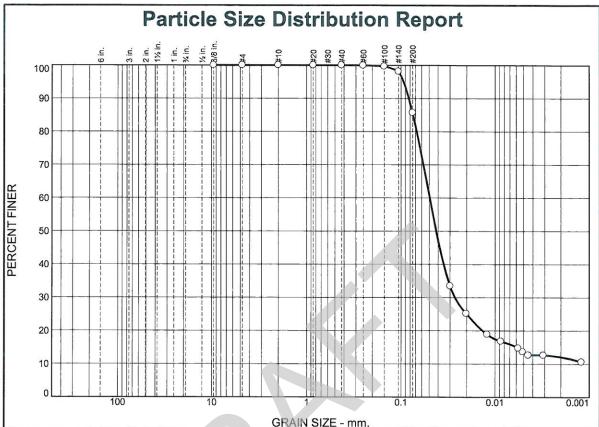
Project No.:	B13-018	Project Name:	Mid Barataria Diversion			
Project Manager:	MP	Date Completed:	te Completed: 9/18/2013 Technician:			
Boring No.:	IS-9A	Depth:	55-56	Sample No.:		
CK'd by:	RLJ	Date CK'd:	9/18/2013			
SAMPLE PR	REPARATION: _	UNDISTURBED	11.45			
METHOD OF C	OMPACTION: _	N/A	2			
TESTI	NG METHOD:	METHOD F				
TYPE	SOIL & USCS					
FIELD MO	DISTURE (%): _	N/A	LAI	B MOISTURE (%): _		
INITIAL DIA	METER (cm):	6.900	FINAL I	DIAMETER** (cm):	6.859	
INITIAL L	.ENGTH (cm):	10.711	FINA	L LENGTH** (cm):	10.648	
INITIAL MOISTURE C	ONTENT (%):	32.22	FINAL MOISTUR	RE CONTENT (%):	29.7	
INITI	AL WET WT.:	780.0		FINAL WET WT.:	753.8	
CONSOLI	DATED (Y/N):	yes	BACK	(PRESSURE (psi): _	75.0	
CELL PRE	SSURE (psi):	85.0	EFFECTIVE	PRESSURE (psi):	10.0	
INITIAL DRY DEN	ISITY (lbs/ft ³):	92.0		ASSUMED G _{S:}	2.65	
% C	OMPACTION:		FINAL S	SATURATION (%):	99.3	
FINAL DRY DEN	ISITY (lbs/ft ³):	92.3				
		B PARAMETER CK.:	yes			
		AVERAGE K _{sat} * (cm/s):	2.83x10 ⁻⁶			
	144	VIMINA ODADIENT LIGES	40.4			
		XIMUM GRADIENT USED:				
	IIM	NIMUM GRADIENT USED:	8.3			

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

Hydraulic Conductivity Triaxial Test


11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:	100	Mid Barataria Diver	rsion
Project Manager: _	MP	Date Completed:	9/10/2013	Technician:	MP
Boring No.:	IS-13A	Depth:	34-35	Sample No.:	
CK'd by:	RLJ	Date CK'd:	RLJ		
SAMPLE PR	EPARATION:	JNDISTURBED		· · · · · · · · · · · · · · · · · · ·	
METHOD OF CO	OMPACTION:	N/A			
TESTIN	NG METHOD:	METHOD F		<u> </u>	
TYPE S	SOIL & USCS				
FIELD MC	ISTURE (%): N/	Α	LAI	B MOISTURE (%):	## * * * * * * * * * * * * * * * * * *
INITIAL DIA	METER (cm):	7.242	FINAL D	DIAMETER** (cm): _	7.188
INITIAL L	ENGTH (cm):	10.325	FINA	L LENGTH** (cm):	10.249
INITIAL MOISTURE CO	ONTENT (%):	29.7	FINAL MOISTUR	RE CONTENT (%):	28.1
INITIA	AL WET WT.:	793.9		FINAL WET WT.:	766.6
CONSOLIE	DATED (Y/N):	yes	BACK	(PRESSURE (psi): _	75.0
CELL PRE	SSURE (psi):	85.0	EFFECTIVE	PRESSURE (psi):	10.0
INITIAL DRY DEN	SITY (lbs/ft ³):	89.8		ASSUMED G _{S:}	2.65
% CC	OMPACTION:		FINAL S	SATURATION (%):	88.5
FINAL DRY DEN	SITY (lbs/ft ³):	89.8		Low saturatio	n attributed to disturbance
		B PARAMETER CK.:	yes		
			6		
	A	VERAGE K _{sat} * (cm/s): _	1.97x10 ⁻⁶		
	MAXIM	UM GRADIENT USED:	146		
		UM GRADIENT USED:	8.5		
	IVIIIVI	OW GIMPIENT OSED.	0.0		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

			G	KAIN SIZE -	mm.		
% +3"	% G		vel % Sand			% Fines	
76 TJ	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.0	14.3	72.2	13.5

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	99.7		
#140	98.2		
#200	85.7		

Material Description					
Gray SAND with Clay					
Atterberg Limits					
PL= LL=	PI=				
USCS= (CL-ML) Classification AASHTO=					
Remarks					
F.M.=0.00					

(no specification provided)

Source of Sample: IS-13A

Depth: 34-35

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA

Client: GeoEngineers

Project: Mid Barataria Diversion

Project No: B13-018

Figure

Hydraulic Conductivity Triaxial Test

11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:		Mid Barataria Diver	rsion
Project Manager: _	MP	Date Completed:	9/10/2013	Technician:	MP
Boring No.:	IS-13A	Depth:	45-46	Sample No.:	
CK'd by:	RLJ	Date CK'd:	9/10/2013		
SAMPLE PR	EPARATION:	JNDISTURBED			
METHOD OF CO	OMPACTION:	N/A			
TESTIN	NG METHOD:	METHOD F		<u> </u>	
TYPE S	SOIL & USCS				
FIELD MO	OISTURE (%): N	/A	LAI	B MOISTURE (%):	
INITIAL DIAI	METER (cm):	7.148	FINAL D	DIAMETER** (cm):	7.086
INITIAL LI	ENGTH (cm):	7.478	FINA	L LENGTH** (cm):	7.414
INITIAL MOISTURE CO	ONTENT (%):	33.50	FINAL MOISTUR	RE CONTENT (%):	33.2
INITIA	AL WET WT.:	567.9		FINAL WET WT.:	560.9
CONSOLIE	DATED (Y/N):	yes	BACK	(PRESSURE (psi): _	75.0
CELL PRE	SSURE (psi):	85.0	EFFECTIVE	PRESSURE (psi):	10.0
INITIAL DRY DEN	SITY (lbs/ft³):	88.6		ASSUMED G _{S:}	2.80
% CC	OMPACTION:		FINAL S	SATURATION (%):	98.5
FINAL DRY DEN	SITY (lbs/ft³):	89.9			
		B PARAMETER CK.:	yes		
	A	VERAGE K _{sat} * (cm/s):	1.94x10 ⁻⁷		
	MAXIM	UM GRADIENT USED: _	22.7		
	MINIM	UM GRADIENT USED:	16.8		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

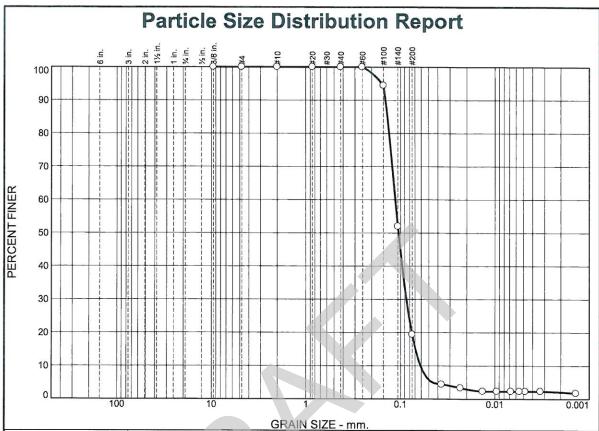
11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.:	B13-018	Project Name:	<u> </u>	Mid Barataria Divers	ion
Project Manager: _	MP	Date Completed:_	9/14/2013	Technician:	MP
Boring No.:	IS-13A	Depth:	54-55	Sample No.:	
CK'd by:	RLJ	Date CK'd:	9/16/2013		
SAMPLE PR	EPARATION:	INDISTURBED			
METHOD OF CO	OMPACTION:	N/A			
TESTIN	NG METHOD:	METHOD F		<u> </u>	
TYPE S	SOIL & USCS				
FIELD MC	DISTURE (%): N/	Α	LAE	B MOISTURE (%):	****
INITIAL DIA	METER (cm):	7.183	FINAL D	NAMETER** (cm):	7.138
INITIAL L	ENGTH (cm):	10.312	FINAL	LENGTH** (cm):	10.246
INITIAL MOISTURE CO	ONTENT (%):	31.06	FINAL MOISTUR	E CONTENT (%):	29.1
INITIA	AL WET WT.:	793.1		FINAL WET WT.:	774.2
CONSOLIE	DATED (Y/N):	yes	BACK	PRESSURE (psi):	75.0
CELL PRE	SSURE (psi):	85.0	EFFECTIVE	PRESSURE (psi):	10.0
INITIAL DRY DEN	SITY (lbs/ft ³):	90.4		ASSUMED G _{s:}	2.65
% CC	OMPACTION:		FINAL S	ATURATION (%):	95.2
FINAL DRY DEN	SITY (lbs/ft ³):	91.3			
		B PARAMETER CK.:	yes		
			•		
	A	VERAGE K _{sat} * (cm/s): _	3.14x10 ⁻⁷		
	MAXIM	UM GRADIENT USED:	14.5		
		UM GRADIENT USED:	10.7		
	IVILIALIA	om orabicial odeb.	10.7		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.


11638 Sun Belt Court Baton Rouge, Louisiana 70809

Project No.: B13-018	Project Name:		Mid Barataria Divers	ion
Project Manager: MP	Date Completed:	9/5/2013	Technician:	MP
Boring No.: IS-16A	Depth:	47-48	Sample No.:	
CK'd by: RLJ	Date CK'd:	9/6/2013	-	
			Ť	
SAMPLE PREPARATION:	UNDISTURBED			
METHOD OF COMPACTION:	N/A			
TESTING METHOD:	METHOD F			
TYPE SOIL & USCS				
FIELD MOISTURE (%):	N/A	LA	B MOISTURE (%):	
INITIAL DIAMETER (cm):	7.081	FINAL I	DIAMETER** (cm):	7.065
INITIAL LENGTH (cm):	10.892	FINA	L LENGTH** (cm):	10.866
INITIAL MOISTURE CONTENT (%):	24.97	FINAL MOISTUR	RE CONTENT (%):	25.7
INITIAL WET WT.:	843.0		FINAL WET WT.:	847.7
CONSOLIDATED (Y/N):	yes	BACK	(PRESSURE (psi):	75.0
CELL PRESSURE (psi):	85.0	EFFECTIVE	PRESSURE (psi):	10.0
INITIAL DRY DENSITY (lbs/ft3):	98.2		ASSUMED G _{S:}	2.60
% COMPACTION:		FINAL S	SATURATION (%):	103.8
FINAL DRY DENSITY (lbs/ft3):	98.8			
	B PARAMETER CK.:	yes		
		4		
	AVERAGE K _{sat} * (cm/s):	5.14x10 ⁻⁴		
MA	XIMUM GRADIENT USED:	19.7		
MI	NIMUM GRADIENT USED:	10.8		

⁻ This data applies only to specimen tested.

^{*} Corrected to 20 °C

^{**} All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and/or consolidation.

73 77 77 77 77 77 77 77 77 77 77 77 77 7			G	WAIN SIZE -	111111.		
% +3"	% Gr	avel		% Sand		% Fin	es
76 T3	% +3 Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.0	80.6	17.1	2.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	100.0		
#40	100.0		
#60	100.0		
#100	94.5		
#140	52.0		
#200	19.4		

Material Description Gray Fine SAND with Silt and Trace Clay					
PL=	Atterberg Limits	PI=			
USCS= (SM)	Classification AASHTO=				
F.M.=0.06	Remarks				

(no specification provided)

Source of Sample: IS-16A

Depth: 47-48

Date:

Southern Earth Sciences, Inc. Baton Rouge, LA Client: GeoEngineers

Project: Mid Barataria Diversion

Project No: B13-018

Figure