Borrow Area Management and Monitoring (BAMM) Program for Coastal Restoration in Louisiana

Syed M. Khalil¹, Ed Haywood¹, Jeff Andrews², Beth Forrest², Carrie Sonders², & Melany Larenas² ¹ CPRA and ² CB&I

> State of the Coast Conference New Orleans, LA 19th March 2014

committed to our coast

Background

- 1. An important component of Louisiana Sediment Management Plan (LASMP)
- 2. As borrow areas (inland/nearshore, river and offshore) are not routinely monitored, BAMM is a first attempt to monitor and manage
- **3.** BAMM will help us understand:
 - Physical characteristics such as "Infilling Rate", pit-slope gradient, and sediment transport regime
 - Water quality such as potential development of hypoxic conditions in the borrow areas and its relationship to dredge depth
 - Environmental impacts such as how borrow area design affects wave heights and energy of the surrounding environment
- **4.** BAMM will also help us by providing a scientific basis to influence the numerous restrictions and/or regulations that govern the use of borrow areas
- 5. Management of borrow areas help optimize use of sediment for protection and restoration

Land Loss vs. Accommodation

Sediment Borrow Area

Borrow Area Management & Monitoring (BAMM)

Optimal Utilization

- Location vs. project
- Location vs. pipeline
- Delineation of potential sand sources in OCS
- Infilling rate.
- Slope Stability Issues
- Hypoxia

Monitoring Programs

- Barrier Island Comprehensive Monitoring Program (BICM)
 Bathymetric data
 Sediment data
- Met-Oceanic Data WAVCIS
- Eustatic Sea Level Rise
- Subsidence

SEDIMENT

OCS Waters, State Waters, Coastal Zone Lower Mississippi & Atchafalaya River

Sediment Evaluation

 Delta Sand Search Model (DSSM) : Protocol & Guideline of exploration

- Evaluation of potential areas
- Offshore/State & Federal Waters
- Lower Miss River
- Atchafalaya River

River Studies

LCA Miss River Delta Mgmt Study
Atchafalaya Basin Sed Mgmt Plan
Others

Sediment Data Management (LASARD) •Protocol for standardization of

data

acquisition

Regional Sediment Management

Sediment Resources
Sediment Budget
Dredged sediment
Diversions

Policy/ Regulation

Federal Resource Regulations

Prioritization of allocation
 Federal Standard
 Environment Issues

Pipeline/O&G Policies

Notice to Leasees

Sea Level Rise Policy

Coordination w/Stakeholders State, Federal, NGO

LOUISIANA SEDIMENT MANAGEMENT PLAN (LASMP)

Introduction

BAMM Tasks:

- **1. Inventory** of existing nearshore, offshore and riverine borrow areas
- **2.** Physical characteristics
 - Geophysical and geotechnical data collection and analysis
 - Data collection within select borrow areas
 - Push Core collection to characterize sediment characteristics of select borrow areas

3. Water quality

Hypoxia Monitoring to identify hypoxic conditions within select dredge areas

4. Environmental impacts

Model Development

 Evaluate physical impacts of select borrow areas (Delft3d, Delft3d-FLOW and SWAN)

Overview Map

BAMM- Summary Table

Borrow Area	Location	Survey	Hypoxia	Push Core
East Marsh Island	Inland	V		
Lake Mechant	Inland			
West Lake Boudreaux	Inland	Ø		Ø
Little Lake	Inland	V		Ø
Goose Point	Inland	V	Ø	Ø
Barataria Basin Landbridge BA1	Inland	V		
Barataria Basin Landbridge BA2	Inland	V	Ø	
Barataria Basin Landbridge BA3	Inland	V		N
New Cut	Offshore	V		
West Belle Pass Sand BA	Offshore			
West Belle Pass Marsh BA	Offshore		Ø	
West Grand Terre (WGT BA-C)	Offshore			
Sandy Point	Offshore			

East Marsh Island

East Marsh Island-Post Construction Bathymetry

East Marsh Island-2013 BAMM Bathymetry

East Marsh Island-Difference Map

East Marsh Island-Infilling

Task	Details
Infilling	 Approximately 2,986,000 cubic yards 7.0 ft on average Range: 0-12.7 ft 3.5 feet/year

East Marsh Island-Hypoxia

Lake Mechant

Lake Mechant-Post Construction Bathymetry

Lake Mechant-2013 BAMM Bathymetry

Lake Mechant-Difference Map

Lake Mechant-Infilling

Task	Details
Infilling	 Approximately 1,222,000 cubic yards 1.3 ft on average Range: 0-7.4 ft 0.3 feet/year

Lake Mechant-Hypoxia

Goose Point

Goose Point-Post Construction Bathymetry

Goose Point-2013 BAMM Bathymetry

Goose Point-Difference Map

Goose Point-Infilling

Task	Details
Infilling	 Approximately 401,000 cubic yards 1.6 ft on average Range: 0-5.3 ft 0.3 ft/year

Goose Point-Hypoxia

Goose Point-Push Cores

Task	Details
Push Cores	 Collected July 21, 2013 Penetrated 4.6 ft and recovered 3.3 ft of material Three layers of material were identified 0.0-2.8 ft: mostly very dark gray clay (5Y-3/1) 2.9-3.1 ft: dark gray clay (5Y-4/1) with little organics 3.1-3.3 ft: grey clay (5Y-6/1)

Barataria Basin Landbridge

Barataria-Post Construction Bathymetry

Barataria-2013 BAMM Bathymetry

Barataria-Difference Map

Barataria Basin Landbridge-Infilling

Task	Details
Infilling	 Approximately 3,248,000 cubic yards 2 ft on average Range: 0-13.7 ft 0.7 ft/year

Barataria Basin Landbridge-Hypoxia

Barataria Basin Landbridge-Push Cores

Task	Details
Push Cores	 Collected July 17, 2013 Penetrated 5.0 ft and recovered 2.8 ft of material Field vane shear test indicated the material to be very soft clay One layer identified as very soft and very dark grey clay (5Y-3/1) with little organics

West Belle Pass

West Belle Pass-Post Construction Bathymetry

West Belle Pass-2013 BAMM Bathymetry

West Belle Pass-Difference Map

West Belle Pass-Infilling

Task	Details
Infilling	 Approximately 104,000 cubic yards 1.4 ft on average Range: 0-12.6 ft 1.4 ft/year

West Belle Pass-Hypoxia

Sandy Point

Sandy Point-Post Construction Bathymetry

Sandy Point-2013 BAMM Bathymetry

Sandy Point-Difference Map

Sandy Point-Infilling

Task	Details
Infilling	 Approximately 201,000 cubic yards 1.4 ft on average Range: 0-12.5 ft 1.4 ft/year

Sandy Point-Hypoxia

Physical Characteristics

1. Infilling rate

Location	Years Between Post- Construction Survey and CB&I Survey	Average Infill Thickness (ft)	Infilling Rate (ft/yr)
East Marsh Island	2	7	3.5
Lake Mechant	4	1.3	0.3
Goose Point	5	1.6	0.3
Barataria Landbridge	3	2.0	0.7
West Belle Pass	1	1.4	1.4
Sandy Point	1	1.4	1.4

Physical Characteristics

2. Sediment characteristics from push cores

Borrow Area	Penetration (ft)	Recovery (ft)	Sediment Description
Barataria Basin Landbridge (BLPC-13-01)	5.0	2.8	Very soft, dark gray clay (5Y-3/1) with little organic material
Little Lake (LLPC-13-01)	5.0	2.1	Soft, dark gray clay (5Y-3/1) with little organic material
West Lake Boudreaux (LBPC-13-01)	5.0	2.7	Very soft, dark gray clay (5Y-3/1) with little organic material
Goose Point (GPPC-13-01)	4.6	3.3	From 0.0 ft to 2.98 ft the material was mostly a very soft, very dark gray (5Y-3/1) clay with little organics. From 2.9 ft to 3.1 ft, the material was very soft, dark gray clay (5Y-4/1) with little organics. From 3.1 ft to 3.3 ft, material was grey (5Y-6/1) clay.

Bottom-Water Dissolved Oxygen across Louisiana Shelf

Water Quality

- 1. Red stars represent areas where dredging may have some influence on DO levels. It is important however, to consider the size of these borrow areas relative to surrounding open water.
- 2. Nearshore/Lakes
 - 1. Lake Mechant-Where data was available, the change in bathymetry following dredging activities did decrease dissolved oxygen levels in the borrow area, but they only reached hypoxic levels for brief periods of time spread throughout the observation period.
 - 2. Goose Point-Based on the data collected during the observation period, hypoxia was likely caused by the dredging in the borrow area, but recovery did occur relatively quickly to levels similar to the control area.
 - 3. East Marsh Island-Insufficient information to conclude that the dredging in East Marsh Island had any effect on the existence, persistence, or degree of hypoxia in the borrow area, although where oxygen levels were decreased nearing hypoxic conditions, they were only measured briefly and recovered quickly to levels similar to the control area.
 - 4. Barataria Landbridge -The change in bathymetry following dredging activities did not influence the existence, persistence, or degree of hypoxia.
- 3. Offshore
 - 1. Sandy Point- dredging did increase hypoxia and anoxia in the borrow area, but the control area also exhibited significant and persistent occurrences of hypoxia. This area is also close to the larger Gulf hypoxic zone.
 - 2. West Belle Pass It is difficult to say that the change in bathymetry following dredging activities did or did not influence the existence, persistence, or degree of hypoxia. This area is also close to the larger Gulf hypoxic zone.

Environmental impacts - ongoing

Modeling to analyze and evaluate potential adverse impacts to wave climate and hydrodynamics due to dredging of large inland borrow areas.

Coastal Protection and Restoration Authority of Louisiana

mbal

lerrebor

Environmental impacts - ongoing

Summary

Location	Max. Cut Depth (ft)	Average Infill Thickness (ft)	Infilling Rate (ft/yr)	Hypoxia attributed to dredging (Y/N)
East Marsh Island	14.2	7	3.5	Ν
Lake Mechant	9	1.3	0.3	Y
Goose Point	9	1.6	0.3	Y
Barataria Landbridge	13.5	2.0	0.7	Ν
West Belle Pass	20.9	1.4	1.4	Ν
Sandy Point	41.7	1.4	1.4	Υ

Questions ???

Funding for this study was provided by the Coastal Impact Assistance Program (CIAP).